
~ )  P e r g a m o n  
Appl. Math. Lett. Vol. 10, No. 4, pp. 65-70, 1997 

Copyright©1997 Elsevier Science Ltd 
Printed in Great Britain. All rights reserved 

0893-9659/97 $17.00 + 0.00 
P I h  S0893-9659(97)00061-X 

D u a l i t y  in R o b u s t  L inear  R e g r e s s i o n  
U s i n g  H u b e r ' s  M - E s t i m a t o r  

M. (~. PINAR 
Industrial Engineering Department,  Bilkent University 

06533 Bilkent, Ankara, Turkey 
must af ap©bilkent, edu. tr 

(Received October 1996; accepted December 1996) 

Communicated by R. H. Byrd 

A b s t r a c t - - T h e  robust linear regression problem using Huber's piecewise-quadratic M-estimator 
function is considered. Without exception, computational algorithms for this problem have been 
primal in nature. In this note, a dual formulation of this problem is derived using Lagrangean 
duality. It is shown that the dual problem is a strictly convex separable quadratic minimiza- 
tion problem with linear equality and box constraints. Furthermore, the primal solution (Huber's 
M-estimate) is obtained as the optimal values of the Lagrange multipliers associated with the dual 
problem. As a result, Huber's M-estimate can be computed using off-the-shelf optimization software. 

Keywords--Lagrangean duality, Huber's M-estimator, Robust regression, Quadratic program- 
ming. 

1 .  I N T R O D U C T I O N  

T h e r e  has  been  cons iderab le  in teres t  in the  t heo ry  and a lgo r i thms  for robus t  e s t ima t i on  in t he  

p a s t  two decades .  In  pa r t i cu la r ,  H u b e r ' s  M - e s t i m a t o r  [1] has  received a g rea t  dea l  of  a t t e n t i o n  

f rom b o t h  theo re t i ca l  and  c o m p u t a t i o n a l  po in t s  of  view. Robus t  e s t ima t i on  is concerned  wi th  

ident i fy ing  "out l iers"  among  d a t a  po in ts  and  giving t h e m  less weight .  H u b e r ' s  M - e s t i m a t o r  is 

essen t ia l ly  t h e  leas t  squares  e s t ima to r ,  which uses the  g l -no rm for po in t s  t h a t  a re  cons idered  

ou t l ie r s  w i th  respec t  to  a cer ta in  th reshold .  Hence,  the  H u b e r  c r i te r ion  is less sensi t ive  to  t he  
presence  of  out l iers .  

More  precisely,  H u b e r ' s  M - e s t i m a t e  is a min imizer  x* E ~n  of t he  funct ion  

where  

f(x) = 
i----1 

(1) 

1 2  
~-=.t , if Itl < % 

p( t )  = "Y 1 (2) 
I t l -  2-r, if Itl _~ % 

wi th  a t u n i n g  cons t an t  ~ > O, and  a scal ing fac tor  a t h a t  depends  on the  d a t a  to  be  e s t ima ted .  
T h e  res idua l  r~(x) is def ined as  

r~(x) -- b~ - a~x ,  (3) 
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and data analysis, and suggested directions for future research. I am grateful to both. 

65 



66 M. ~. PINAR 

for all i = 1 , . . .  ,m  with r -- b - A T x .  To view this minimization problem in a more familiar 
format, define a "sign vector" 

ST(X) = [S~I(X),. . . ,S~m(X)] (4) 

with 

and 

where 

-1 ,  if ri(x) _< - 7 ,  
sv~(x) = 0, if Iri(x)[ < 7, 

1, if r i (x)  >_ 7, 

(5) 

Ws = diag ( w l , . . . ,  win), (6) 

wi = 1 - s~. (7) 

Now, assuming a unit a for the moment, Huber 's M-estimation problem can be expressed as 
the following minimization problem. 
PROBLEM [P]. 

1 T T[ 1 ] 
minimize F ( x )  - ~Tr  W , r  + s~ r - ~Ts~ , (8) 

where the argument x of r is dropped for notational convenience. Clearly, F measures the "small" 
residuals ([ri(x)[ < 7) by their squares, while the "large" residuals are measured by the gl func- 
tion. Thus, F is a piecewise quadratic function, and it is once continuously differentiable in Nn. 

The contribution of the present note is to introduce a dual approach to this computationally 
intensive problem. A simple derivation is used to give a dual problem which turns out to be a 
problem familiar to the numerical optimization community: linearly constrained separable convex 
quadratic programming. To the best of the author 's  knowledge, this duality relationship has not 
been noticed before. This simple result reduces the M-estimation problem to one that  is easily 
solved using off-the-shelf optimization software. 

