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Abstract 

Optimal filtering with linear canonical transformations allows smaller mean-square errors in restoring signals degraded 
by linear time- or space-variant distortions and non-stationary noise. This reduction in error comes at no additional 
computational cost. This is made possible by the additional flexibility that comes with the three free parameters of linear 
canonical transformations, as opposed to the fractional Fourier transform which has only one free parameter, and the 
ordinary Fourier transform which has none. Application of the method to severely degraded images is shown to be 
significantly superior to filtering in fractional Fourier domains in certain cases. 

1. Introduction 

In this paper, we consider a signal observation model of 
the form 

g(t)=If?z(r,t’)f(t’)d~‘+n(r), 
-m (1) 

where g(t) is the observed signal, fit) is the signal we 
wish to recover, n(t) is an additive and possibly non-sta- 
tionary noise signal, and h(Q) is the kernel representing 
an undesired time-varying linear distortion. 

A general linear estimate fit) of fir> in terms of g(t) 

may be expressed as 

J+) =j_++P)g(t’)d/, (2) 

where k( t, t’) is the kernel representing the recovery opera- 
tion. 

Under a number of assumptions and given the relevant 
correlation functions, the optimal kernel k,( t, t’), which 
minimizes the mean-square error 

a* = E{llf-fi12} 

=$_y[@)-!(t)]* [f(+&)]dt), (3) 

is well known [l], and will be reviewed below. However, 
obtaining the most general linear estimate by using Eq. (2) 
requires computational time of the order of N *, where N 

is the time- or space-bandwidth product of the signals. 
Under some conditions, it is possible to obtain satisfactory 
estimates in much shorter time. For instance, when the 
signals involved are stationary and h(t,t’) is a time-in- 
variant kernel, the optimal kernel k,(t, t’) turns out to be 
a time-invariant (or space-invariant) filter which can be 
implemented in B(N log N) time. This solution, which 
corresponds to multiplicative filtering in the Fourier do- 
main, is known as the classical time-invariant Wiener filter 

Dl. 
In Refs. [3,4], the authors show that filtering in frac- 

tional Fourier domains [5,6] can offer significant improve- 
ment with respect to filtering in the ordinary Fourier 
domain for particular signal, noise and distortion character- 
istics. This approach allows smaller mean-square errors to 
be achieved while keeping the time of computation at 
a( N log N). These improvements are made possible by the 
additional flexibility afforded by the fractional order pa- 
rameter. 

Here, we provide a generalization of the concept of 
filtering in fractional Fourier domains which provides even 
greater flexibility and thus even smaller errors in certain 
cases, while still maintaining b(N log N) computational 
time. Thus, the benefits achieved come without any addi- 
tional cost. Our method is based on linear canonical trans- 
formations which are a family of transformations with 
three parameters 171. (The fractional Fourier transform is a 
special case of the linear canonical transformations with 
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only a single parameter.) These transformations can be 
computed using a fast algorithm in @(N 1ogN) time. We 
first review the classical problem so as to provide a proper 

context and establish the necessary notation. Then we 
consider recovery filters which correspond to multiplica- 
tion by a function in the transform domain. The optimum 
multiplicative function will be derived analytically for a 
given transform domain characterized by the three parame- 
ters of the linear canonical transformation employed. Sub- 
sequently, we will seek the optimal values of these param- 
eters, thus achieving the smallest possible error with the 
proposed method. 

2. The classical problem 

In this section, the most general linear filtering problem 
will be briefly reviewed. Assumptions on the signal and 
noise statistics are as follows: The noise process is zero- 
mean and independent of the signal process. Both pro- 
cesses are, in general, non-stationary and their covariance 
functions Rfr(t,r’) and R,,(t,t’) are known. Under these 
assumptions, the cross-correlation function Rf& t$) be- 
tween the input process fit) and the output process g(t), 
and the correlation function R,,(t,t’) of the output process 
are found as 

Rfs(t,t’) =l+mh(t,rf)R,(r,r’r)dr”, 
--m (4) 

R,,(t,r’)=j+mh’(r,r’)R~~(r,r”)dl”+R,,(t,t’). 
--m 

(5) 

The most general optimal linear filter with kernel 
k&t,t’) enables us to obtain an estimate 

.&) =~_~k,(f.f)g(ll)dI’, (6) 

such that the mean-square error given by 

a2 =E{llf(r) -.?(~>ll”}, 

is minimized. Here, II.11 denotes the L, norm: 

(7) 

tlf(t)li2 =/+“f(t,’ f(t)dt. 
-cc (8) 

The above definition of the mean-square error is appropri- 
ate for non-stationary signals of finite energy, whose func- 
tional representations are square integrable. It is known 
that the optimal kernel satisfies the following equality 
known as the Wiener-Hopf equation [ 11: 

Rf,(t,r’) =I+ffik,,(r,r’)R,,(~,r”)dt” Vt,t’. (9) -cc 

As we have mentioned before, obtaining an estimate by 
using ISq. (6) requires @(N2) computation time. 

