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On the Design of Dynamic Associative Neural Memories 
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Abstruct- We consider the design problem for a class of 
discrete-time and continuous-time neural networks. We obtain 
a characterization of all connection weights that store a given set 
of vectors into the network; that is, each given vector becomes an 
equilibrium point of the network. We also give sufficient condi- 
tions that guarantee the asymptotic stability of these equilibrium 
points. 

I. INTRODUCTION 

N RECENT YEARS, the neural network model proposed I by Hopfield has attracted a great deal of interest among 
researchers from various fields. This is due to a number 
of attractive features of these networks, such as collective 
computation capabilities, massively parallel processing, etc., 
and these properties could be exploited in areas like pattem 
recognition and associative memory design. see [8], [7]. The 
Hopfield model consists of neurons that are multi-input single- 
output nonlinear processing units, and a large number of 
interconnections between them. The model has a feedback 
structure so that each neuron can have information about the 
outputs. It is this high degree of connectivity that makes the 
neural networks computationally attractive. Hopfield showed 
that with a proper choice of connection weights, the network 
can perform well as an associative memory or can be used in 
solving difficult optimization problems such as the travelling 
salesman problem, 191, [ I ] .  

Many researchers proposed various methods to obtain suit- 
able connection weights for specific tasks. In [7], Hopfield 
used the outer product rule to store a given set of vectors. 
In [ 1 1 1  and 131, memory vectors were chosen to be linearly 
independent. in [4] and [ lo]  memory vectors were chosen 
to be eigenvectors of the connection matrix with positive 
eigenvalues, and in [2] a design technique based on the 
construction of an appropriate energy function is introduced. 

In this paper we consider a class of discrete-time and 
continuous-time neural networks. The design problem we 
consider is to give a characterization of all connection weights 
that store a given set of vectors into the neural network; that 
is, each vector becomes an equilibrium point of the network. 
We obtain such a characterization for both cases and give 
sufficient conditions that guarantee the asymptotic stability of 
these equilibrium points. 

This paper is organized as follows. In Section I1 we give the 
neural network models considered in this paper and state the 
design problem. In Section 111 we investigate the design prob- 
lem for the discrete-time case and give a sufticient condition to 
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ensure asymptotic stability, and in Section IV we investigate 
the same problem for the continuous time case. Finally, in 
Section V we give some concluding remarks. 

11. NEURAL NETWORK MODELS AND PROBLEM STATEMENT 

We consider both discrete-time and continuous-time neural 
networks. In the discrete-time case, we consider the following 
neural network model: 

where .r E RA’- for some N E N, which is the number of 
neurons in the network, T E R’-x4 is the connection matrix 
and f : R i R is a nonlinear function. Here, for a vector 
o = ( ~ 1  .. .w.y)’ E R” the vector f ( u )  E Rx is defined as 
f(.) = ( f ( q )  . . . f ( y ~ ) ) ’  E Ry where ’ stands for transpose. 
Typically, f ( . )  is a sigmoid type nonlinearity that is given by: 

or a hard-limiter that is given by: 

1 .I’ 2 0 
-1 . r < O  f ( . E )  = ( 3 )  

Note that (3) may be considered as a limiting case of (2) for 
k - x. 

In the continuous-time case, we consider the following 
neural network model: 

where .I’ E Ray, 7 > 0 is the time constant of the network, 
T E R.’-x.y is the connection matrix, f : R 4 R is a 
nonlinear function, typically of the sigmoid type given by ( 2 ) ,  
and a dot denotes the time derivative. 

For the neural network models given by (1) or (4), the design 
problem we consider is the following: 

A .  Problem (Design) 

Let, for some M E N, the vectors m, E Rn-, I = 1. . . . . M ,  
be given. In the discrete-time case we assume that for f given 
by ( 2 )  we have m, E (-1.1) . and for f given by (3) we 
have m, E (-1. l}n., for i = 1.. . . . M .  Find, if possible, 
all connection matrices T that store the given vectors into the 
network; that is, each vector m, becomes an equilibrium point 
of the network. 0 

n. 
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111. DESIGN OF DISCRETE-TIME NEURAL NETWORKS 

We first consider the system given by ( I )  and (2). Let 
m, E (-l.l)Av, i = l . . . . . M  be the vectors to be stored 
in the network as equilibrium points. Placing these vectors as 
columns of a matrix, we obtain a matrix -4 E R-'"-'', which 
is defined as: 