The interest in Huber's M-estimator derives from its perceived utility as a robust estimation 
procedure. In this context, 7 is an important  quantity as it controls the spread of the residuals. 
This suggests that  it should be related to the scaling factor a. Some algorithms [2,3] estimate a 
only once at the beginning using some rules of thumb, and keep it fixed throughout the compu- 
tation. Another approach is to estimate a iteratively by treating it as an independent variable. 
This is used by Huber in [4] who suggests a to be computed from an auxiliary equation involving 
a, 7, and x. Shanno and Rocke [5] and Ekblom [6] also use this approach in their respective 
papers. An alternative way to connect these two parameters and to iteratively estimate a is to 
set a = 1 for any values of 7 and a, and to replace 7 with 7a. Hence, there is no loss of infor- 
mation in using 7 only, while 7 and a are both allowed to vary during the computation. Clark 
and Osborne [7] use this observation in their algorithm that  computes both a and V. This is a 
continuation method, so that  at each stage they have the M-estimate for the current 7. Clark and 
Osborne also describe a partitioning algorithm to resolve degenerate situations in the continua- 
tion algorithm. The continuation method is essentially based on tracing a curve of M-estimates 
as a function of 7. Their  approach consists of two stages. 

1. Construction of a solution for a particular 7. The easiest cases are 7 = 0 (~1 estimate) and 
7 = oo (least squares). These are both used in [7]. 

2. Continuation with respect to 7 to solve the data  analysis problem. 

A potential contribution of the present paper in the above context is that  it suggests a new 
method for obtaining Huber's M-estimate for a particular value of 7. Then, continuation with 
respect to 7 of a solution obtained by the dual method can be pursued using methods of para- 
metric quadratic programming. In this connection, the rule of thumb choices that have been 
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suggested for ~ in the literature [2-4] can be used to see if they provide better starting points for 
the continuation method than least squares and ei estimates. This is a topic for future research. 

When a and 9, are fixed, most algorithms that have proved successful for the computation of 
Huber's M-estimate have been iterative in nature. Since F is only once continuously differentiable, 
research concentrated on developing successful applications of Newton's method to this problem, 
and on studying ideas such as the iteratively reweighted least squares (IRLS). Among these, 
Huber and Dutter's method [8] and Huber's [4] apply Newton's method to the nonlinear equation 
system: 

which represent the optimality conditions. The IRLS algorithm is attributed to Beaton and 
Tukey [9]. This algorithm has been discussed in several other papers as well [2,3,10-12]. A brief 
review of these algorithms is given in [7]. 

Madsen and Nielsen gave finite modified Newton algorithms for the minimization of the Huber 
function in [13]. These algorithms capitalize on the piecewise quadratic nature of the function. 
The idea is that if the sign vector associated with a minimizer x*, s* say, were known, then the 
minimizer could be computed using one step of Newton's method. Since sign vectors correspond 
to a subdivision of ~n into a finite number of subregions, the methods of Madsen and Nielsen 
reduce to a search for the correct subregion. 

2. A D U A L  P R O B L E M  

In this section, a dual problem to [P] is derived using Lagrangean duality. The interested 
reader is directed to the book by Rockafellar [14] for a detailed exposition of Lagrangean duality. 
We use a single parameter 7 to mean 3'a as discussed in the previous section. 

Consider the problem [P] in a slightly different form: 

minF(x) =_ @ (b - A T  x )  . (10) 

Let u = b - A T x ,  and rewrite the problem as: 

min @(u) 

s.t. b - A T x  = u. 

Associating the multipliers y E ~m with the equality constraints b - A T x  = u, we get the following 
Lagrangean problem: 

max min {@(u) + yT  (b - A T  x -- u)  } .  (11) 
X , ~  

This is equivalent to: 

m a x  [yTb + min ((I)(u)- yTu} ÷ m~n (_yT A Tx}]. 
y u 

Observing that x is a free variable, the term 

min {_yT AT x} 

yields the constraint 

It remains to simplify the term 

A y = O .  

(12) 

(13) 

(i4) 

min - ysu}. (15) 
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Simple calculus shows that 

min{O(u)--yTu)} = - -~TY Y, 
U --OO, 

Hence, the dual problem is the following. 
PROBLEM [D]. 

1 T 
m a x  b m y -  ~TY Y 

i f - 1  < y _< 1, 

otherwise. 
(16) 

s.t. A y  = 0 

- l < y < l .  

An alternative way to arrive at the above dual is to pose the primal problem [P] as a quadratic 
programming problem: 

1 m ~ (  ) 
m a x  + q ' -  

i=.l i= l  

s.t. - p  - q < b - A T x  < p -{- q 

p < _ T e  

q>_O. 

where e denotes a vector with all components unity. This is not surprising since the dual of a 
quadratic program is again a quadratic program. However, this alternative derivation is sub- 
stantially longer since it requires some transformations on the resulting dual to be cast in the 
form [D]. So, it is not included into the present paper. 

