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Ahstiract

Our aim in this paper is to obtain the best synthesis of a desired mutual intensity distribution, by filtering in fractional

Fourier domains. More specifically, we find the optimal fractional-domain filter that transforms a given {source)} mutual

intensity distribution into the desired one as closely as possible (in the minimum mean-square error sense). It is observed
that, in some cases, closer approximations to the desired profile can be obtained by filtering in fractional Fourier domains,
in comparison to filtering in the ordinary space or frequency domains.
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1. Introduction

What we know as the space and spatial frequency domains are merely special cases of fractional Fourier

domains. These fractional domains are characterized hu the ?nramnfpr a. anx:pntxnnn!f\t cpahnl ﬁkgpnn has

been performed in the Oth and 1st fractional domains, Wthh are the space and frequency domams, respectively.
However, in later work [1,2], it is shown that, it is possible to improve performance by filtering in fractional
domains. In this paper, we used the idea of filtering in fractional Fourier domains in order to obtain the best
synthesis of a desired mutual intensity distribution. More specifically, we found the optimal fractional-domain
filter that transformed a given (source) mutual intensity distribution into the desired one as closely as possible
{in the minimum mean-square error sense).

The ath order fractional Fourier transform §,{u) of the function §{u) is defined for 0 < ja| < 2 as
o
Fal
~ N ~ !
Gulu) = ] Bo(u,u') g(u'y du’,
-
exp[ —i(7d/4 2) .
B(u,u') = pl f ¢’{\“/2 $/2)] explim(u® cot d — 2uu’ csc ¢ + u>cot$) 1, ()
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where
¢ = am/2, (2)

and gﬁ = sgn(sin@). The kernel is defined separately for @ = 0 and a = +2 as Bo{u,u’) = 8(u - ') and
Bis(u.u'y = 8(u + ') respectively [3]. The definition is easily extended outside the interval [—2,2] by
noting that F*+4§ = F4§ for any integer j. Both u and u’ are interpreted as dimensionliess variabies.

Some essential properties of the fractional Fourier transform are: (i) It is linear (ii) The first order transform

= £, (31} It Adit d Fa Fos = TGH‘C'Z A (i1v)
(a = ]l} CGfTeSp\')ndS to the common Fﬁurier transiocim. \i“; Itis auuhi‘ve in “‘luex q= q. L1y

The kernel for the —ath order transform is the conjugate of the kernel for the ath order transform: B (u,u’) =
B_,(u.u’). Other properties may be found in [1,3-7,9,10].
Given the scale parameters s and s', the fraction a, and the complex amplitude distributions g,(-) and g(-),
optical implementations of the fractional Fourier transform, expressed as,

x>
1 '
wior= [ L, (52 g0x')ax, (3)
J s \s s/
o

have been presented in the literature (here, the coordinates x and x’, and the scale parameters s and s’ are
measured in meters): In Refs. [4-6] the fractional Fourier transforming property of quadratic graded-index
media is discussed, in Refs. {7,16] bulk optical systems are considered. Signal processing applications have
been suggested in these references and in Refs. [1,2,8,10,13]. Further development of the role of the fractional
Fourier transform in optics, as well as certain extensions and experimental results may be found in Refs.
[4-6,11-15].

In Refs. [12,15,16] it is shown that there exists a fractional Fourier transform relation between the amplitude
distributions of light on two spherical surfaces of given radii and separation. Unlike most other papers which
deal with the implementation of the fractional transform, these papers pose the transform as a tool for analyzing
and UCerlUlllg Optl(,dl byblclllb LUHIPUSCU of an erurdIy scqut:nw Ol thin ICl’leb dﬂ(l bC(,[lOl’\b Ol lree space.
The fractional transform allows one to express the evolution of the amplitude distribution of light through an
optical system in terms of fractional Fourier transforms of increasing order.