3. Filtering with linear canonical transformations 

The class of linear canonical transformations is defined 
as 

f,($) =@$V)@,,) = /_~Qp($.f)f(tW~ (10) 

with 

Q,(t,,t) =C,exp[i~(Crt,2-2pfpl+yf2)], (11) 

CP = P’12exp( -iv/4), (12) 

where we introduced the parameter vector p = [(Y p y] 
with (Y, p, and y being the three real parameters charac- 
terizing the transformation. All members of this class of 
transformations are unitary. The signal &<t,> will be 
referred to as the transform domain representation of At). 
When a! = y = 0 and p = 1, the above reduces to the 
ordinary Fourier transform except for the inconsequential 
phase factor exp( - k/4). When CY = y = cot(an-/2) and 
/3 = csc(an/2), the above reduces to the ath order frac- 
tional Fourier transform [9-131, again except for a phase 
factor. 

We will seek estimators of the form 

k0 =@;‘[+J @p’,[dol($J]w~ (13) 

where ~5~ is the linear canonical transformation operator 
and m( tP) is a multiplicative filter applied in the transform 
domain. According to the above equation, first the linear 
canonical transform of the signal is taken with parameters 
(Y, /3 and y. Then, the transformed signal is multiplied 
with the filter m(t,>, and finally, the inverse linear canoni- 
cal transform of the resulting signal is taken. In the 
following, the optimal filter function in a given transform 
domain will be derived for a given parameter vector and 
then the mean-square error will be minimized over the 
parameter vector. 

The set of linear filters which can be realized in this 
manner is a subset of the class of general linear filters. 
Thus, the optimal filter we obtain will not be the most 
optimal among all linear filters. However, the class of 
filters we consider is a much broader class than ordinary 
Fourier and fractional Fourier domain filters. In certain 
situations involving time- or space-varying degradation 
models and non-stationary processes, it is possible to 
obtain smaller mean-square errors in comparison to filter- 
ing in the conventional Fourier domain or the fractional 
Fourier domain. This reduction in mean-square error comes 
at no additional cost because the resulting filter can be 
implemented in B(N 1ogN) time [s] just like the ordinary 
Fourier transform. It can also be implemented optically 
with a setup similar to that used for implementing the 
ordinary Fourier transform [ 14- 161. 
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Since @” is a unitary transform, the mean-square error 
is the same in the transform domain: 

+E{llJ-(t) -&)]I”} =E{ll&,(r,) -&(t,)]l’}. 

(14) 

Now, by inserting 

&(t,> =@pm>l(tp> = [ m( f,) @J&)1( t,>]Cd 

in the rightmost expression of the above equation, and 
minimizing uP2 with respect to m(t,), yields the following 

result 

E([&(r,) -hJ1* &.A} =o, (15) 
which we recognize as the orthogonality condition [ 17,181: 
According to the above condition, the best linear mean- 
square error estimate &(tJ is an orthogonal projection of 
the signal &<t,> into the space spanned by the observa- 
tions. The resulting .error, which is unbiased (E{f,(t,) - 
&<r,)} = O), is orthogonal to the observation space, hence, 
uncorrelated with the observations. Eq. (15) can be solved 
for the optimum filter function mot,&. ) by using the 
definition of $* ( lP), and by taking the complex conjugate 
of both sides of the equation 

(16) 

where the correlation functions appearing in this equation 
can be obtained from the correlation functions Rfg(t,t’) 
and R,,(t,t’) by 

R&J VP) 

= l_yj_yQp( t,,t) Q,'( $,,t’) R,,(v’)dtdt. 

(18) 
Thus, the optimal multiplicative filter function is found as: 

%( t,) 

(19) 
By substituting the above expression in Eq. (14), we obtain 
an expression for the minimum mean-square error for this 
parameter vector: 

Now, by employing a standard multi-variate optimization 
routine [ 191, the optimal value port of the parameter vector 
p = [(Y p y 1, which minimizes up 0Pt can be found. 