Then, for each m, to be an equilibrium of ( I ) .  the T matrix 
must satisfy the following: 

T A  = ,f-l(-I) ( 5 )  

where [f-l(A)],,  = fpl(a,j), / = l:...T. 

singular value decomposion (SVD) to A as follows: 

= 1.....A121. 
To find all connection matrices T that satisfy ( 5 ) .  we apply 

where U E R-vXS, E R-yx-'l \- E R-'IX.'I; [I and 1' are 
orthogonal matrices, C is a block-diagonal matrix containing 
the singular values of A; for more information on SVD, see 
[5] .  We partition U. C, and V as follows: 

U = [UlU2]. C = dicq{D.O}. 1- = [I'11;] (7) 

where 7' = rank ( A ) ,  CT1 E R-'"'. D E R"", 1; E R-'I*". 

and D = d i a g { o  l.....mr}, m1 2 ( s 2 " . m , .  > 0, and (T, 

denotes the singular values of A. Then by using (6) and (7) 
in (51, we obtain 

Tlll = fp1(A4)\:Dp1. (8) 

The stability analysis presented here is based on the lin- 
earization of (1) about each equilibrium point. Let ,q : R.y + 

R.' be defined as: 

,q(x) = (j(.1'1) . . . j '(.r,.y))'  ( 1  1) 

where .I' = i.r.1 . . .I'.Y)' and j' is given by (2). We define the 
matrices F, as 

/ = 1." ' .  M 

By linearizing ( I )  about m;, i = 1. . . . . M, we see that if 
the eigenvalues of F j T  are inside the unit  disc (i.e., less than 
one in absolute value), then from standard stability theory we 
conclude that m, is an asymptotically stable equilibrium point 
of ( 1 )  (see 161). The following upper bound on the maximum 
eigenvalue of F I T  in absolute value can be easily obtained: 

x,n,i.r(Fi'iT) 5 IIFil12llTlI. = A i , , ~ ~ . ~ ( F ; ) ( s ~ , ~ ~ , , ( T )  (13) 

where AIT,c,,r(.), 1 )  . and m,,,,,,,.j.) denote the maximum 
eigenvalue in absolute value, the induced 2 norm, and the 
maximum singular value of a given matrix, respectively. In 
deriving (13) we used the fact that for any given square matrix 
0, A,,,,,(Q) L a,,,,,(Q) and IlQIl, = rr,,,,,(Q) (see [SI). 

Let the quantity be defined as 

.L,. = IIlax{~,,,,.r(Fl).' ' . . x,,,,,(F.!I)). (14) 

By using (13), ( I O ) ,  and the fact that llU1112 = 11V112 = 1, we 
conclude that if X can be chosen as 

then all equilibrium points are asymptotically stable, where 
To find all matrices that satisfy (8). we concatenate 
U,, which results in the following equation: 

with m m / n ( A )  denotes the minimum singular value of A. 
For the existence of an X that satisfies (15), the right-hand 

side of ( 1  5) must be strictly positive. For simplicity, assume 
that N = 1 and let m E (-1.1) be the vector to be stored. Let 

E R be defined as y = f - ' (m).  In this case, the right-hand 
side of (15) is always positive if 

T [ U 1  1721 = [f p1 (.I) Vi Dpl XI (9) 

where X is an appropriate AV x (N ~ r )  matrix. Hence we 
obtain: I !J I f'-.' < 0.5. 

T = ,f-1(L~l)171D-11r~ + ?ir-i. (10) (1 + l ,-.q2 

From the above development i t  is obvious that any matrix 
T that satisfies ( 5 )  is of the form ( I O )  with S = TLT2. By 
reversing the argument, we see that for an arbitrary X, the 
matrix T given by (lo) satisfies ( 5 ) .  Hence we conclude that 
the equation ( I O )  gives all possible solutions to the design 
problem stated in this section, with x ( N  - 1 . )  

Since ! j  = $111 O, i t  follows that this latter inequality is 
always satisfied if m is close to + I .  

Esumple: Consider the model given by ( I )  and ( 2 )  with 
.Y = 2. k = 1 and M = 1. 