In all of the references mentioned above, statistical properties of light are ignored, and full coherence is
assumed. In some cases, however, this assumption cannot be justified so that the wave functions must be con-
sidered as random processes. In this paper, we deal with partially coherent light. One of the important quantities
used to describe the statistical properties of light is its mutual intensity. Assuming quasi-monochromatic light,

the mutual mtensny can be expressed as | 1/,18];
Jy(ri,r) = E{q(r) g*(r) }, (4)

where E{-} is the expected value operator, and g(r) is the complex amplitude distribution of the optical wave.

in Ref. [19], the propagation of mutuai intensity through linear quadratic-phase systems are expressed
in terms of two-dimensional fractional Fourier transforms for one-dimensional systems, and four-dimensional
fractional Fourier transforms for two-dimensional systems In other words, for one dimensional systems, the

aCiidl ot ralisi] ail 1310114 SIS, DICS, 101 SIS0 hlve

expression for J,, (x1,x2) (which is the mutual intensity of the light wave after propagating through a system
characterized by Eq. (3)) is given in terms of J,(x1, x2) as,

) [ (I g (58 g (25, o
//\/ A\ ) P\ ) e

—00 —O0

~
—
(9]
~—

Using this result, in this paper, we dealed with the problem of synthesizing a desired mutual intensity distribution.
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For simplicity, we restrict our attention to one-dimensional systems. The extension to two-dimensions is
straightforward.

This paper together with [ 19] are not the only applications of fractional Fourier transforms to optical systems
with partially coherent light. In Ref. [20] the output intensity of such systems is related to the fractional Fourier
transform of the input, where the order a is related to the degree of partial coherence.

2. Definition of the problem

The mutual intensity is one of the most common ways of characterizing the spatial coherence of a wave
field. Our goal in this paper is to synthesize a mutual intensity distribution J;(xy, x2), which is closest to a
desired output mutual intensity distribution J{l (x1,x2), given a source mutual intensity distribution Jo( x|, x2).
In other words, using the configuration given in Fig. 1, we want to choose the orders of the two fractional
Fourier transform stages, a; and a;, and the filter H(x) such that the actual output J;(x;,x;) is as close to
J4(xy,x2) as possible. More precisely, we want to minimize the following minimum mean-square error M,

M = //Ufl(xl,xz) — kJi(x1,x2) [P dx) dxa, (6)

by choosing a;, az, H(x) and k appropriately. In Eq. (6) we allow for the real constant k, because we consider
it sufficient to match Jj’(x.,xz) and J;(x;,x2) within a constant factor. In the expression for M, the effects
of a;, a; and H(x) are hidden in J;(x;, x) as we obtain the actual output J; (x{, x5) from the source mutual
intensity Jo(xy,x2) by first fractional Fourier transforming Jo(x,, x2) with fraction a;, then filtering by H(x),
and lastly fractional Fourier transforming with fraction a;.

The expression for the propagation of the mutual intensity is given in Eq. (5). By defining new variables
iy = x1/s, uy = xa/fs, u] = x} /s’ and u} = x}/s’, and defining the scaled mutual intensities as J; (u;,u2) =
Jy. (suy, sup) and fq(u’l,ué) = J,(s'u}, s'u}), Eq. (5) can be rewritten as,

o< xo
J},ﬂ(ul,ug)=/ /B‘,(ul,uﬁ)B_a(uz,ué)fg(uﬁ,ué)du']dué, (7)

—o0 —o0
where u;, ua, u} and u) are dimensionless variables. This equation can also be expressed as,
Jg, (uryuz)y =T {Jg(ur, u2) Yur, ua), (8

where T, is essentially the two-dimensional fractional Fourier transformation operator with fraction a (i.e.,
TAJ(ur,u2) } = F {Fy{J(ur,u2) }} where F{.} is the fractional Fourier transform with respect to the u;th
coordinate with fraction a).

With these new definitions, the configuration given in Fig. 1 can also be expressed as the one shown in Fig.
2, and our problem boils down to the minimization of M, which is defined as,

M = //|f‘,’(u.,u2) — kJi(uy,u) |2 duy dus. (9)

By comparing the expressions for M and M, it is easy to see that M = M/s.
As ﬁ,{} is a unitary transformation, M can also be expressed on plane 1’ (see Fig. 2) as,

M= //| fil/(un,uz) ~ kJy(ui,uz) |2du1du2, (0
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Fig. 1. A complex spatial filter H(x) is inserted between two optical fractional Fourier transformer stages.

