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Abstract 

Our aim in this paper is to obtain the best synthesis of a desired mutual intensity dis~but~on, by filtering in fractional 
Fourier domains. More specifically, we find the optimal fractional-domain filter that transforms a given (source) mutual 
intensity distribution into the desired one as closely as possible (in the minimum mean-square error sense). It is observed 
that, in some cases, closer approximations to the desired profile can be obtained by filtering in fractional Fourier domains, 
in comparison to filtering in the ordinary space or frequency domains. 

ki~~trrds: Fourier optics; Statistical optics; Fractional Fourier ~sfo~s; Mutual intensity 

1. Introduction 

What know as the space and spatial fluency domains are merely special cases of fractional Fourier 
domains. These fractional domains are characterized by the parameter a. Conventionally, spatial filtering has 
been performed in the 0th and 1st fractional domains, which are the space and frequency domains, respectively. 
However, in later work [ 1,2], it is shown that, it is possible to improve performance by filtering in fractional 
domains. In this paper, we used the idea of filtering in fractional Fourier domains in order to obtain the best 
synthesis of a desired mutual intensity distribution. More sp~ifi~alIy, we found the optimal fra~tionai-domain 
filter that transform a given (source) mutu~ intensity distribution into the desired one as closely as possible 
(in the minimum mean-square error sense). 

The ath order fractional Fourier transform C&(U) of the function 4(u) is defined for 0 < jnl < 2 as 

61,(u) = .I B,( u, u’) #u’f du’, 

-co 

B Cu t4,f ~ expbkV4 -4PH Lt f 
1 sinqb\‘/* 

exp [ irr( u2 cot # - 2~4’ csc 4 3 ui2 cot #) ] , 
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where 

4 = a7r12, (2) 

and 4 = sgn( sin 4). The kernel is defined separately for a = 0 and a = *2 as Bo( u, u’) E 6( II -- II’ ) and 
B*~(u, u’) = 6(u + u’) respectively [3]. The definition is easily extended outside the interval [ -2,2 ] by 

noting that 34.;-tu~ = 3’9 for any integer j. Both u and u’ are interpreted as dimensionless variables. 
Some essential properties of the fractional Fourier transform are: (i) It is linear. (ii) The first order transform 

(a = 1) corresponds to the common Fourier transform. (iii) It is additive in index, 3ut3a2(j = 3’(‘I+“zLj. (iv) 
The kernel for the -ath order transform is the conjugate of the kernel for the ath order transform: B,: (u, u’ ) = 
B_,,( u. u’). Other properties may be found in [ 1,3-7,9,10]. 

Given the scale parameters s and s’, the fraction a, and the complex amplitude distributions 9<, (. ) and 9( .), 
optical implementations of the fractional Fourier transform, expressed as, 

%,(x-) = 7 $B,, ($5) q(x')dx', (3) 

have been presented in the literature (here, the coordinates n and x’, and the scale parameters s and s’ are 
measured in meters) : In Refs. [4-61 the fractional Fourier transforming property of quadratic graded-index 
media is discussed, in Refs. [7,16] bulk optical systems are considered. Signal processing applications have 

been suggested in these references and in Refs. [ 1,2,8,10,13]. Further development of the role of the fractional 
Fourier transform in optics, as well as certain extensions and experimental results may be found in Refs. 
[4-6,l I-151. 

In Refs. [ 12,15,16] it is shown that there exists a fractional Fourier transform relation between the amplitude 
distributions of light on two spherical surfaces of given radii and separation. Unlike most other papers which 

deal with the implementation of the fractional transform, these papers pose the transform as a tool for analyzing 
and describing optical systems composed of an arbitrary sequence of thin lenses and sections of free space. 
The fractional transform allows one to express the evolution of the amplitude distribution of light through an 

optical system in terms of fractional Fourier transforms of increasing order. 

