ANNALS OF PURE AND APPLIED LOGIC

Reducts of random hypergraphs ${ }^{1}$

Simon Thomas ${ }^{\text {a,b }}$
${ }^{\text {a }}$ Mathematics Department, Bilkent University, Ankara, Turkey
${ }^{\mathrm{b}}$ Mathematics Department, Rutgers University, New Brunswick, NJ 08903, USA

Communicated by A. Lachlan

Abstract

For each $k \geqslant 1$, let Γ_{k} be the countable universal homogeneous k-hypergraph. In this paper, we shall classify the closed permutation groups G such that $\operatorname{Aut}\left(\Gamma_{k}\right) \leqslant G \leqslant \operatorname{Sym}\left(\Gamma_{k}\right)$. In particular, we shall show that there exist only finitely many such groups G for each $k \geqslant 1$. We shall also show that each of the associated reducts of Γ_{k} is homogeneous with respect to a finite relational language.

1. Introduction

Let \mathscr{M} be a countable ω-categorical structure. The structure \mathcal{N} for the language L is defined to be a reduct of \mathscr{M} if
(1) \mathscr{N} has the same underlying set as \mathscr{M};
(2) for each $R \in L, R^{\mathcal{N}}$ is definable without parameters in \mathscr{M}.

Thus if \mathscr{N} is a reduct of \mathscr{M}, then $\operatorname{Aut}(\mathcal{N})$ is a closed permutation group such that $\operatorname{Aut}(\mathscr{M}) \leqslant \operatorname{Aut}(\mathscr{N}) \leqslant \operatorname{Sym}(\mathscr{M})$. (Here $\operatorname{Sym}(\mathscr{M})$ denotes the group of all permutations of the underlying set of \mathscr{M}.) Conversely, if G is a closed permutation group such that $\operatorname{Aut}(\mathscr{M}) \leqslant G \leqslant \operatorname{Sym}(\mathscr{M})$, then there exists a structure \mathcal{N} for a suitably chosen language L such that \mathcal{N} is a reduct of \mathscr{M} and $G=\operatorname{Aut}(\mathscr{N})$. (For example, see [7].) Two reducts $\mathscr{N}_{1}, \mathscr{N}_{2}$ of \mathscr{M} are said to be equivalent if and only if each is a reduct of the other. This occurs if and only if $\operatorname{Aut}\left(\mathcal{N}_{1}\right)=\operatorname{Aut}\left(\mathcal{N}_{2}\right)$. Thus the problem of classifying the reducts of \mathscr{M} up to equivalence is the same as that of classifying the closed permutation groups G such that $\operatorname{Aut}(\mathscr{M}) \leqslant G \leqslant \operatorname{Sym}(\mathscr{M})$.

There are currently very few ω-categorical structures \mathscr{M} for which the reducts of \mathscr{M} have been explicitly classified. The classification problem seems most manageable

[^0]in the case when \mathscr{M} is also ω-stable. In this case, it is possible to make use of the powerful techniques developed in [5]. We shall illustrate this method with two examples. The first example is extremely simple, and can be dealt with by an easy permutation group theoretic argument. In contrast, it appears to be difficult to find a purely permutation group theoretic argument to deal with the second example. (We have included the first example only because this result will be needed later in the paper.) In both of the following examples, R and deg denote Morley rank and degree respectively.

Example 1.1. Let $\mathscr{M}=\left\langle M ; A_{0}\right\rangle$, where A_{0} is a 0 -definable subset such that both A_{0} and $A_{1}=M \backslash A_{0}$ are infinite. Then $\operatorname{Aut}(\mathscr{M})=\operatorname{Sym}\left(A_{0}\right) \times \operatorname{Sym}\left(A_{1}\right)$. Furthermore, $R(\mathscr{M})=1$ and $\operatorname{deg}(\mathscr{M})=2$.

Suppose that G is a closed permutation group such that $\operatorname{Aut}(\mathscr{M})<G \leqslant \operatorname{Sym}(\mathscr{M})$. Then G acts transitively on M. Let \mathcal{N} be a reduct of \mathscr{M} such that $G=\operatorname{Aut}(\mathcal{N})$. Then \mathscr{N} is also ω-stable and ω-categorical; and $R(\mathscr{N})=1, \operatorname{deg}(\mathscr{N}) \leqslant 2$. If $\operatorname{deg}(\mathcal{N})=1$, then \mathscr{N} is strictly minimal and it follows that $G=\operatorname{Sym}(\mathscr{M})$. So suppose that $\operatorname{deg}(\mathscr{N})=$ 2. By the Finite Equivalence Relation Theorem, there exists a nontrivial 0-definable equivalence relation E on \mathscr{N}. It is clear that the E-classes must be A_{0} and A_{1}. Thus, in this case,

$$
G=\left\{\pi \in \operatorname{Sym}(\mathscr{M}) \mid \text { There exists } i \in\{0,1\} \text { such that } \pi\left[A_{0}\right]=A_{i}\right\} .
$$

Hence there are exactly three closed permutation groups G such that $\operatorname{Aut}(\mathcal{M}) \leqslant G \leqslant$ $\operatorname{Sym}(\mathscr{M})$.