Fig. 2. Mathematical model.

where Ji:(-,-) and J%(.,-) are obtained from J,(-,-) and JY(-,-) through the operator T,{-} by an inverse
transformation (i.e., J1 (ur,u2) = T_ g, {Ji(ur,u3)} and f,(ul,ug) = f’_m{.ll (uy,u2)}). Referring to Fig. 2,
one can see that,

o,y = Jo (ur un) H(uy) B (u2). (1)
By inserting Eq. (11) into Eq. (10), M expression takes the form of

M‘//lfi‘/(ul,un — kH(u) B* () Jy (w1, u2) * duy duey. (12)

As far as the optxmxzanon of M is concerned, the effect of k& and H(.) can be combined by defining
H,(u) = \/_H(u) Then, M turns out to be;

Mz//‘f?"(m,uz) — H,(u) B (up) Jor (w1, u2) | duey duy. (13)

From this point on, we first fix @; and @; and get the optlmum filter profile H,(-) which minimizes M.
After finding H,(-), we will calculate the corresponding M value (We will repeat this for all possible a; and
az values, and the optimum a; and a; values will then be found as the ones which correspond to the minimum
M value). So, as a result of the calculus of variations method [21] apphed to Eq. (13) (Appendix A}, it
is obtained that, for fixed a; and a,, the H, (-) profiles which minimize M, must also satisfy the following
integral equation;

/duz Jor s u2) F4Guyua) Ho(u2) = Ho(ur) /duﬂfo'(ul,uz)lzIﬁ(uz)lz- (14)
The above expression can also be expressed as,

[ duy g (ur, uz) JE (uy, up) Ho(ur)
fduz lfg:(u;,ug)iz !90(“2){2

so that, we may obtain the H,(-) profiles in an iterative way.

It is given in Appendix B that, exp(iB8) H,(«) is the only set of solution of Eq. (15) with arbitrary angle 8.
However, we don’t observe the effect of angle 8, because it vanishes in Eq. (11). So, without loss of generality
we may take B as zero.

As a result, we first fix a; and ay, and get H,(u) profile from Eq. (15). By using this filter profile we
calculate M, and we do this for all a; and a, values. The optimum a; and a; values are the ones which
correspond to minimum M value, and the closest J; (u1,u;) profile is calculated by using the optimum a; and
a; values and the corresponding 2,09 profile.

u(ul) =

(15)
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3. Synthesizing a rectangular mutual intensity profile from an incoherent source

3.1. In the previous section, the problem is defined and solved for general source and desired output mutual

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

lllLCllblly lUlIbllUllb lVUW, lCl us LllUUbC leC\,lllb PlUllle 101 uleC lllulual llllDllblubb rrom Llllb yuuu Uu, we
consider the light source to be incoherent. As the size of the light source is assumed to extend from —ry to ro,
the mutual intensity of the source may be expressed as,

Jo(xy,x9) = 8(x; — x2) rect (x1/2r0), (16)

where the function rect(x;/2r¢) is defined to be 1 when —rp < x; < rp, and O otherwise. Using the
dimensionless variables, Eq. (16) becomes,

jg(u],llz) = 15(1,{' uy) I‘CCI{ \ (17
\2(V0/S)/

We restrict ourselves to fractional Fourier transforming systems whose input and output scale parameters s and
s' are equal. As for the desired mutual intensity, we choose to synthesize a rectangular profile, expressed as,

71 [N Ve \ 7 N\
[X1 — X2| X X2
J4(x1, = rect (| ———— t| — . 18
Y (x)1,x2) =rec ( 2 ) rec (2”) rect(2r2) (18)

In other words, we want the amplitude of light at two points to be fully correlated when the distance between
those points is smaller than 2r|, and totally uncorrelated otherwise. Moreover, we are interested in pairs of
points which both lie in the region [—r;,72]. In dimensionless variables, Eq. (18) turns out to be,

{ |uy — {ou [ u
JI (uy,uy) = rect k 20 /s) ) km) rect kf(_rz_/T)) . (19)

Again s’ is assumed to be equal to s. Defining the new parameters as 7o = ro/s, 7| = r1/s and P, = r2/s. Egs.
(17) and (19) can be rewritten as

