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Electromagnetic Scattering Solution 
of Conducting Strips in Layered Media 

Using the Fast Multipole Method 
Levent Gurel, Member, IEEE, and M. I. Aksun, Member, IEEE 

Abstract-The fast multipole method (FMM) is applied to the 
solution of the electromagnetic scattering problems in layered 
media for the first time. This is achieved by using closed- 
form expressions for the spatial-domain Green’s functions for 
layered media. Until now, the FMM has been limited to the 
homogeneous-medium problems. An integral equation based on 
the two-dimensional scalar Helmholtz equation is solved to com- 
pute the electromagnetic scattering from sample geometries of 
conducting strips in layered media in order to demonstrate the 
accuracy and the efficiency of the new method. 

I. INTRODUCTION 
UMERICAL solution of electromagnetic radiation and N scattering problems involving layered media have gained 

popularity due to the need to computationally analyze and 
simulate various important geometries, e.g., microwave inte- 
grated circuits (MIC’s), printed circuit boards (PCB’s), and the 
vast class of microstrip-like structures. Numerical analysis and 
simulation of these structures are needed for both functional 
considerations and electromagnetic-compatibility (EMC) is- 
sues. 

The formulation of layered-media problems has traditionally 
been carried out in the spectral domain due to the avail- 
ability of the Green’s functions in closed forms [l], [2]. 
Recently, a series of techniques have been developed to 
obtain closed-form Green’s functions (CFGF’s) for layered 
media in the spatial domain 131, [4]. The use of the CFGF’s 
in a method-of-moments (MOM) formulation replaces the 
numerical computation of the improper integrals in the spectral 
domain with numerical integrations over finite regions in 
the spatial domain. Furthermore, the spatial domain integrals 
can be evaluated analytically in some cases [5].  Thus, this 
approach reduces the matrix-filling time by several orders 
of magnitude compared to the spectral-domain formulation. 
However, it does not reduce the computational complexities 
of the matrix-filling time and the memory requirement, which 
are both O ( N 2 ) .  Most importantly, despite the great savings 
in the matrix-filling time, the solution of the N x N dense 
matrix equation remains, which requires O ( N 3 )  operations 
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in a direct scheme or O ( N Z )  operations per iteration in an 
iterative scheme. 

On another front, several researchers are working to reduce 
the computational complexities and the memory requirements 
of the solution of integral equations of electromagnetics. For 
the iterative solutions of the integral equations based on the 
Helmholtz equation, the fast multipole method (FMM), which 
has O( N 3 / ’ )  complexity per iteration, has recently attracted 
attention [6], [7]. 

The FMM employs a harmonic expansion of the closed- 
form Green’s function and has so far been limited to the 
homogeneous-medium problems due to the lack of either 
the closed-form Green’s function or the harmonic expansion 
thereof for other more complicated media, including the lay- 
ered media. By obtaining a closed-form expression for the 
spatial domain Green’s function for an arbitrarily layered 
medium and by interpreting each term of the expression as a 
discrete complex image, we have been able to apply the FMM 
to the solution of the Helmholtz equation for layered-media 
problems. Thus, we have obtained a fast solution techniques 
for the layered-media problems and extended the applica- 
bility of the FMM from homogeneous-medium problems to 
layered-medium problems. A similar technique has also been 
developed for the solution of Laplace equation [SI. 

11. FAST MULTIPOLE METHOD I N  A LAYERED MEDIUM 

The FMM is a fast algorithm to compute the fields due to an 
arbitrary source distribution at a set of predetermined points in 
space. By formulating the solution of an integral equation in an 
iterative scheme, where one or more such field calculations are 
performed at each iteration, it becomes possible to reduce the 
complexity of the solution compared to traditional techniques. 

The y-directed electric field at point p = 9x + 22 due to 
a y-directed line source with unit amplitude located at point 
p’ Px’ + 2%’ is given by 

where RTE is the generalized reflection coefficient defined at 
the z = 0 plane due to an arbitrarily layered substrate below 
this plane. 
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Fig. 1. 
with DCI’s in a homogeneous medium. 

(a) Original problem in a layered medium. (b) Equivalent problem 

Using a robust technique by Aksun [4], (1) can be converted 
to a closed-form expression given by 

G(P1 P’)  = 
r N, 1 

where Ip - = J(LC - z ’ ) ~  + (z + z’ + ia,)* and a, and 
an are complex constants for rL = 1, 2, . . . NI. 