In all of the references mentioned above, statistical properties of light are ignored, and full coherence is 
assumed. In some cases, however, this assumption cannot be justified so that the wave functions must be con- 
sidered as random processes. In this paper, we deal with partially coherent light. One of the important quantities 
used to describe the statistical properties of light is its mutual intensity. Assuming quasi-monochromatic light, 
the mutual intensity can be expressed as [ 17,181; 

Jq(O>Y2) =E{9(‘-1)9*(‘-2)}, (4) 

where E{ .} is the expected value operator, and 9(r) is the complex amplitude distribution of the optical wave. 
In Ref. [ 191, the propagation of mutual intensity through linear quadratic-phase systems are expressed 

in terms of two-dimensional fractional Fourier transforms for one-dimensional systems, and four-dimensional 
fractional Fourier transforms for two-dimensional systems. In other words, for one dimensional systems, the 
expression for Jq,, ( XI, x2) (which is the mutual intensity of the light wave after propagating through a system 

characterized by Eq. (3)) is given in terms of Jq(xl ,x2) as, 

(5) 

Using this result, in this paper, we dealed with the problem of synthesizing a desired mutual intensity distribution. 
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For simplicity, we restrict our attention to one-dimensional systems. The extension to two-dimensions is 
straightforward. 

This paper together with [ 191 are not the only applications of fractional Fourier transforms to optical systems 

with partially coherent light. In Ref. [ 201 the output intensity of such systems is related to the fractional Fourier 
transform of the input, where the order a is related to the degree of partial coherence. 

2. Definition of the problem 

The mutual intensity is one of the most common ways of characterizing the spatial coherence of a wave 

tield. Our goal in this paper is to synthesize a mutual intensity distribution JI (XI, x2), which is closest to a 
desired output mutual intensity distribution J: (XI, x2), given a source mutual intensity distribution JO (xl, x2). 
In other words, using the configuration given in Fig. 1, we want to choose the orders of the two fractional 
Fourier transform stages, al and ~22, and the filter H(x) such that the actual output J1 (XI, x2) is as close to 
./f ( XI, .Q ) as possible. More precisely, we want to minimize the following minimum mean-square error M, 

M= 1 &%x2) - ~JI(xI,x~) 12dx, dx2, 
JJ 

by choosing al, ~2, H(x) and k appropriately. In Eq. (6) we allow for the real constant k, because we consider 
it sufficient to match J: (XI, x2) and JI (XI, x2) within a constant factor. In the expression for M, the effects 
of (41, u2 and H(x) are hidden in J1 (XI, x2) as we obtain the actual output JI (xl, x2) from the source mutual 
intensity JO(XI ,x2) by first fractional Fourier transforming &(x1 ,x2) with fraction al, then filtering by H(x), 
and lastly fractional Fourier transforming with fraction ~2. 

The expression for the propagation of the mutual intensity is given in Eq. (5). By defining new variables 

III = XI/S, u2 s x2/s, 14; = xi /s’ and ui = xi/s’, and defining the scaled mutual intensities as 1~. (141, ~2) E 
J+, C SUI , suz ) and j~(u{, uk) E Jq(s’ui, s’ui), Eq. (5) can be rewritten as, 

where 141, 142, u{ and ui are dimensionless variables. This equation can also be expressed as, 

(7) 

&,([41,u2) =~,{j~(,l,u2)}(u1.u2), (8) 

where ?(, is essentially the two-dimensional fractional Fourier transformation operator with fraction a (i.e., 

Q&4, ,112)) = F:,{?.L;,“{j( ~1, ~2))) where 3,“,{.} is the fractional Fourier transform with respect to the uith 
coordinate with fraction a). 

With these new definitions, the configuration given in Fig. 1 can also be expressed as the one shown in Fig. 
2. and our problem boils down to the minimization of I$?, which is defined as, 

A= ~4%4,,u2) - k.f,(u,,uz) 12du, du2. 

By comparing the expressions for M and h?l, it is easy to see that kl = M/s2. 
As ${.-} is a unitary transformation, fi can also be expressed on plane 1’ (see Fig. 2) as, 

fi, I -f;h402) - k.f,f(u,,w) [‘du,du2, (10) 
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Optical Fractional 
Fourier Transformer 
of order q 

Fig. I. A complex spatial filter H(X) is inserted between two optical fractional Fourier transformer stages 

Fig. 2. Mathematical model. 

where &’ ( f, -> and j;! (-, -) are obtained from .& (*, ‘) and j:( -, .) through the operator 

transformation (i.e., &~(uI,Mz) = ?_p_,,{&(u,,~~)} and ff,(ul,uz) = ?“_p-u2(~~(u~,uz)}). 
one can see that, 

&(ltl,UZ) = .&(U,,U~) A@,) A*(&). 