Example 1.2. Let $2 \leqslant k \in \omega$, and let $[\mathbb{N}]^{k}$ be the set of k-subsets of \mathbb{N}. Consider the graph $\Gamma=\left\langle[\mathbb{N}]^{k} ; \sim\right\rangle$, where $A \sim B$ if and only if $|A \cap B|=k-1$. Then Γ is a totally categorical structure; and the automorphism group of Γ is $\operatorname{Sym}(\mathbb{N})$ acting in the natural way.

Suppose that G is a closed permutation group such that $\operatorname{Aut}(\Gamma)<G \leqslant \operatorname{Sym}(\Gamma)$. Let \mathcal{N} be a reduct of Γ such that $G=\operatorname{Aut}(\mathcal{N})$. Then \mathcal{N} is ω-stable and ω-categorical. Since $\operatorname{Aut}(\Gamma)$ acts primitively on $\Gamma, \operatorname{Aut}(\mathcal{N})$ also acts primitively on \mathscr{N}. By the Coordinatization Theorem [5], \mathscr{N} is isomorphic to a grassmannian over a strictly rank 1 set. Thus there exists a transitive strictly rank 1 set S and a finite algebraically closed subset $X \subset S$ such that $\mathscr{N} \simeq \operatorname{Gr}(X, S)$, where $\operatorname{Gr}(X, S)$ is the set of all subsets of S which are conjugate to X under the action of $\operatorname{Aut}(S)$. Suppose that $\operatorname{deg}(S)=d>1$. Then there exists a subgroup $H<G$ of finite index such that H acts imprimitively on \mathcal{N}. Notice that $[\operatorname{Aut}(\Gamma): H \cap \operatorname{Aut}(\Gamma)]$ is also finite. Sincc $\operatorname{Aut}(\Gamma)=\operatorname{Sym}(\mathbb{N})$ has no proper subgroups of finite index, it follows that $\operatorname{Aut}(\Gamma) \leqslant H$. But this contradicts the fact that $\operatorname{Aut}(\Gamma)$ acts primitively on Γ. Thus S is strictly minimal.

For each $n \geqslant k$, consider the subset $\Gamma_{n}=[n]^{k}$ of Γ. Since Γ_{n} is algebraically closed in Γ, it is also algebraically closed in \mathcal{N}. Hence Γ_{n} is a finite homogeneous substructure
of \mathscr{N}. Since $G \neq \operatorname{Aut}(\Gamma)$, for all sufficiently large n, the setwise stabiliser of Γ_{n} in G induces a group P_{n} of permutations on Γ_{n} such that

$$
\operatorname{Sym}(n)=\operatorname{Aut}\left(\Gamma_{n}\right)<P_{n} \leqslant \operatorname{Sym}\left(\Gamma_{n}\right) .
$$

But if $n>\max \{2 k, 6\}$, this implies that $\operatorname{Alt}\left(\Gamma_{n}\right) \leqslant P_{n}$ (see [10]). It follows that G is highly transitive, and hence $G=\operatorname{Sym}(\Gamma)$.

In [9], the notion of a smoothly approximated structure was introduced, and the primitive smoothly approximated structures were classified. Cherlin and Hrushovski have extended much of the theory of ω-stable ω-categorical structures to the more general class of smoothly approximated structures (see [8]). It is natural to ask whether the reducts of the smoothly approximated structures can be classified. Unfortunately, there is no reason why a reduct of a smoothly approximated structure should also be smoothly approximated. And, indeed, Evans [6] has found an example which shows that the class of smoothly approximated structures is not closed under taking reducts. This suggests the following problem.

Question 1.3. If \mathscr{M} is a smoothly approximated structure, under what conditions are all of its reducts also smoothly approximated?

In [12], I studied the reducts of the random graph $\Gamma=\langle V ; E\rangle$; i.e. the countable universal homogeneous graph. The starting point of this work was [4], in which Cameron found the following three examples of closed permutation groups G such that $\operatorname{Aut}(\Gamma)<$ $G<\operatorname{Sym}(\Gamma)$.

Example 1.4. Let $\bar{\Gamma}=\langle V ; \bar{E}\rangle$ be the complementary graph of Γ; i.e. $\bar{E}=[V]^{2} \backslash E$. Then clearly $\Gamma \simeq \bar{\Gamma}$. Hence if $D(\Gamma)$ is the closed subgroup of $\operatorname{Sym}(\Gamma)$ consisting of all isomorphisms and anti-isomorphisms of Γ, then $[D(\Gamma): \operatorname{Aut}(\Gamma)]=2$. (Note that $D(\Gamma)$ preserves the parity of edges in every 4 -subset of Γ.)