. |
Jo(ui,up) = — 6(u; — up) rect ( uA] ) , (20)
N 2?‘0

fi’(u,,uz) = rect (|_u12—ﬁ_]uz|> rect (;rlz> rect<2u:2>. 2D

3.2. Let us express f{’ (uy,uy) profile in terms of the function f{{sm,ed( uy,up; &) which is defined as,

and

JE catea (i, 23 £) = rect (%) rect (Ezl) rect (%2—) ) (22)
Then,
. uy u
‘Iil(l’”’uZ) = Jl ,scaled <_I’T%;‘f>v (23)
P2 F2
with

£ =P /f. (24)
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With this definition of ff(~, -), it is given in Appendix C that, we may reduce this problem into the form of
the iteration given in Eq. (15), i.e.,

_ [ duysine((uy — w) xn) Ip(y, 125 €) Hou)

A, (u) = - - (25)
[ duzsinc® ((u — w) xn) |H(u2) |2
and the form of M can be expressed as,
M =7 / | Ip ey, us &) — Ho(uy) H (ug) sinc((u2 — 1) xn) |* duy duy. (26)
In these equations,
Xn =2 -rg csc ¢ S]f”bz (27)
) siny
and
x> o0
Iy(up,ups &) = / / duf duby J¢ el 1 €) By (uy,uy) By(uh, up), (28)
—00 —00

with £ = #/f, and b = 2v/7 where v = tan~!(tan ¢, /#3). So, as a result, in Eq. (25), we were able to put
the iteration in the form given in Eq. (15), and with this iteration given in Eq. (25), as far as the filter profile
is concerned, we were able to sum up all the effects of the parameters, into three variables y,, » and §. In
addition to this, in Eq. (26), we were able to express the form of M, by using the newly defined functions and
variables in Eq. (25). It is also pointed out in Appendix C that, the filter profile H,(), given in Eq. (25), is
related to the one given in Eq. (15) through the expression,

N 27| A, |2 ol 1-7 N
i = | T gy LR Y] (%), 5
() \/sf%|sm¢1||A¢2|2 R 1 + ooty 1 + #cot? ¢, I 29

where [ = | sinv|/|singy|.

In the Introduction part, it is given that, taking the fraction of the fractional Fourier transform in the interval
[—2.2] is sufficient. When the functions of interest are symmetric, as is the case here, this interval reduces to
[—1,1]. However, in our case, we have the opportunity to reduce this interval more. When b is changed to
—b, I,(-,-) becomes I;(-,-), H,(-) becomes H*(-) and M stays the same (provided that J¢(-,-) is real, as
is the case here). So, as far as M is concerned, 0 < b < 1 is sufficient to analyze the behavior of M under
various b values.

3.3. Through the simulations, instead of M, we intended to obtain the behavior of the normalized M value,
which is defined as,

~

Y M
nor = ry . (30)
I JCuy, up) |2 duy dup
Using Eq. (23) and Eq. (24), we may easily see that,
// | jil(ul,uz) |2du1 duy = f% / ij,scaled(ulau%f) |2du1 du,. a1

We also know that,

Lp(uy,ups &) = T_p{J¢ ea(ur, u2; )} (32)
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So, as a result, using the unitary transformation property of T,, M,,, can be expressed as,

i = A, w0 &) — Ho(wn) Hy () sine( (s — 1) Xo) [2 du, duy (33)
" [ 1o (ur, u2; &) |2 duy dusy

It is clearly seen from Eq. (25) and Eq. (33) that, both H,(u) and M,,U, are functions of only three variables
b, xu and &. In order to get the behavior of M., we first fix the variables b, y, and &, and obtain the filter
profile H,(-) from Eq. (25). Then, by using this filter profile, we get M,,, value for these fixed b, y, and &
variabies.