By inserting Eq. ( 11) into Eq. ( lo), h expression takes the form of 

fi=: ( .&(u,,u~) - k&u,) A*&) &~(u,,u~) 12du, du2. 

f’d-) by an inverse 
Referring to Fig. 2, 

(11) 

(12) 

As far as the optimization of i\;r is concerned, the effect of k and A( .> can be combined by defining 
I?,,(u) = V’%&(U). Then, A?t turns out to be; 

(13) 

From this point on, we first fix al and a2 and get the optimum filter profile I&(-) which minimizes &I. 
After finding A,( -), we will calculate the corresponding & value (We will repeat this for all possible a~ and 
uz values, and the optimum al and a2 values will then be found as the ones which correspond to the minimum 

fi value). So, as a result of the calculus of variations method [ 211 applied to Eq. ( 13) (Appendix A), it 
is obtained that, for fixed QI and a2, the &(-) profiles which minimize A, must also satisfy the following 
integral equation; 

/ 
‘du:,~~/(r(U,.u2)S;!(u,,u2)~~(U2) = (i,(w) J dU:!IfO’(U,,u2)12}A(u2)/2. (14) 

The above expression can also be expressed as, 

(15) 

so that, we may obtain the I?(>( .) profiles in an iterative way. 
It is given in Appendix B that, exp(iP) B”(u) is the only set of solution of Eq. (15) with arbitrary angle /?. 

However, we don’t observe the effect of angle p, because it vanishes in Eq. ( 11). So, without loss of generality 
we may take p as zero. 

As a result, we first fix at and uz, and get I&(u) profile from Eq. ( 15). By using this filter profile we 
calculate a, and we do this for all al and C-Q values. The optimum QI and ~12 values are the ones which 
correspond to minimum &l value, and the closest .!I (u1,4) profile is calculated by using the optimum al and 
02 values and the co~esponding )3,( -> profile. 
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3. Synthesizing a rectangular mutual intensity profile from an incoherent source 

3.1. In the previous section, the problem is defined and solved for general source and desired output mutual 
intensity functions, Now, let us choose specific profiles for these mutual intensities. From this point on, we 
consider the light source to be incoherent. As the size of the light source is assumed to extend from -YO to ~0, 

the mutual intensity of the source may be expressed as, 

Jo(xI,x?) = 6(x1 -x2) rect (xr/2re), (16) 

where the function rect(xt /2ro) is defined to be 1 when -ro 5 xi 5 rg, and 0 otherwise. Using the 

dimensionless variables, Eq. (16) becomes, 

n 1 Ul 
JO(u1,u2) = s6(uj -~2)rect ~ 

( ) 2(ro/s> . 
(171 

We restrict ourselves to fractional Fourier transforming systems whose input and output scale parameters s and 

.x’ are equal. As for the desired mutual intensity, we choose to synthesize a rectangular profile, expressed as, 

Jf(X1,x2) =rect(‘Xti:2’) rect($) rect($-). t 18) 

In other words, we want the amplitude of light at two points to be fully correlated when the distance between 
those points is smaller than 2ri, and totally uncorrelated otherwise. Moreover, we are interested in pairs of 

points which both lie in the region [ -r2 , ~1. In dimensionless variables, Eq. ( 18) turns out to be, 

.f;lCw,u2) = red (ii!-;;) red (&) rect (a). t 19) 

Again S’ is assumed to be equal to S. Defining the new parameters as ie = Q/S, ii = YI /S and P2 = Q/S, Eqs. 
( 17) and ( 19) can be rewritten as 

&(ul,u2) = iS(ul - U2)rect $- , 

( > 0 

and 

.fj(uj,u2) = rect (y) rect ($-) rect ($-). 

3.2. Let us express j: (ui , ~2) profile in terms of the function .!flSCaled( ui , ~2; 5) which is defined as, 

-fiLaled (u1,u2;5) = rect (y) rect (9) rect ($). 

Then, 

(21) 

(22) 

with 
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With this definition of jf( ., .), it is given in Appendix C that, we may reduce this problem into the form of 
the iteration given in Eq. (15), i.e., 

R!l(u, 1 = 
JdUzsinc((U2 - UI)X”) Mut.u2;5) &(zQ) 

Jdu2sinc2((u2 - UI)X,,) Ip(u~)l~ 

and the form of fi can be expressed as, 

fi = i; 
II 1 Ih(u1,~2;5) - &,(uI) fiz(u2) sinc((u2 - UI),~,,) [*dut dU2. 