The FMM is based on the expansion of the Green’s function 
using the addition theorems and no such expansions exist 
for the layered-media Green’s functions given in (1) and (2). 
However, we can still employ the FMM in the solution of 
a layered-medium problem if we interpret (2) as the linear 
superposition of the field due to a source at p’ and the 
fields due to NI discrete complex images (DCI’s )  located at 
p i  = 2.z’ + 2(  -2’ - ion). The DCI’s are located at complex 
coordinates and, therefore, we need to use addition theorems 
for wave functions with complex arguments. 

With the DCI interpretation, an equivalent problem is set up 
in a homogeneous medium. In this equivalent problem, which 
is illustrated in Fig. 1 (b), NI image sources in a homogeneous 
medium are defined corresponding to each original source in 
the layered-medium problem [Fig. l(a)]. Thus, if N testing 
functions are defined on the original conductors, N(N1 + 1) 
basis functions are defined on the original conductors and their 
images. 

The computation of the fields of N (  NI + I) basis functions 
on the N testing functions is carried out using the FMM 
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Fig. 2. Examples of layered structures. 

and repeated several times in an iterative scheme. Since NI 
is a constant, this specific implementation of the FMM for 
layered-media problems has 0 computational complex- 
ity per iteration and O(N3/’) memory requirement as its 
homogeneous-medium counterpart. 

111. COMPUTATIONAL RESULTS 

In order to demonstrate the accuracy and the efficiency of 
the layered-media implementation of the FMM presented in 
this letter, a series of structures (as illustrated in Fig. 2), to 
which the method can be applied, have been designed. Com- 
mon to all these structures is an irregular, finite, and planar 
array of strips, which has an overall extent of 1.5Xo. Plane 
waves, whose electric fields are polarized in the y direction 
and have unit amplitudes, are incident on the structures at 4.5” 
as measured from the positive LC axis. Electromagnetic scat- 
tering problems for all four structures are solved using three 
different schemes: direct solution with Gaussian elimination, 
iterative solution with ordinary matrix-vector multiplication, 
and iterative solution with layered-medium implementation of 
the FMM. The numerical results obtained using these three 
different schemes agree with each other for several digits 
and, therefore, are indistinguishable on the plots presented in 
Fig. 3, thus testifying to the accuracy of the layered-medium 
implementation of the FMM. 

The magnitude of the current distribution obtained on the 
array when the array is in free space [Fig. 2(a)] is shown in 
Fig. 3(a). An infinitely large conducting plane placed X0/100 
away from the array [Fig. 2(b)] causes the magnitude of the 
current distribution to increase as seen in Fig. 3(b). When 
the array is placed on a X o / l O O  dielectric slab with E ,  = 4 
[Fig. 2(c)], the magnitude of the current distribution, shown 
in Fig. 3(c), is seen to be modified and increased, but not as 
much as that of the conducting-plane case. If the dielectric 
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Fig. 3. 
structures of Fig. 2. 

Current distributions on the array corresponding to the example 

slab is backed by a conducting plane as depicted in Fig. 2(d), 
the current magnitude becomes higher, as seen in Fig. 3(d). 
Indeed, Fig. 3(d) can be compared to Fig. 3(b) to conclude 
that the conducting plane is more dominant than the relatively 
thin dielectric slab in determining the current distribution. 
However, by comparing Fig. 3(a) and (c), it is easy to see 
that the dielectric slab has a significant effect on the current 
distribution in the absence of the conducting plane. 

The discretization of the conducting array of Fig. 2(a) results 
in 105 basis and testing functions. This array is duplicated 
many times in the layered geometry of Fig. 2(d) to obtain 
problems that are ten times as large. Separating the solution 
and filling times, we have compared the solution times of 
the FMM and the traditional solution techniques. Fig. 4(a) 
compares the solution time of the FMM to the Gaussian 
elimination and Fig. 4(b) compares the CPU time required 
during a single iteration of the FMM to the ordinary matrix- 
vector multiplication, respectively. As for the filling time, since 
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Fig. 4. (a) Comparison of the solution times of the layered-medium im- 
plementation of the FMM and the Gaussian elimination. (b) Comparison of 
the per-iteration solution times of the layered-medium implementation of the 
FMM and the ordinary matrix-vector multiplication. 

only a sparse matrix of the near-field interactions is filled in 
the FMM as opposed to filling an N x N dense matrix in the 
direct solution, filling time of the FMM is always lower. 

IV. CONCLUSION 

In this letter, the applicability of the FMM has been ex- 
tended to layered-media problems. As an example, we have 
demonstrated the solution of the scalar Helmholtz equation 
for the electromagnetic scattering from a two-dimensional 
planar array of horizontal strips on a layered substrate. Nu- 
merous straightforward generalizations are possible and will 
be reported elsewhere. 
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