I )  Let ml = (0.95 0.9)' be the vector to be stored. The 
matrices T given by ( I O )  can be computed as 

p m )  

being a 

1 arbitrary real matrix. 
In order to function as an associative memory, the neural 

network must be able to recover the full information from a 

2.0325 - 0.6877.I'l 
1.6335 - 0.6877.r.2 

1.9253 + 0 .762~1  
1.5174 + 0 .762~2  T =  [ 

reasonable partial information, hence each stored vector must 
be an asymptotically stable equilibrium point of the network. 
Although equation ( I O )  gives all possible connection matrices 
T that store the given vectors, the stability of these vectors as 
equilibrium points are not guaranteed upriori. In the sequel we 
give a partial answer to this question and present a sufficient 
condition to ensure stability. 

where 
,,.f + ,,.K < ~ 7 , 7 5 , j ,  

matrices T given by ( 1 0 )  can be computed as: 

= (.l,l.l;2)', For stability, the inequality (1s) yields 

2 )  Let ml = (0.2 0.1)' be the vector to be stored. The 

I - I  0.1795 - 0.117%./.., 0.0898 + 0.8943:r.2 
~. - 0.3627 - 0.1472./,1 0.181,3 + 0.8944.r1 
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where X = ( ~ 1 . ~ 2 ) ’ .  In this case, the right-hand side of 
(15) is negative. As argued above, this is due to the fact 
that the components of ml are not close to fl. However, 
straightforward calculations show that for small 5 1  and 5 2  

(e.g., 5 1  = z-2 = 0 . 0  5 (Y 5 l ) ,  ml is an asymptotically 
stable equilibrium point. This shows that the bound given by 

0 
Next we consider the system given by ( I )  and (3): i.e., 

the nonlinearity is of the hard-limiter type. As before, let 
mi, i = 1 . .  . . , M ,  be the hinary vectors to be stored; i.e., 
m; E { -1 .1}~~,  ,i = l . . . . . ~ .  w e  set A = [ml . . .m,fr] .  
Similar to ( 5 ) ,  for the vectors mL to be the equilibrium points 
of ( I ) ,  (3), the matrix T must satisfy the following: 

(15) for stability is very conservative. 

T A  = P (16) 

where P E RSxX1, and must satisfy the following require- 
ments: 

1) f ( p l , )  = f ( a i , ) ,  i = l . . . . .  N ,  ;j = l . . . . .  M ;  here f is 
given by (3), and p , ,  = [PI,,; 

2) Row space of A spans the row space of P ;  i.e., for an 
arbitrary matrix K E RAYX”, we have P = KA. 

Note that the above requirements are satisfied if we partic- 
ularly choose P = K A ,  with K being a diagonal matrix with 
strictly positive elements on the diagonal. 

To find all connection matrices T that satisfy (16), we 
apply SVD to A ,  [see (6)], and following the developments 
between (6)-( IO), we obtain the following characterization of 
all matrices T that solve the design problem: 

T = PV~D-’ l J~  + XlJ; .  (17) 

As before, X is an arbitrary N x (N--7.) matrix: P must satisfy 
requirements 1)  and 2 )  stated above, arbitrary otherwise. 

Remark I :  A particular choice of P and X in (17) is 
P = rlA4 and X = - r2LT2,  where 71 > 0 and 7 2  E R is 
arbitrary. This choice, in (17), yields: 

(18) 

which is the form of T given in [ I O ] .  Observe that P = ~ 1 ‘ 4  
means that all of the vectors to be stored are eigenvectors of 

0 
Remark 2: A well-known method used to form a T ma- 

trix to solve the design problem is the outer-product method, 
which is given by the following equation (see [7]) :  

r ,  1 = r1 lJ1 1 J i  - C2 U;. 

T with a single positive eigenvalue r1, see (16). 

1 I 

T = 1 m,m: ~ rrM1 = AA’ - tvMI 

where (Y = 0 or (Y = 1, and I is the N xAV identity matrix. This 
method gives a symmetric T and solves the design problem 
if the vectors to be stored are mutually orthogonal: in which 
case for (Y = 1 the diagonal elements of T are nullified. Note 
that if the vectors to be stored are mutually or-rhogonal, by 
straightforward calculations it can be shown that the matrix T 
given by (19) is of the form given by ( 1  8) with r1 = N - r r M ,  
r 2  = M. 

In case the vectors are not mutually orthogonal, it is not 
guaranteed a priori that the matrix T given by (19) solves the 

(19). 
1=1 

design problem. In the sequel we give a sufSlcienf condition 
that guarantees that the matrix T given by (19) is a solution 
to the design problem. Comparing ( 16) and (19) we see that 
P = (AA’ - aM1)A;  hence, for T to be a solution to 
the design problem, requirement 1) given after (16) must be 
satisfied. Let h,, denote the Hamming distance between the 
vectors m, and m,, i = 1,. . . . M ,  J = 1,. .. . M .  Noting 
that h,, = 0, we conclude that [A’A],, = N - 2h,,. By 
straightforward calculations we obtain the following sufSIcienf 
condition that guarantees that requirement 1 )  is satisfied: 

‘11 

I N - 2 h k l  I <  N - trM I = 1 . .  . ’ . M. (20) 
k = l . k # ?  