As there are more parameters we can consider, for a specific example, we set 7, to be 8s (which is equ1valent

A
to be 8\ Thrnunhnnf the simulation program, with this 7 7 value (| L., 2= R\ we obtained Mnur

5
versus a; plots. In order to have the simulation results to be consistent with the theory, we modxﬁed bas b so
as to have b’ equal to a; when 7, = 8. For this reason we defined &’ to be,

b =20 /m, (34)

where v’ = tan~! (64 tan ¢, /f%). As is easily seen, when 7, is equal to 8, v’ becomes ¢, and b’ becomes a,
which we desire to have. Using this new fraction b, M,,, versus b’ plots with y, as a parameter are given in
Fig. 3, Fig. 4 and Fig. 5, which correspond to £ = 1/2, £ = 1/10 and £ = 1/25 cases, respectively.

1A ANToeoe T 2o S1liicnbnndn o 2 ..__‘A_.‘A..l PR P Ao azrn L,“.A more ammsneant Ao sy can ramorAa TN o Rpppes
D4, INUW, ICL UDd 1HIUdDLIALC a4 11UHICIIval AAINPIC. AdD WU jlavl 1H1ulC l} IMCICIS we Cai bUllblUCl, WC aroilr lll_)'
set r, to be 8s (i.e., /2 = 8) and choose £ = 1/2 (i.e., ry = 4s or 7| = 4). With this choice of ¢ value, we

have the opportunity to look at Fig. 3. It is clearly observed in Fig. 3 that, the value of M,,, is minimum when
b’ = 0.8 and y, = 0.5. Then, from this point on, we set b’ to be 0.8 and y, to be 0.5. With #; = 8, from Eq.
(34) we have a; = b’ = 0.8, and with 7, = 8 and #; = 4 from Eq. (27) we have 7o/ sin¢, = 2. At this point,
we arbitrarily choose 7y to be 1 (i.e., rg = s), from which we find sin¢; = 0.5 and a, = 2¢ /7 = 1/3. So,
referring to Fig. 2, with 7/, =8, #| =4 and 7y = 1 in order to have minimum M, value, the orders of the st
and 2nd fractionai Fourier transform siages, (i.e., i and a;), musi be set to i/3 and 0.8, respectively.

The optimum filter profile, which corresponds to these parameter values, is obtained through the ileration
given in Eq. (25), and its magnitude is given in Fig. 6. By using this filter profile, we then obtained the outp
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Fig. 3. My, as a function b for ¢ = 1/2 when y, = 0.01 (solid line), y» = 0.50 (dashed line), x» = 1.00 (dash-dotted line).

Fig. 4. My, as a function &’ for £ = 1/10 when x, = 0.01 (solid line), yn = 0.50 (dashed line), y, = 1.00 (dash-dotted line).
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Fig. 5. My, as a function b for £ = 1/25 when y, = 0.01 (solid line), y» = 0.50 (dashed line), y» = 1.00 (dash-dotted line).

Fig. 6. Magnitude of the optimum filter as a function of u when £ =1/2, yp = 0.50 and »’ = 0.8.

Fig. 7. Actual output mutual intensity function when £ = 1/2, ¥, =0.50 and b’ = 0.8.

Fig. 8. Desired profile for the output mutual intensity function when & =1/2,

mutual intensity, and is shown in Fig. 7. In order to compare the output mutual intensity with the desired one,
we showed the mesh plot of the desired mutual intensity in Fig. 8. For better comparison, we then obtained
the profiles of both the desired mutual intensity and the output mutual intensity along uy = —u, axis, and we
showed them on the same plot in Fig. 9.

As a result, in this example, we conclude that the closest output mutual intensity distribution to the desired
profile is obtained by filtering in fractional Fourier domains, compared to filtering in conventional space and
spatial frequency domains. Finally, by looking at Fig. 7, Fig. 8 and Fig. 9, we have an idea of how close the
output mutual intensity is to the desired one.

In our paper, we have employed the widely used and analytically tractable minimum mean-square error
criterion for purposes of illustration. However, we are not excluding the use of other error criteria. The basic
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Fig. 9. Profiles of the desired mutual intensity shown in Fig. 8 and the output mutual intensity shown in Fig. 7 along u; = —u> axis
(dashed line for the output mutual intensity, and the solid line for the desired one).

idea of our paper, that of filtering in fractional Fourier domains to synthesize desired mutual intensities, is not
affected by the particular error criterion one chooses. For instance, if one considers the synthesized mutual
intensity to be an inadequate approximation to the desired rectanguiar profiie (Fig. 9), despite the fact that the
normalized minimum mean-square error is reasonably small (around 0.11), it might be preferable to employ

some ather error criterion
SULIIC Uuaer CLiul ClaiiUil.