Example 1.5. If X, Y are graphs and $A \subseteq X$, then a bijection $\pi: X \rightarrow Y$ is a switch with respect to A if
(1) π preserves the adjacency relation for pairs of vertices in A and for pairs of vertices in $X \backslash A$; and
(2) π does not preserve the adjacency relation for pairs of vertices of the form $\{a, b\}$, where $a \in A$ and $b \in X \backslash A$.
(Of course, this means that π is also a switch with respect to $X \backslash A$.) Notice that if $\pi: X \rightarrow Y$ is a switch with respect to $A \subseteq X$ and $\phi: Y \rightarrow Z$ is a switch with respect to $B \subseteq Y$, then $\phi \circ \pi: X \rightarrow Z$ is a switch with respect to $A \triangle \pi^{-1}[B] \subseteq X$. (Here \triangle denotes the symmetric difference.) In particular, the set

$$
S(\Gamma)=\{\pi \in S y m(\Gamma) \mid \pi \text { is a switch with respect to some } A \subseteq \Gamma\}
$$

is a subgroup of $\operatorname{Sym}(\Gamma)$ such that $\operatorname{Aut}(\Gamma) \leqslant S(\Gamma) \leqslant \operatorname{Sym}(\Gamma)$.

First we shall check that $\operatorname{Aut}(\Gamma)<S(\Gamma)$. Let A be any subset of Γ. Define the graph $s w_{A}(\Gamma)=\left\langle V ; E_{A}\right\rangle$ by

$$
E_{A}=\left(E \cap[A]^{2}\right) \cup\left(E \cap[\Gamma \backslash A]^{2}\right) \cup\{\{a, b\} \mid a \in A, b \in \Gamma \backslash A,\{a, b\} \notin E\}
$$

Then it is easily seen that if A is any finite nonempty subset of Γ, then $s w_{A}(\Gamma) \simeq \Gamma$. Let $\pi \in S y m(\Gamma) \backslash \operatorname{Aut}(\Gamma)$ be an isomorphism from Γ onto $s w_{A}(\Gamma)$ such that $\pi[A]=A$. Then $\pi: \Gamma \rightarrow \Gamma$ is a switch with respect to A.

Next we shall check that $S(\Gamma) \neq \operatorname{Sym}(\Gamma)$. To see this, simply note that if $\pi \in S(\Gamma)$ then π preserves the parity of edges in every 3 -subset of Γ. In fact, it can be shown that
$S(\Gamma)=\{\pi \in \operatorname{Sym}(\Gamma) \mid \pi$ preserves the parity of edges in every 3-subset of $\Gamma\}$.
Hence $S(\Gamma)$ is a proper closed subgroup of $S y m(\Gamma)$.
Notice that $S(\Gamma)$ is generated as a topological group by
(1) $\operatorname{Aut}(\Gamma)$, together with
(2) the set of all $\pi \in S(\Gamma)$ such that π is a switch with respect to $\{v\}$ for some $v \in \Gamma$.
This set of permutations does not generate $S(\Gamma)$ as a group, since there exist infinite subsets A of Γ such that $\Gamma \backslash A$ is also infinite and $s w_{A}(\Gamma) \simeq \Gamma$.

Example 1.6. Let $B(\Gamma)=\langle S(\Gamma), D(\Gamma)\rangle$. Then $B(\Gamma)$ is a proper closed subgroup of $\operatorname{Sym}(\Gamma)$. (Note that $B(\Gamma)$ preserves the parity of edges in every 5 -subset of Γ.)

In [12], I proved that Cameron's three examples are the only closed permutation groups G such that $\operatorname{Aut}(\Gamma)<G<\operatorname{Sym}(\Gamma)$. My published proof of this result used a mixture of combinatorics and group theory; and it seems to be very difficult to adapt its method to deal with the reducts of other homogeneous structures. Later I discovered a purely combinatorial proof. Using this new approach, my student James Bennett ([2]) managed to classify the reducts of the countable universal homogeneous tournament, as well as various other binary homogeneous structures. In this paper, I will use this purely combinatorial approach to classify the reducts of the countable universal homogeneous k-graphs for all $k \geqslant 1$. (When $k>2$, a k-graph is usually called a uniform hypergraph.)

Definition 1.7. If $k \geqslant 1$, then a k-graph is a structure of the form $\langle V ; E\rangle$, where $E \subseteq$ $[V]^{k}$.

Definition 1.8. For each $k \geqslant 1, \Gamma_{k}$ will denote the countable universal homogeneous k-graph. Γ_{k} is also called the random k-graph.

Thus Γ_{1} is just a countably infinite set, equipped with a 0 -definable subset E such that both E and $\Gamma_{1} \backslash E$ are infinite; and Γ_{2} is the random graph Γ. For each $k \geqslant 2$, Γ_{k} is the unique countable k-graph which satisfies the following property:

- Suppose that H is a finite subset of Γ_{k} and that $E \subseteq[H]^{k-1}$. Then there exists a vertex $v \in \Gamma_{k} \backslash H$ such that for each $S \in[H]^{k-1}, S \cup\{v\}$ is a k-edge of Γ_{k} if and only if $S \in E$.
Cameron's examples of closed groups G such that $\operatorname{Aut}\left(\Gamma_{2}\right)<G<\operatorname{Sym}\left(\Gamma_{2}\right)$ can easily be generalised to Γ_{k} for arbitrary $k \geqslant 1$.