4. Examples 

We first present a simple one-dimensional example 

which illustrates the process as transparently as possible. 
Our original signal fit), which we choose to be a simple 
Gaussian function, is shown in Fig. l(a). In Fig. l(b), the 
original signal is corrupted by the presence of two strong 
chirp waveforms. Fig. l(c) shows the linear canonical 
transform of the corrupted signal g(t) for the optimal 
parameter vector port = [ -0.2 1 1.751. In this transform 

domain, the original signal and the interfering chirp wave- 
forms are effectively separated due to their small degree of 
overlap. Transforming back to the time domain, we obtain 
a fairly faithful restoration of the original signal (Fig. l(e)) 
with a mean-square error of less than 0.001. (All mean- 
square errors in this section have been normalized by 
E{]]f]]*}.) For comparison, in Fig. l(d), we show the 
fractional Fourier transform of the corrupted signal g(r) 
for the optimal fractional Fourier transform order 0.7. Only 
one of the distorting chirps can be well separated while the 
other continues to corrupt the signal, so that the minimum 
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Fig. 1. (a) Original signal. (b) Corrupted signal. (c) Linear canoni- 

cal transform of the corrupted signal where the interfering chirps 

(left) are separated from the original signal (center). (d) Fractional 

Fourier transform of the corrupted signal where only one of the 

interfering chirps (left) is separated from the original signal. (e) 
Signal restored by filtering in the linear canonical transform 

domain. (f) Signal restored by filtering in the fractional Fourier 

transform domain. The original signal is also shown by dashed 
lines for comparison. 
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Fig. 2. (a) Original “Plane” image. (b) Corrupted image (SNR = 1). (c) Image restored by filtering in the linear canonical transform 

domain. (d) Image restored by filtering in the fractional Fourier transform domain. 

Fig. 3. (a) Original “Plane” image. (b) Corrupted image (SNR = 0.1). (c) Image restored by filtering in the linear canonical transform 

domain. (d) Image restored by filtering in the fractional Fourier transform domain 
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mean-square estimate shown in Fig. l(e) is less than 
satisfactory. Note that this result is the best that can be 
obtained among all fractional orders, including the first 
order which corresponds to the ordinary Fourier transform. 
Thus, ordinary Fourier domain filtering would yield even 
less satisfactory results. 

The analysis presented in this paper for the single 
dimension t can be easily generalized to the two dimen- 
sions x and y. Fig. Z(a) illustrates the original image used 

in our two-dimensional example. In Fig. Z(b), this image 
has been corrupted by the presence of two chirp wave- 
forms whose amplitudes are comparable to that of the 
image (signal-to-noise ratio = 1). The optimally restored 
image is displayed in Fig. 2(c) for which popt = 
[ - 0.090.88 1.571 and minimum mean-square error is 
0.008. For comparison, Fig. 2(d) shows the image restored 
in the optimal fractional Fourier domain, which we see is 
less satisfactory (mean-square error = 0.04) than restora- 
tion in the optimal linear canonical transformation domain. 

The same example is repeated with a signal-to-noise 
ratio = 0.1. The corresponding images are presented in 
Fig. 3. We see that the visual improvement offered by the 
linear canonical transform method (mean-square error = 
0.03) over the fractional Fourier method (mean-square 
error = 0.17) is greater at this lower signal-to-noise ratio. 

5. Conclusion 

We have presented a novel signal restoration method 
which can reduce the minimum mean-square error in 
comparison to ordinary or fractional Fourier domain filter- 
ing. The time complexity of this method is the same as that 
of ordinary Fourier-domain-based filtering. Thus the im- 
provement obtained comes at no additional cost. This is 
possible because linear canonical transforms include ordi- 
nary and fractional Fourier transforms as special cases. 

We have seen that images corrupted by several chirp or 
chirp-like waveforms whose amplitudes may be much 
larger than that of the original image may particularly 
benefit from optimal filtering with linear canonical trans- 
forms. This suggests that optimal filtering with linear 
canonical transforms wo,uld find many applications in op- 
tics where chirp and chirp-like distortions and noise arise 
naturally in optical systems, for instance, in the form of 
scattering from point and line defects, and twin images in 
holography. Also, two-dimensional linear canonical trans- 
formations and filtering are effectively and easily imple- 
mented with optical systems. Thus optics is both an appli- 
cation area and a means of implementation for the pro- 
posed method. 

Another application arises in Synthetic Aperture Radar 
(SAR) which employs chirps as transmitted pulses, so that 
the measurements are related to the terrain reflectivity 
function through a chirp convolution. This process results 
in chirp-type disturbances caused by moving objects in the 
terrain, which should be removed if high resolution imag- 
ing is to be achieved [20]. 
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