(25) 

(26) 
JJ 

In these equations, 
A 

sin 42 
x,1 = 2 2 csc 4, - 

sinu 

and 

0000 

-cc -cc 

with LJ = illi2 and b = 2v/rr where v = tan-’ (tan 42/P;). So, as a result, in Eq. (25), we were able to put 

the iteration in the form given in Eq. (15), and with this iteration given in Eq. (25), as far as the filter profile 

is concerned, we were able to sum up all the effects of the parameters, into three variables x,,, b and 5. In 
addition to this, in Eq. (26)) we were able to express the form of fi, by using the newly defined functions and 
variables in Eq. (25). It is also pointed out in Appendix C that, the filter profile ficl( .), given in Eq. (25), is 

related to the one given in Eq. (15) through the expression, 

(27) 

(28) 

A,,(u) = d 2~ol&12 
cot+] +cot& 

1-y”: 

sizl sin+] llA&212 1 + i; cot2 42 (29) 

where I = P2I sinvl/l sin&\. 
In the Introduction part, it is given that, taking the fraction of the fractional Fourier transform in the interval 

[ -2,2 1 is sufficient. When the functions of interest are symmetric, as is the case here, this interval reduces to 
[ -I, 1 I. However, in our case, we have the opportunity to reduce this interval more. When b is changed to 
-b. I/,(.;) becomes I;(.;), A,,(.> becomes iiJ(.> and A stays the same (provided that I;‘(.;) is real, as 
is the case here). So, as far as & is concerned, 0 I b 5 1 is sufficient to analyze the behavior of & under 

various b values. 

3.3. Through the simulations, instead of &, we intended to obtain the behavior of the normalized fi value, 
which is defined as, 

Using Eq. C 23) and Eq. (24)) we may easily see that, 

/ j;‘(u,.u2) l*dU, du:! = i; I -r,scded (w,u2;5) 12dw du2. 

(30) 

(31) 

(32) 

We also know that, 
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So, as a result, using the unitary transformation property of fa, I@,,,, can be expressed as, 

fi,ror = 
~~\I~(uI,u~;~) - ~To(~~)~~(~2)sinc((u2-u~)~n)12duldu2 

_fj%&402;5) 12dutdu:! 
(33) 

It is clearly seen from Eq. (25) and Eq. (33) that, both R”(u) and A,,,, are functions of only three variables 

b, xII and 6. In order to get the behavior of A,,,,, we first fix the variables b, xn and 5, and obtain the filter 

profile A,,(.) from Eq. (25). Then, by using this filter profile, we get A,,,, value for these fixed b, ,y,, and LJ 
variables. 

As there are more parameters we can consider, for a specific example, we set r2 to be 8s (which is equivalent 
to choosing i2 to be 8). Throughout the simulation program, with this F2 value (i.e., i2 = 8), we obtained A,,,,, 
versus ~2 plots. In order to have the simulation results to be consistent with the theory, we modified b as 6’ so 
as to have b’ equal to a2 when 72 = 8. For this reason we defined b’ to be, 

b’ = 2v’/n, (34) 

where v’ = tan- ’ (64 tan&/i;). As is easily seen, when i2 is equal to 8, v’ becomes ~$2 and b’ becomes a2, 

which we desire to have. Using this new fraction b’, h!t,,, versus b’ plots with x,, as a parameter are given in 

Fig. 3, Fig. 4 and Fig. 5, which correspond to 5 = l/2, 6 = 1 / 10 and { = l/25 cases, respectively. 

3.4. Now, let us illustrate a numerical example. As we have more parameters we can consider, we arbitrarily 

set r2 to be 8s (i.e., ?2 = 8) and choose 5 = l/2 (i.e., 11 = 4s or it = 4). With this choice of & value, we 
have the opportunity to look at Fig. 3. It is clearly observed in Fig. 3 that, the value of fi,,, is minimum when 
b’ = 0.8 and x,, = 0.5. Then, from this point on, we set b’ to be 0.8 and x,, to be 0.5. With i2 = 8, from Eq. 
(34) we have a:! = b’ = 0.8, and with 72 = 8 and it = 4 from Eq. (27) we have ?a/ sin41 = 2. At this point, 
we arbitrarily choose ?a to be 1 (i.e., ra = s), from which we find sin 4, = 0.5 and al = 24, /n= = l/3. So, 
referring to Fig. 2, with i2 = 8, Ft = 4 and ?a = 1 in order to have minimum &l,,, value, the orders of the 1st 
and 2nd fractional Fourier transform stages, (i.e., at and a~), must be set to l/3 and 0.8, respectively. 