Definition 1.9. Let X, Y be k-graphs and let $A \in[X]^{i}$ for some $0 \leqslant i \leqslant k-1$. The bijection $\pi: X \rightarrow Y$ is a switch with respect to A if for all $B \in[X]^{k}, \pi \upharpoonright B$ is an isomorphism if and only if $A \nsubseteq B$.

Example 1.10. If $\pi: X \rightarrow Y$ is a switch with respect to \emptyset, then π is an antiisomorphism.

Remark 1.11. Suppose that $A \in\left[\Gamma_{k}\right]^{i}$ for some $0 \leqslant i \leqslant k-1$. Let E be the set of k-edges of Γ_{k}. Define the k-graph $s w_{A}\left(\Gamma_{k}\right)=\left\langle\Gamma_{k} ; E_{A}\right\rangle$ by

$$
E_{A}=\{B \in E \mid A \nsubseteq B\} \cup\left\{B \in\left[\Gamma_{k}\right]^{k} \backslash E \mid A \subseteq B\right\}
$$

Then it is easily seen that $s w_{A}\left(\Gamma_{k}\right) \simeq \Gamma_{k}$. Let $\pi \in \operatorname{Sym}\left(\Gamma_{k}\right) \backslash \operatorname{Aut}\left(\Gamma_{k}\right)$ be an isomorphism from Γ_{k} onto $s w_{A}\left(\Gamma_{k}\right)$ such that $\pi\lfloor A\rfloor=A$. Then $\pi: \Gamma_{k} \rightarrow \Gamma_{k}$ is a switch with respect to A.

Definition 1.12. If $X \subseteq\{0,1, \ldots, k-1\}$, then $S_{X}\left(\Gamma_{k}\right)$ is the closed subgroup of $\operatorname{Sym}\left(\Gamma_{k}\right)$ generated as a topological group by
(1) $\operatorname{Aut}\left(\Gamma_{k}\right)$, together with
(2) the set of all $\pi \in \operatorname{Sym}\left(\Gamma_{k}\right)$ such that there exists an $i \in X$ and a subset $A \in\left[\Gamma_{k}\right]^{i}$ such that π is a switch with respect to A.

Example 1.13. Thus $S_{\emptyset}\left(\Gamma_{k}\right)=\operatorname{Aut}\left(\Gamma_{k}\right)$; and $S_{\{0\}}\left(\Gamma_{k}\right)$ is the group of all isomorphisms and anti-isomorphisms of Γ_{k}.

Definition 1.14. When $X=\{0,1, \ldots, k-1\}$, we write $B\left(\Gamma_{k}\right)=S_{X}\left(\Gamma_{k}\right)$.
The following theorem is the main result of this paper.
Theorem 1.15 (The Classification Theorem). If G is a closed permutation group such that $\operatorname{Aut}\left(\Gamma_{k}\right) \leqslant G<\operatorname{Sym}\left(\Gamma_{k}\right)$, then there exists a subset $X \subseteq\{0,1, \ldots, k-1\}$ such that $G=S_{X}\left(\Gamma_{k}\right)$.

We shall study the main properties of the groups $S_{X}\left(\Gamma_{k}\right)$ and the associated reducts in Section 2. In this section, we shall just show that $B\left(\Gamma_{k}\right) \neq \operatorname{Sym}\left(\Gamma_{k}\right)$; and obtain a useful characterisation of the elements of $B\left(\Gamma_{k}\right)$. The following easy observation will be used repeatedly. Throughout this paper, $m \equiv n$ means that $m-n$ is divisible by 2 .

Lemma 1.16. If $n \geqslant k$, then $S_{X}\left(\Gamma_{k}\right)$ preserves the parity of k-edges in every n-subset of Γ_{k} if and only if n satisfies the following condition.

$$
(1.16)_{X}^{k} \quad\binom{n-i}{k-i} \equiv 0 \quad \text { for all } i \in X
$$

Proof. Let $g \in S_{X}\left(\Gamma_{k}\right)$ be a switch with respect to the set $A \in\left[\Gamma_{k}\right]^{i}$, where $i \in X$; and let $H \in\left[\Gamma_{k}\right]^{n}$. If $A \nsubseteq H$, then $g \mid H$ is an isomorphism. If $A \subseteq H$ and $B \in[H]^{k}$, then $g\left\lceil B\right.$ is not an isomorphism if and only if B is one of the $\binom{n-i}{k-i} k$-subsets of H such that $A \subseteq B$. Hence $g \backslash H$ preserves the parity of k-edges in H if and only if $\binom{n-i}{k-i} \equiv 0$. The result follows.