It would be possible to obtain better approximations to the desired profile by employing several consecutive
fractional Fourier domain filters, rather than only one.

A N
“. L UIICIUdIVILIL

The mutual intensity distribution is one of the most common ways of characterizing the spatial partial
coherence of a wave-field. In [19], the propagation of mutual intensity through first-order optical systems
(systems involving thin spherical lenses, quadratic graded-index media, and free-space propagation in the
Fresnel approximation) is expressed neatly in terms of the fractional Fourier transform. Using this fact, in
this paper, we showed how to synthesize the closest (in minimum mean-square error sense) mutual intensity
distribution to a desired distribution, for a given source mutual intensity profile, by using fractional Fourier
domain filtering. In this paper, we also pointed out that, in some cases, closer approximations to the desired
nrofile can be obtained hv filtering in fractional Fourier domains, in (‘nmnnrmnn to ﬁ]tprmo in the ordinary

Pruae LOL VI 010 184 1 1 v AChIng I Ifaclional FOUIICT COIIlAallls, I COIIpallisoll W 1Rehills 1 e Oiglidd

space or frequency domams.

Appendix A
Let us define a general M, expression for a general filter profile I:Ig(~) as
M, = // |y u2) — Ho(un) B2 () Joy (i, 2) 2 duty sz, (A1)
In order to follow the steps easily, let us express M, as

My = /] o Car, u)|* |AQur, u2) — HeCun) Hy (i)

,-\
>
3]
-~
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where A(ui,up) = fi’,(ul,uz)/fof(u;,uz). Let
[:I‘q(“) =I:I(,(u)+e(u), (\3)

where H,(u) is the optimum filter profile that we are looking for, and €(u) is a functional perturbation.
The idea of the calculus of variations method [21] lies behind the fact that, the value of M, cannot change
considerably for I:Ig(~) profile close to H,() (ie., for €(u) whose magnitude is small). Inserting Eq. (A.3)
into Eq. (A.2), and assuming that the magnitude of e(u) is small compared to the magnitude of H,(u). we
come up with

Mg=// Wor (er, u) |2 |AGuy, uz) — Ho(un) B (1) — €(wy) Hi(u) — Hy(ur) € (up) |* duy dus.

(A4)
The expression for M, can be written as,

M,=M— M., (A.5)
where M is the part of M, which is independent of the function €(-), i.e.,

1 = // o Cur ) P A Gt un) — By B ) [ dey s, (A6)

and M. is the remaining part of M, (i.e., the part which depends on €(-)). For the functions €(-) having small
magnitude, M, can be approximated as,

Mez/ | Jor Cur s u2) P [ACuy, uz) — Ho(un) A ()| [H (w1 €(uz) + Ho(uz) €™ (uy)] duy dua

+/ |Jor (uyouz) |? [A* (uryu2) — H (ui) Ho(w) ] [Ho(ur) € (u2) + B (u2)€(ur)] dusduz. (A7)

The expression for M, can be put in the form
M= /dulf(ul) /duzc(ul,ln) + /dul € (uy) /duZG*(ul»lQ)

+ /duzf(uz) /dul F(u,u) + /duzf*(uz) /dul F*(u,u2), (A.8)
where

Gy, up) = A" (uy, ) B () — H(uy) | Ho(u2) |2,
Fluy,up) = A(ur,u2) B (uy) — B2 (u2) | Ho(u) 2, (A9)

or with change of variables

Me=/du1 é(un)/duz[G(un,uz) + F(uz, )] + /du1 6*(u1)/duz[G*(u1,uz) + F*(uz,u1) 1,
(A.10)

or
M€=2Re{/du1 e(uy) /duz[G(ul,uz) +F(u2,u1)]}, (A.11)

where Re{-} operator gets the real part of the functions that it is operating on.
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As a consequence of calculus of variations method, in order to have M. =0 for all e(-) functions, we must
have

/duz [.G(ulsuZ) + F(u2’ul)] =0’ (A.IZ)
which leads to

2 (A.13)

/duz Jo (uryun) Jé (uy, uz) Ho(up) = Ho(uy) fduﬂfw(ul.uz)lzlfl(uz)

which is the integral equation that we are looking for.