The optimum filter profile, which corresponds to these parameter values, is obtained through the iteration 
given in Eq. (25), and its magnitude is given in Fig. 6. By using this filter profile, we then obtained the output 
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Fig. 3. M,,, as a function b’ for 8 = l/2 when ,yn = 0.01 (solid line), ,y,, = 0.50 (dashed line), ,y,, = 1 .OO (dash-dotted line). 

Fig. 4. M,,,,r as a function h’ for 5 = l/IO when ,yn = 0.01 (solid line), ,y,, = 030 (dashed line), ,yn = I .OO (dash-dotted line) 
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fig. 5. MM PS ;L function Q’ for 6 = I /25 when xn = 0.01 (solid line), _yn = 0.50 (dashed line), xn = 1 .OO (dash-dotted line). 

Fig. 6. Magnitude of the optimum filter as a function of u when 6 = l/2, xn = 0.50 and hi = 0.8. 
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Fig. 7. Actual output mutual intensity function when 5 = 1 /Z, x,, = 0.50 and b’ = 0.8 

Fig. 8. Desired profile for the output mutual intensity function when 5 = l/2. 

mutual intensity, and is shown in Fig. 7. In order to compare the output mutual intensity with the desired one, 
we showed the mesh plot of the desired mutual intensity in Fig. 8. For better comparison, we then obtained 
the profiles of both the desired mutual intensity and the output mutual intensity along U, = -u:! axis, and we 
showed them on the same plot in Fig. 9. 

As a result, in this example, we conclude that the closest output mutual intensity distribution to the desired 
profile is obtained by filtering in fractional Fourier domains, compared to filtering in conventional space and 
spatial frequency domains. Finally, by looking at Fig. 7, Fig. 8 and Fig. 9, we have an idea of how close the 
output mutual intensity is to the desired one. 

In our paper, we have employed the widely used and analytic~ly tractable minimum mean-square error 
criterion for purposes of illustration. However, we are not excluding the use of other error criteria. The basic 
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Fig. 9. Profiles of the desired mutual intensity shown in Fig. 8 and the output mutual intensity shown in Fig. 7 along ~(1 = --I(? axis 

(dashed line for the output mutual intensity, and the solid line for the desired one). 

idea of our paper, that of filtering in fractional Fourier domains to synthesize desired mutual intensities, is not 
affected by the particular error criterion one chooses. For instance, if one considers the synthesized mutual 

intensity to be an inadequate approximation to the desired rectangular profile (Fig. 9), despite the fact that the 
normalized minimum mean-square error is reasonably small (around 0.1 l), it might be preferable to employ 

some other error criterion. 

It would be possible to obtain better approximations to the desired profile by employing several consecutive 
fractional Fourier domain filters, rather than only one. 

4. Conclusion 

The mutual intensity distribution is one of the most common ways of characterizing the spatial partial 
coherence of a wave-field. In [ 191, the propagation of mutual intensity through first-order optical systems 
(systems involving thin spherical lenses, quadratic graded-index media, and free-space propagation in the 
Fresnel approximation) is expressed neatly in terms of the fractional Fourier transform. Using this fact, in 

this paper, we showed how to synthesize the closest (in minimum mean-square error sense) mutual intensity 
distribution to a desired distribution, for a given source mutual intensity profile, by using fractional Fourier 
domain filtering. In this paper, we also pointed out that, in some cases, closer approximations to the desired 
profile can be obtained by filtering in fractional Fourier domains, in comparison to filtering in the ordinary 

space or frequency domains. 