Theorem 1.17. There exists an integer $n>k$ such that $B\left(\Gamma_{k}\right)$ preserves the parity of k-edges in every n-subset of Γ_{k}. In particular, $B\left(\Gamma_{k}\right) \neq \operatorname{Sym}\left(\Gamma_{k}\right)$.

Proof. By Lemma 1.16, it is enough to show that there exists an integer $n>k$ such that

$$
\binom{n-i}{k-i}=\frac{(n-i) \cdots(n-k+1)}{(k-i)!} \equiv 0
$$

for all $0 \leqslant i \leqslant k-1$. Clearly we can obtain such an integer n by letting $n-k+1$ be a sufficiently high power of 2 .

Definition 1.18. Let $k \geqslant 1$. An integer $n>k$ is $B\left(\Gamma_{k}\right)$-good if $\binom{n-i}{k-i} \equiv 0$ for all $0 \leqslant i \leqslant$ $k-1$.

The following observation will be useful in many inductive arguments.
Lemma 1.19. Let $k \geqslant 2$. If n is $B\left(\Gamma_{k}\right)$-good, then $n-1$ is $B\left(\Gamma_{k-1}\right)$-good.
Proof. For each $0 \leqslant i \leqslant k-2,\binom{n-1-i}{k-1-i}=\binom{n-(i+1)}{k-(i+1)} \equiv 0$.
There is also a converse result to Theorem 1.17 which characterises the elements of $B\left(\Gamma_{k}\right)$ as parity-preserving maps.

Theorem 1.20. Suppose that $\pi \in S y m\left(\Gamma_{k}\right)$ and that there exists a $B\left(\Gamma_{k}\right)$-good integer n such that π preserves the parity of k-edges in every n-subset of Γ_{k}. Then $\pi \in B\left(\Gamma_{k}\right)$.

Clearly Theorem 1.20 is an immediate consequence of the following finite version.
Proposition 1.21. For each $B\left(\Gamma_{k}\right)$-good integer n, there exists an integer $g(k, n)$ with the following property. Suppose that H is a finite k-subgraph of Γ_{k} such that $|H| \geqslant g(k, n)$; and that $\psi: H \rightarrow \Gamma_{k}$ is an injection such that ψ preserves the parity of k-edges in every n-subset of H. Then there exists an element $\theta \in B\left(\Gamma_{k}\right)$ such that $\theta \upharpoonright H=\psi$.

Before proving Proposition 1.21, we need to introduce some important notation.
Notation 1.22. Let $k \geqslant 2$. Suppose that $F \in\left[\Gamma_{k}\right]^{<\omega}$ and that $v \in \Gamma_{k} \backslash F$. Then the ($k-1$)graph induced on F by v is defined to be $F_{v}=\langle F ; E\rangle$, where $B \in E$ if and only if $B \cup\{v\}$ is a k-edge of Γ_{k}.

Now suppose that $\phi: F \cup\{v\} \rightarrow \Gamma_{k}$ is an injection. Regard $\phi[F]_{\phi(v)}$ as a $(k-1)$ subgraph of Γ_{k-1}. Then ϕ induces an injection

$$
\phi_{v}: F_{v} \rightarrow \Gamma_{k-1}
$$

(Of course, this map is only defined up to an embedding of $\phi[F]_{\phi(v)}$ into Γ_{k-1}. But this is good enough for our purposes.)

Proof of Proposition 1.21. We shall argue by induction on $k \geqslant 1$. First suppose that $k=1$. Remember that Γ_{1} is just a countably infinite set equipped with a 0 -definable subset E such that both E and $\Gamma_{1} \backslash E$ are infinite. Let $E_{0}=E$ and $E_{1}=\Gamma_{1} \backslash E$. Then

$$
B\left(\Gamma_{1}\right)-\left\{\pi \in \operatorname{Sym}\left(\Gamma_{1}\right) \mid \pi\left[E_{0}\right]=E_{i} \text { for some } i \in\{0,1\}\right\} .
$$