Appendix B

Let us rewrite Eq. (15) once more;

[ dup J (uy,uz) o (uy, u2) Ho(uz)

H,(u) = (B.H
uy) [ dup | Jor (g, u2) |21 Ho(u2) |2
Let a(u) H,(u) is also a solution of Eq. (B.1), ie,
Fx 7d
au)) () = [ dug B (uy uz) o (uy, up) aun) Bo(uz) (B2)

J duz |Jor (ur, u2) |2 |ar(uz) Ho(u2) 2

a(u) = 0 is the ill-case of the problem, so it is omitted. By defining new functions as Jyr(uy,u2) =
Jor(uy, ug)ya*(ua) [ @* (uy) and JE(uy,uz) = J¢ (w1, 12) / |a(ur)|?, Eq. (B.2) can be rewritten as,

< duy T (ur, u0) T8 (uy, u) Ho(up)
A.(u) = Jdur T d , B.3
() [ duy | Jor (ur, u2) |2 | Ho(u2) 2 (B.3)

which is in the form of Eq. (B.1). As we are all dealing with mutual intensity profiles, Jo- (u;,u2) function,
which satisfies Eq. (B.3) must also be conjugate symmetric. Using the definition of Jo:(uy,u2), and the
conjugate symmetric property of it (i.e., Jor (u1,u2) = Jg (uz,u1), Yuy,u2), one ends up with the conclusion
that, |a(u2)|? = |@(uy)|?, Vi, up, which implies that a(#) must be a complex constant (i.e., a(u) = a). So,

wfury = 902 d5 G, u2) J Gy ) af,(u) B4)
[ duz o i ua) a2 | o ) P

Realizing that both Eq. (B.1) and Eq. (B.4) is satisfied, one can conclude that |a| = 1.
As a result, exp(i8) H,(u) is the only set of solution of the iteration with arbitrary angle 8.

Appendix C

Let us repeat the expression of f;‘,(-, -} here once more iL.e.,

oo Xy

Juy up) = T {F (w1, u2)} = f /du; dub J{ (uy, uy) By, (), ur) Bo, (4, u2). (C.1)

ple eliage s}
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We see from Eq. (23) that,

iy U
J((ll],uz) = Jl ecaled(Al’Tzsg)s (CZ)
rp r

where ¢ = 7, /7. Using the result of the theorem given in Appendix D, after some algebra, J¢, (u;. 1) can be
expressed as,

2 o4 5 .
f‘l, ‘ 2§ ¢2l . 2 — Ty / uir2CsC qﬁz , LaFy CSC c;bz : i C3
v u) = |A |2 exp | im(u; — )COtd)Zl + 2c0t2¢2 g cscv cscv ¢ (€3)
where
o o}
Ip(up,ups €) = / / duf dub J{ (e}, 153 €) By, ) Bp(uh,ua) (C4)
fmle sode o)
with £ = 7| /f2, b =2v/m and v = tan"! (tan 2 /73).
Now, let’s repeat the expression of Jor () ie.,
00 o0
Jor(ur, )y = T {Jo(ur,u2)} = / / duf dub Jo(u},u3) Ba, (4}, 1) B, (4, u2). (C5)
—00 —00
Using the expression for Jo(-,-) given in Eq. (17), Jor(-,+) can be expressed as,
. ‘ 2F ) .
Sy () = Hsé)%i)_} exp[m(u% - u%) cot ¢ I sincf (up — uy)2Fscsc ], (C.6)
1

where sinc(u) = sin(7u) /(7u).
Using the expressions given through Eq. (C.3) and Eq. (C.6), the iteration, which is given in Eq. (15), can
be expressed as;

[ dug sinc[ (uy — uy)2fycsc ] I(uPacsc o /esc v, uafyesc gy /esc v €) H,(u)