Appendix A 

Let us define a general M, expression for a general filter profile fig( .) as 

In order to follow the steps easily, let us express M, as 

M, = JJ I~~~(u,,u~)I~IA(u~,u~) - ~~(ul>~~(~2)1~duld~2, 

(A.11 

(A.2) 
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where A(u~,u:!) = ~:I(~,,u:!)/~o~(uI,u~). Let 

A&, =&(u) + E(U), (.a) 

where AC,(u) is the optimum filter profile that we are looking for, and E(U) is a functional perturbation. 
The idea of the calculus of variations method [21] lies behind the fact that, the value of M,? cannot change 
considerably for a,(.) profile close to fiO(.) (i.e., for E(U) whose magnitude is small). Inserting Eq. (A.3) 
into Eq. (A.2), and assuming that the magnitude of E(U) is small compared to the magnitude of fi(,( II). we 
come up with 

M,? = 
L/ 

\&(w,w)~~ IA(w,u2) - fi,(u,) @(u2> - E(UI) Ij,s(u2) - &(uI) e*(u2)12du, duz. 

(A.4) 

The expression for M, can be written as, 

M,s=lij-M,, 

fi the of which is of the function E( i.e., 

fi= l414w2)1~1N u1,u2) - &Au,) ti,‘b42)12dwd~2, (A.6) 

the remaining of (i.e., the on .)). For the functions E( .) having small 
magnitude. M, can be as, 

= JJ Ik~bw2)1~ [A( ~13~2) - &h)&(~2)] [~,*Wd~2) +&(u2k*W] dul du2 

+ JJ l&hw2>12 [A*( 49~2) - &h>f&2)] [&(w)~*G42) + 43~2kb,)] dul du2. (A.7) 

The expression for M, can be put in the form 

M, = J’du, E(u,) /duzG(ul,nz) + Jdu, E*(w) /duzG*(u,.uz) 

+ I dU2 c(w) dw F(uI,u~) + du2 E*(u2) dul F*(uI.u~), (A.81 

where 

G(rt13~2) = A*bw2)fi;(~2) - &h)I~o(~2>1~, 

F(I*I,u~) = Ah,~2)&34,) - ti,*(u2)~&(~,>~~, 

or with change of variables 

M,=ld.i+,)/- du:! [G(w,u2) + F(u2,w)I + 

or 

J dul e*(w) 

(A.91 

J du2 [G*(u,,u2) + F*(uz,u,)l, 

(A.lO) 

M,=2Re{Jdule(ul) J dw [G(w7~2) + F(u2,~1)1 
> 

> 

where Re{ .} operator gets the real part of the functions that it is operating on. 

(A.ll) 
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As a consequence of calculus of variations method, in order to have M, = 0 for all e(a) functions, we must 

have 

I du2 lG(u1,~2) + F(u~,uI)] =0, (A.12) 

which leads to 

I dU2 .&(.,,zQ) j:,(u,,uz) Ijo(u2) = &(u,) du:!l~o~(~,,~:!)121~(~~)12, (A.13) 
J 

which is the integral 

Appendix B 

Let us rewrite Eq. 

equation that we are looking for. 

( 15) once more; 

K(w) = Jdu:!.&(w2) 4%w2)&(~2) 

j-du2 Ifo~(~1,~2)1~1~,(~2)1~ * 

Let CX( ld) H,(u) is also a solution of Eq. (B.l), i.e., 

(B.1) 

U3.2) 

cu(n) = 0 is the ill-case of the problem, so it is omitted. By defining new functions as &(ui, up) = 

&(141,uz?a*(u2) /a* and .~~!(uI,uz) = .&,(zQ,u:!) / /cu(u~)12, Eq. (B.2) can be rewritten as, 

A&, 1 = IB.3) 

which is in the form of Eq. (B. 1). As we are all dealing with mutual intensity profiles, ,%a! ( UI , ~2) function, 
which satisfies Eq. (B.3) must also be conjugate symmetric. Using the definition of J&( ul ,u2), and the 

conjugate symmetric property of it (i.e., _J‘&(ul, ~42) = J$(u~,zQ), Vu, ,~a), one ends up with the conclusion 
that, [a(~)/~ = /cY(zJ~)\~, V ~1, ~42, which implies that n(u) must be a complex constant (i.e., a(u) = a). So, 

a &,,( u,) = “~~u~;~i;~~l~,I~~i~~~r”:~) . (B.4) 
’ , 0 u2 

Realizing that both Eq. (B.l) and Eq. (B.4) is satisfied, one can conclude that Ial = 1. 
As a result, exp( $3) fiO( u) is the only set of solution of the iteration with arbitrary angle /X 

Appendix C 

Let us repeat the expression of $, (., a) here once more i.e., 

cc.11 
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We see from Eq. (23) that, 

where 5 = it/P?. Using the result of the theorem given in Appendix D, after some algebra, j;! (ut ,112 ) can be 

expressed as, 

where 

--cu -02 

with 5 = Pt/i2, b = 2v/7r and u = tan-‘(tanQ12/3;). 