It is easily checked that we can take $g(1, n)=n+1$ for each $B\left(\Gamma_{1}\right)$-good integer n.
Now suppose that the result holds for some $k \geqslant 1$. Let n be a $B\left(\Gamma_{k+1}\right)$-good integer. Suppose that H is an extremely large finite $(k+1)$-subgraph of Γ_{k+1}, and that $\psi: H \rightarrow$ Γ_{k+1} is an injection such that ψ preserves the parity of ($k+1$)-edges in every n-subset of H. By Ramsey's Theorem, there exists a large subset R of H such that $\psi \upharpoonright R$ is either an isomorphism or an anti-isomorphism. In particular, $\psi\lceil R$ is induced by an element of $B\left(\Gamma_{k+1}\right)$. Now suppose that $R \subseteq S \subset H$ and that there exists $\theta \in B\left(\Gamma_{k+1}\right)$ such that $\theta \mid S=\psi \upharpoonright S$. Let $v \in H \backslash S$ and let $\phi=\theta^{-1} \circ \psi \upharpoonright S \cup\{v\}$. Note that if $B \in[S \cup\{v\}]^{k+1}$ and $\phi \upharpoonright B$ is not an isomorphism, then $v \in B$. Let S_{v} be the k-graph induced on S by v, and let $\phi_{v}: S_{v} \rightarrow \Gamma_{k}$ be the map induced by ϕ. Since ϕ preserves the parity of $(k+1)$-edges in every n-subset of $S \cup\{v\}$, it follows that ϕ_{v} preserves the parity of k-edges in every $(n-1)$-subset of S_{v}. By Lemma $1.19, n-1$ is $B\left(\Gamma_{k}\right)$-good. We can suppose that $\left|S_{v}\right| \geqslant g(k, n-1)$. Hence ϕ_{v} is induced by an element of $B\left(\Gamma_{k}\right)$. It follows that ϕ is induced by an element of $B\left(\Gamma_{k+1}\right)$. (For example, suppose that ϕ_{v} is induced by a switch with respect to some subset A of S_{v}. Then ϕ is induced by a switch with respect to $A \cup\{v\}$.) Hence $\psi \backslash S \cup\{v\}$ is also induced by an element of $B\left(\Gamma_{k+1}\right)$. Continuing in this manner, we see that there exists an element $\theta \in B\left(\Gamma_{k+1}\right)$ such that $\theta \upharpoonright H=\psi$.

This paper is organised as follows. In Section 2, we shall examine the groups $S_{X}\left(\Gamma_{k}\right)$ and the corresponding reducts of Γ_{k}. In particular, we shall show that each of these reducts of Γ_{k} is homogeneous with respect to a finite relational language.

In Section 5, we shall prove that if G is a closed permutation group such that $\operatorname{Aut}\left(\Gamma_{k}\right) \leqslant G \leqslant B\left(\Gamma_{k}\right)$, then there exists a subset $X \subseteq\{0,1, \ldots, k-1\}$ such that $G=$ $S_{X}\left(\Gamma_{k}\right)$. In Section 6, we shall prove that if G is a closed permutation group such that $\operatorname{Aut}\left(\Gamma_{k}\right) \leqslant G<\operatorname{Sym}\left(\Gamma_{k}\right)$, then $G \leqslant B\left(\Gamma_{k}\right)$.

As was mentioned earlier, our approach is purely combinatorial. This means that we actually prove a more general classification theorem: namely, we shall classify the nontrivial pseudo-reducts of Γ_{k}. This notion will be introduced in Section 4.

In Section 3, we shall introduce the notion of the strong finite submodel property; and we shall prove that it is possible to express $\Gamma_{k}=\bigcup_{n \in \mathbb{N}} R_{n}$ as the union of a chain of finite k-subgraphs R_{n} such that $\left|R_{n+1}\right|=\left|R_{n}\right|+1$ and each R_{n} is random. This result will be used in the combinatorial analysis of Sections 5 and 6.

2. Some properties of the reducts

In this section, we shall take a closer look at the closed subgroups $S_{X}\left(\Gamma_{k}\right)$ and the corresponding reducts $\Gamma_{k}(X)$ of Γ_{k}. (For the sake of definiteness, we take $\Gamma_{k}(X)$ to be the structure for the canonical language. See [5, Section 7].) In particular, we shall show that each of the reducts $\Gamma_{k}(X)$ is homogeneous with respect to a suitably chosen finite relational language. But first we shall consider the problem of deciding when $S_{X}\left(\Gamma_{k}\right)=S_{Y}\left(\Gamma_{k}\right)$ for subsets $X, Y \subseteq\{0,1, \ldots, k-1\}$.

Example 2.1. $S_{\{1\}}\left(\Gamma_{3}\right)=S_{\{0,1\}}\left(\Gamma_{3}\right)$.
This can be proved as follows. Clearly $S_{\{1\}}\left(\Gamma_{3}\right) \leqslant S_{\{0,1\}}\left(\Gamma_{3}\right)$. Hence it suffices to prove that if R is a finite subgraph of Γ_{3}, then there exists $\phi \in S_{\{1\}}\left(\Gamma_{3}\right)$ such that $\phi \upharpoonright R$ is an anti-isomorphism. Let $R=\left\{v_{1}, \ldots, v_{t}\right\}$. Define elements $\phi_{i} \in S_{\{1\}}\left(\Gamma_{3}\right)$ for $0 \leqslant i \leqslant t$ inductively as follows.

$$
\begin{aligned}
\phi_{0} & =i d, \\
\phi_{i+1} & =\pi_{i+1} \circ \phi_{i}, \quad \text { where } \pi_{i+1} \text { is a switch with respect to } \phi_{i}\left(v_{i+1}\right) .
\end{aligned}
$$

Since each $B \in[R]^{3}$ contains an odd number of vertices, it follows that $\phi_{t} \upharpoonright R$ is an anti-isomorphism.