The remarkable fact about the duality result is that the dual we have derived is a quadratic 
programming problem with a strictly concave separable objective function, linear equality, and 
box constraints. This is important in two respects. First, this dual problem is an intensely 
researched, numerically well-solved problem. An excellent software system is available from 
Stanford University for the solution of quadratic programming problems [15,16]. Furthermore, 
numerical procedures for solving this problem are part of almost any subroutine library. Such 
procedures are also available through matrix manipulation packages such as Matlab T M  and Oc- 
tave [17]. Second, it has been shown to be polynomially solvable [18], and efforts to turn related 
algorithms into reliable software on this front are also under way. In particular, quadratic pro- 
gramming versions of the software systems CPLEX T M  and LoQo are available [19]. Hence, any 
advances made in the fast and accurate solution of the quadratic programming problem will 
benefit Huber's M-estimation problem. 

Note that any numerical procedure which yields a primal-dual solution to [D] gives a mini- 
mizer x* of the primal problem, which is really of interest here. To see this, it is instructive to 
derive a dual problem to [D] using Lagrangean duality. 

Associating multipliers v E !l~" with the constraints A y  = O, we get the following Lagrangean 
problem: 

min max ~ b T y - 1 T } v -*<_~<* [. ~TY Y + v T ( - - A y + O )  . (17) 

Now, rearranging terms and using r =- b - A T v ,  simple calculus shows that: 

max y~r~ - = -1<~,<1 ~7Y~ 2 7 r "  (18) 

57, > 7. 

But, this is precisely Huber's M-estimator function. Therefore, the optimal values of the dual 
multipliers associated with the equality constraints in [D] give precisely Huber's M-estimate. 
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Fur the r  insight into the  relat ionship between [P] and [D] is gained th rough  T h e o r e m  1 below 
which links the  op t ima l  solutions of [P] and [D]. Th is  t heo rem shows t h a t  the  op t ima l  solut ion 
to  [D] is ob ta ined  as the  first der ivat ive of  the  funct ion F wi th  respect  to  r a t  any  pr imal  op t ima l  
point .  Before s ta t ing  this result,  we quote  the  following p rope r ty  t h a t  was  proved in [20]. 

LEMMA 2.1. L e t  x be a m in im i ze r  o f  F for some  value o f  ~ > O, and let s = sx(x)  wi th  W s  

defined accordingly. Also,  let r = b - A V x .  Then,  ri is cons tant  for all i such tha t  si = O. 

Fur the rmore ,  sw is cons tan t  for any  x t ha t  min imi zes  F .  

By s t r ic t  concavity,  it is clear t h a t  the  op t imal  solution to  [D] is unique. 

THEOREM 2.1. L e t  x be a m in im i ze r  o f F  for some  value o f  "l > O, and let s = s~(x)  with  W s  

defined accordingly. Then,  the  unique op t imal  solut ion of  [D] is given as: 

w . r ( x )  
y - - -  + s. (19) 

PROOF. Associa te  mult ipl iers  x wi th  the  equal i ty cons t ra in ts  and nonnegat ive  mult ipl iers  
a , /3  E N'~ with  the  box constraints .  F rom [6, T h e o r e m  28.3], it is well known tha t  for y to 
be  an op t ima l  solut ion for [D], and for (x, a , /3)  to be  a Lagrange  mult ipl ier  vector,  it is necessary 
and sufficient t h a t  (y, x, a , /3)  be a saddlepoint  of the  Lagrangean  of [D] as defined in [6, p. 280]. 
Th is  condi t ion holds if and only if the  componen t s  of (y, x, a, /3) sat isfy the  following conditions: 

~ y -  b +  A T x  + a - / 3  = 0, (20) 

A y  = 0, (21) 

a i (y i  - 1) = 0, for all i = 1 . . . . .  m, and (22) 

/3i(-y~ - 1) -- 0, for all i = 1 . . . . .  m. (23) 

F rom the  first condi t ion (20), we ob ta in  

b - A - rx  o~ - / 3  
u - (24) 

Let  r - b - A-r x and consider three  cases. 

CASE 1. I f  --1 < Yi < 1, clearly, ai  =/3 i  = 0. This  implies t h a t  [ri(x)[ < ~ wi th  s~i(x) = 0, i.e., 
= 

CASE 2. I f  Yi = 1, this implies t h a t / 3 i  = 0. Hence, r i ( x )  = ~ + ai .  Therefore ,  r i ( x )  >_ "y with  
s~i(x)  = 1, i.e., yi = s~i(x)  = 1. 

CASE 3. I f  Yi = --1, one has a i  = 0. Hence, s imilar ly to  Case 2 above,  r i ( x )  <_ - ~  with  

s~i(x)  = - 1 ,  i.e., Yi = s ~ ( x )  = - 1 .  

Therefore ,  an a l te rnat ive  expression for y is given as: 

+ (25) 

T h e  resul t  now follows f rom the previous lemma.  | 
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