Hence, from the above arguments we conclude that if (20) 
is satisfied then the matrix T given by (19) is a solution to 
the design problem. Since the Hamming distance between two 
orthogonal vectors is N/2 ,  (20) is readily satisfied for a set of 
mutually orthogonal vectors. The above analysis suggests that 
for the outer-product rule to be used as a design method, the 
vectors to be stored should have pairwise Hamming distances 
close to N/2:  that is, they should be nearly orthogonal. 0 

IV. DESIGN OF CONTINUOUS-TIME NEURAL NETWORKS 

We consider the neural network model given by (4) and (2). 
Let, as before, m, E R”, 1 = 1. . . . . M ,  denote the vectors 
to be stored and let A = [ml . - .mhl] .  These vectors are 
the equilibrium points of the neural network if the matrix T 
satisfies the following: 

1 
T f ( A )  = -A.  

7 

To use the same technique used in Section 111, we apply the 
SVD to f ( A )  [see (6)]: 

f ( A )  = UCV’ .  (22)  

We decompose U , C ,  and V as given by (7) with -7. = 
rank f ( A ) .  Following the developments between (8)-( lo), we 
obtain the following characterization of all matrices T that 
satisfy (21): 

(23) 
1 

T = -AVlD-lU; + X U ; .  
7- 

where X E 
Although all matrices T that store the given vectors are 

characterized by (23), the asymptotic stability of these equi- 
librium points are not guaranteed a priori. Here we present 
a sufficient condition, similar to (1  5 ) ,  that guarantees the 
asymptotic stability of these equilibrium points. The stability 
analysis used is, as in Section 111, based on the linearization 
of (4) about each equilibrium point. 

Let the function g : RIv --$ R-’ be defined as given by 
(1 1 ) .  We define the matrices G, as: 

is an arbitrary matrix. 

M .  (24) 

Then by using the linearization of (4) about m,, we conclude 
that m, is an asymptotically stable equilibrium point for (4) if 
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all eigenvalues of the matrix TG, ~ $ I  are in the open left- 
half of the complex plane (see [6]). Since the eigenvalues of 
TG,  - $1 are the eigenvalues of TG,  shifted to the left by 
$, to guarantee stability, the eigenvalues of TG,  should have 
real parts less than +. 

Let us define AT,,,, as follows: 

Following the developments between ( 1  3). ( 14), we conclude 
that if X can be chosen as: 

(26) 

then the stability of all the equilibrium points are guaranteed. 
In this case all eigenvalues of TG‘, are confined in a disc of 
radius $ centered at the origin. Note that for the existence of an 
X that satisfies (26), the right-hand side of this inequality must 
be strictly positive. This is always true if nf ) l~Lr (A4) ,4~7zc , r  < 
O ~ ) ~ ~ ~ , ( A ) ,  which is always guaranteed if the components of 
the vectors to be stored are sufficiently large-that is. if the 
images of the components of these vectors under the nonlinear 
function f are sufficiently close to hl. If this latter inequality 
is satisfied, then from (26) we conclude that the smaller the T 

is, the bigger the right-hand side of (26), and hence the larger 
the degree of freedom in choosing T ;  see (23) and (26). 0 

V. CONCLUSION 
In this paper we considered both discrete-time and 

continuous-time neural networks. The design problem we 
considered is to find all possible connection matrices that store 
a given set of vectors into the network: i.e., each given vector 
becomes an equilibrium point of the network. We obtained 
a characterization of all possible matrices for both discrete- 
time and continuous-time cases. [see ( I O ) ,  (17). and (23)]. The 

relation between the well-known outer-product method and our 
method is discussed in Remark 2 .  We also presented sufficient 
conditions for both the discrete-time and the continuous-time 
cases that guarantee the asymptotic stability of the equilibrium 
points. These conditions are satisfied if the components of 
the vectors to be stored are sufficiently close to fl for the 
discrete-time case, and if the images of the components of 
the vectors to be stored under the nonlinear function f are 
sufficiently close to fl for the continuous-time case. 
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