Definition 2.2. If $X \subseteq\{0,1, \ldots, k-1\}$, let $c \ell_{k}(X)$ be the largest subset $Y \subseteq\{0,1, \ldots$, $k-1\}$ such that $S_{X}\left(\Gamma_{k}\right)=S_{Y}\left(\Gamma_{k}\right)$.

The following result shows that if $\ell \in c_{\ell}^{\ell}(X) \backslash X$ for some $X \subseteq\{0,1, \ldots, k-1\}$, then it is essentially for the same reason that $0 \in c \ell_{3}(\{1\})$ in Example 2.1.

Theorem 2.3. If $X \subseteq\{0,1, \ldots, k-1\}$ and $0 \leqslant \ell \leqslant k-1$, then the following are equivalent.
(1) $\ell \in c \ell_{k}(X)$.
(2) For all $n>k$, if $\binom{n-t}{k-t} \equiv 0$ for all $t \in X$, then $\binom{n-\ell}{k-\ell} \equiv 0$.
(3) There exists $t \in X$ such that $t \geqslant \ell$ and $\binom{k-\ell}{t-\ell} \equiv 1$.

We shall make use of the following lemma.

Lemma 2.4. If r, s, m are integers such that $s \geqslant 2$ and $m=2^{r}-1>s$, then
(1) $\binom{m}{s} \equiv 1$;
(2) $\binom{m-i}{s-i} \equiv\binom{s}{i}$ for all $1 \leqslant i \leqslant s-1$.

Proof. It is well-known that $\binom{2^{r}}{j} \equiv 0$ for all $0<j<2^{r}$. Hence, using the recursion formula

$$
\binom{2^{r}-1}{j+1}=\binom{2^{r}}{j+1}-\binom{2^{r}-1}{j}
$$

we see that $\binom{2^{r}-1}{j} \equiv 1$ for all $0 \leqslant j \leqslant 2^{r}-1$. In particular, $\binom{m}{s} \equiv 1$. Now suppose that $1 \leqslant i \leqslant s-1$. Since $\binom{m}{s} \equiv\binom{m}{i} \equiv 1$, the formula

$$
\binom{m-i}{s-i}=\frac{\binom{s}{i}\binom{m}{s}}{\binom{m}{i}}
$$

implies that $\binom{m-i}{s-i} \equiv\binom{s}{i}$.
Proof of Theorem 2.3. (1) \Rightarrow (2). Suppose that $n>k$ and that $\binom{n-t}{k-t} \equiv 0$ for all $t \in X$. By Lemma 1.16, $S_{X}\left(\Gamma_{k}\right)$ preserves the parity of k-edges in every n-subset of Γ_{k}. Since $\ell \in c \ell_{k}(X)$, a switch with respect to an ℓ-set must also preserve the parity of k-edges in every n-subset of Γ_{k}. Hence $\binom{n-f}{k-f} \equiv 0$.
(2) \Rightarrow (3). Suppose that (2) holds, but that $\binom{k-f}{t-f} \equiv 0$ for all $\ell \leqslant t \in X$. In particular, we must have that $\ell \notin X$. Let n be a natural number such that $n-\ell=2^{r}-1$ for some very large integer r. Then for all $t \in X$ such that $t<\ell$, we have that

$$
\binom{n-t}{k-t}=\frac{(n-t) \cdots(n-[\ell-1]) \cdots(n-k+1)}{(k-t)!}=0 .
$$

Now suppose that $t \in X$ satisfies $\ell<t \leqslant k-1$. Then $s=k-\ell \geqslant 2$ and $2^{r}-1>s$. Hence, by Lemma 2.4, $\binom{n-1}{k-f} \equiv 1$ and

$$
\binom{n-t}{k-t}=\binom{(n-\ell)-(t-\ell)}{(k-\ell)-(t-\ell)} \equiv\binom{k-\ell}{t-\ell} \equiv 0 .
$$

Thus $\binom{n-1}{k-t} \equiv 0$ for all $t \in X$ and $\binom{n-f}{k-f} \equiv 1$. But this contradicts the assumption that (2) holds.
(3) \Rightarrow (1). This is just a slight generalisation of the argument of Example 2.1. Let R be a finite k-subgraph of Γ_{k} and let $A \in[R]^{\prime}$. We must find an element $\phi \in S_{X}\left(\Gamma_{k}\right)$ such that $\phi\left\lceil R\right.$ is a switch with respect to A. Let $t \in X$ be such that $t \geqslant \ell$ and $\binom{k-1}{t-1} \equiv 1$. Let $\left\{B_{i} \mid 1 \leqslant i \leqslant r\right\}$ be an enumeration of the subsets $B \in[R]^{t}$ such that $A \subset B$. Define elements $\phi_{i} \in S_{X}\left(\Gamma_{k}\right)$ for $0 \leqslant i \leqslant r$ as follows:

$$
\phi_{0}=i d,
$$

$$
\phi_{i+1}=\pi_{i+1} \circ \phi_{i}, \quad \text { where } \pi_{i+1} \text { is a switch with respect to } \phi_{i}\left[B_{i}\right] .
$$

For each $D \in[R]^{k}$ with $A \subset D$, there exist $\binom{k-\ell}{t-f}$ sets $B \in[R]^{t}$ such that $A \subset B \subset D$. It follows that $\phi_{r} \backslash R$ is a switch with respect to A.