Now, let’s repeat the expression of & (., .) i.e., 

coo0 

Using the expression for .&( ‘, .) given in Eq. ( 17), .& (s, .) can be expressed as, 

S;,(ur,u2) = 
2ia 

slsinhl 
exp[i~(u~-u~)cot#,]sinc[(u~-u,)2~*csc#~], 

(C-5) 

where sine(u) = sin(ru)/(rru). 

Using the expressions given through Eq. (C-3) and Eq (C.6), the iteration, which is given in Eq. ( 15), can 
be expressed as; 

H,,(ut ) = 
~du~sinc[(u~-~~)2~~csc#~]I~(u~i~~~~~~/~s~~,u~~~cs~~/cs~~;~)~~(u~) 

j’du2sinc2[(uz -ut)2?~ccscCpt] IH(u~)]~ 
7 (C.7) 

where 

CC.81 

Now, let’s analyze what happens to A. When the expressions for $,( ., a) and &( ., +), which are given in 
Eq. (C.3) and Eq. (C.6), are used in Eq. (13), the expression for a, after str~ghtforw~d but lengthy algebra, 
comes out to be, 

where I = i21 sinvj/] sin&]. If we look at Eq. (C.7), we see that, 

Jduzsinc((u2-u1)2io/Zsin#t) 1b(ulru2;6) &(u2/1) 

~du2sinc2((u2 -u,)2~~/~sin~,) ]fi(uz/I)jz ’ 

(C.9) 
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In other words, ii,( u, /I) is the filter profile obtained, when sine ((u:! - u, ) 2:0/l sin ~$1) and Zh( u, , ~2; 5) is 

used through the iteration given in Eq. (15). So, when fiO(u) is chosen as RO(u) = a(,( u/l), the expression 
for &I turns out to be 

A = i; Ill Mw,u2;5) - K(4) fiZ(u2) sine ( 2ia 
(~2 - UI)------- 

1 sin 4, )I 
2 

du, duz . (C.11) 

As a result, with the given .!;! (., .) and jar (., .) profiles, 

ijl = i; 1 MuI,zQ;~) - &(ul> &(w)sinc((u;? -uI)x,,) I2 dulduz (C.12) 

and 

fL(Ul) = 
Jdmsinc((w - w)xn> Mw,w;%) f%,(w) 

Jdmsinc2((U2 - ur)xn) I&m)12 ’ 
where 

n 

sin I$? 
x,, = 2; cscC$, - 

sinv ’ 

an d 

0303 

~/,(~~l,u2;5) = JJ du’, du: ~~,sca,ec~ ( u:,u;;o B;(u;,ul) &(4,112) > 

-lxJ -cc 

with 5 = i, /i* and b = 2v/7r where v = tan-‘(tan&/i?j). 
Finally, I?,,(u) is related to I?(,( u) by 

(C.13) 

(C.14) 

(C.15) 

ho = 
i 

2~olA,12 
siil sin+, IIA+,12 exp 

cot 41 + cot 42 
1-G 

1 + i; cot2 42 

where 1 = i2I sinvl/l sin&l. 

Appendix D 

Theorem: ( _Faf,y) (u) of the function f$ (u) = p( ku) can be expressed in terms of (.7=‘f ) (u) as; 

A4 (F’f.,)(u) = - exp 
k& 

ik2cot4 

(C.16) 

(D.1) 

where v = tan- ’ ( k2 tan 4) (v is assumed to be in the range --7~ 5 v < T), b = 2v/n- and k is any real number 
different from zero. 

Proof: 
Using the conventional definition of the fractional Fourier transform, ( F”fs) (u) can be expressed as, 

V%)(u) = J A4 exp[i7r(u2cot4 - 2uu’csc4 + u’2cot4)] f(ku’) du’. (D.2) 
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If we let ~1’ = ku’, the above expression comes out to be 

CD.31 

Letting cot Y = cot 4/k2 and u = u csc +/ kcsc v, after some algebra we end up with the result given in the 

theorem. i.e., 

jD.4) 
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