H, = - \ C.7
(ur) [ duy sinc®[ (ug — uy)2fgcsc by 1 |H(uz) 2 (€D
where
. B 27p]A, |2 ( 1-— F“
H,(u) = \/—_—sl sin¢1{f%§A¢2} exp |imuj { cotg -i-cot«i:z—--—»———«-—I n zcntzqh fI (1) . (C.8)

Now, let’s analyze what happens to M. When the expressions for J%(-,-) and Jor (-, +), which are given in
Eg. (C.3) and Eq. (C.6), are used in Eq. (13}, the expression for M, after straightforward but lengthy algebra,
comes out to be,

» N 2
~ o a2 . O f‘_‘_‘ . u_z . _ 2}’(}
M= 73 // In(uy, 12 €) Ho(,)Ho(,)smc ((Hz m)tsiw])l duy dus , (C9)

where [ = #>| sinz|/|singy]. If we look at Eq. (C.7), we see that,

i (__) J duz sinc ((uz““1)2f0/lsm¢'1) Ip(ur,ug; €) Hy (u2/1)
27 [ duy sinc® ((up — uy) 2f0/1singyy) |H (u2/1) 2 .

(C.10)
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In other words, H(,(ul/l) is the filter profile obtained, when sinc ((uz —uy) 2#y/lsin ¢1) and Ip(uy,u; &) is
used through the iteration given in Eq. (15). So, when H,(u) is chosen as H,(u) = H,(u/l), the expression
for M turns out to be

N 2
. , . - 2
M = f% //\Ib(ul,ug;f) — H,(u) H},(uy) sinc ((uz —up) 7o ) ’ duy dus . (C.11)
) | 7/

\ 1n

As a result, with the given J%(-,-) and Jy (-, -) profiles,

M= //|I;,(u1,u2;§) — H,(uy) H} () sine ((ua — ) xo0) | duy dug (C.I2)
and
B () = fdMZSinC((.VZ;ul)Xn)lb(ul,uz;f) H,(uy) (C.13)
[ duy sinc® ((uy — uy) xn) |H(uz)|?
where
Xo = 22 cscpy L2 (C.14)
ra sy
and
oo oo
Iy(uy,uns €) = / / du, didy J g Gl oty €) Bt} iy ) By(idyoitz) | (C.15)
-0 =0
with £ = #, /#, and b = 2v/7r where v = tan™! (tan ¢, /73).
Tinally I () ic ralatad to I ) by
rinainy, r1,(k) iS réiatca to 11y( i) Oy
H,(u) = /——————————%OM!’!Z ex ri l—é /coth +cot¢ _Ll-h -5 M a () (C.16)
° "\ sFd|sing||Ag, |2 plwlz k ! 21+?‘2‘cot2¢2)J ”kl)’ :
where [ = 7| siny|/|sings|.
Appendix D
Theoren: (f”fs) (u) of the function fs(u) = f(ku) can be expressed in terms of (f"f)(u) as;
a 7 14 1 N\ Ve . N\
a 5 A¢ . 2 K — 1 b 2 simy
s = tp——mMm - s D.1
(Ffy(u) A, exp (mu co ¢k4 +cot2¢) (F°f) (uksm¢) (D.1)

where v = tan~' (k* tan ) (v is assumed to be in the range —7 < v < 7), b =2v/7 and k is any real number
different from zero.

Proof:

Using the conventional definition of the fractional Fourier transform, (F* F+)(u) can be expressed as,

(Ff(u) = / Ag explim(u®cotd — 2uu’ csc  + u? cot )| f(ku') du’ . (D.2)
J

-0
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If we let ¢’ = ku’, the above expression comes out to be

o <]

. ) 1 ] [ 72

(Fifaw = [~}—<—i~ / Ag exp {m’(uz cotgh — 2u%csc¢ + %cotqﬁ)} Flohydo. (D3
oo

Letting cotv = cot¢p/k* and v = ucsc ¢ / kcsc v, after some algebra we end up with the result given in the

theorem. i.e.,

4

o2 _ Ay . 2 k-1 PN siny
(Ffao(u) = KA. exp (m’u cotgé—————k4 +c0t2¢) (F°f) (“ksinq&)’ (D.4)
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