Next we shall show that each of the groups $S_{X}\left(\Gamma_{k}\right)$ can be characterised as the subgroup of $\operatorname{Sym}\left(\Gamma_{k}\right)$ which preserves the parity of k-edges in a suitably chosen collection of finite subsets of Γ_{k}. Then we shall use this result to find a finite relational language L_{X}^{k} such that the reduct $\Gamma_{k}(X)$ is a homogeneous L_{X}^{k}-structure.

Theorem 2.5. For each $X \subseteq\{0,1, \ldots, k-1\}$, there exists a finite subset $\Phi_{X}^{k} \subset \mathbb{N} \backslash k$ such that

$$
S_{X}\left(\Gamma_{k}\right)=\left\{\begin{array}{l|l}
g \in \operatorname{Sym}\left(\Gamma_{k}\right) & \begin{array}{l}
\text { For all } n \in \Phi_{X}^{k}, g \text { preserves the parity } \\
\text { of } k \text {-edges in every } n \text {-subset of } \Gamma_{k}
\end{array}
\end{array}\right\}
$$

Theorem 2.5 is an immediate consequence of the following finite version.
Theorem 2.6. For each $X \subseteq\{0,1, \ldots, k-1\}$, there exists a finite subset $\Phi_{X}^{k} \subset \mathbb{N} \backslash k$ and an integer N such that the following conditions are satisfied.
(1) For all $n \in \Phi_{X}^{k}, n$ satisfies condition $(1.16)_{X}^{k}$; i.e. $\binom{n-i}{k-i} \equiv 0$ for all $i \in X$.
(2) Suppose that H is a finite k-subgraph of Γ_{k} such that $|H| \geqslant N$; and that $\psi: H \rightarrow \Gamma_{k}$ is an injection such that ψ preserves the parity of k-edges in every n-subset of H for all $n \in \Phi_{X}^{k}$. Then there exists an element $g \in S_{X}\left(\Gamma_{k}\right)$ such that $g \upharpoonright H=\psi$.

Proof. We argue by induction on $k \geqslant 1$. The result is easily seen to be true when $k=1$. (If $X=\emptyset$, then we can take $N=1$ and $\Phi_{X}^{1}=\{1\}$. If $X=\{0\}$, then we can take $N=1$ and $\Phi_{X}^{\prime}=\{2\}$.) So suppose that the result holds for $k-1$, where $k-1 \geqslant 1$.

Case 1: Suppose that $\binom{k}{i} \equiv 0$ for all $i \in X$. By Lemma 2.4, there exists an integer $a>k$ such that $\binom{a}{k} \equiv 1$ and $\binom{a-i}{k-i} \equiv 0$ for all $i \in X$. In particular, a satisfies $(1.16)_{X}^{k}$. Let $Y=\{i-1 \mid i \in X\}$. (Notice that $0 \notin X$, since $\binom{k}{0}-1$.) Let $D=\left\{m+1 \mid m \in \Phi_{Y}^{k-1}\right\}$. We claim that if N is a sufficiently large integer, then $\Phi_{X}^{k}=D \cup\{a\}$ and N satisfy our requirements.

First we check that (1) holds. So suppose that $n=m+1 \in D$. Then m satisfies $(1.16)_{Y}^{k-1}$. Hence if $i \in X$, then

$$
\binom{n-i}{k-i}=\binom{m-(i-1)}{(k-1)-(i-1)} \equiv 0 .
$$

Thus n satisfies $(1.16)_{X}^{k}$.
Now we check that (2) holds. So suppose that H is a finite k-subgraph of Γ_{k} such that $|H| \geqslant N$; and that $\psi: H \rightarrow \Gamma_{k}$ is an injection such that ψ preserves the parity of k-edges in every n-subset of H for all $n \in \Phi_{X}^{k}$. By Ramsey's Theorem, there exists a large k-subgraph $S \subset H$ such that $\psi \mid S$ is either an isomorphism or an anti-isomorphism. Since $|S|>a$ and $\binom{a}{k} \equiv 1$, it follows that $\psi \mid S$ must be an isomorphism. Now suppose that T is a k-subgraph of H such that $S \subseteq T \subset H$ and such that $\psi \upharpoonright T$ is induced by
an element $h \in S_{X}\left(\Gamma_{k}\right)$. Let $v \in H \backslash T$. Let $\phi=h^{-1} \circ \psi$, so that $\phi \upharpoonright T=i d$. Let T_{v} be the ($k-1$)-graph induced on T by v, and let $\phi_{v}: T_{v} \rightarrow \Gamma_{k-1}$ be the map induced by $\phi \upharpoonright T \cup\{v\}$. Then ϕ_{v} preserves the parity of $(k-1)$-edges in every m-subset of T_{v} for all $m \in \Phi_{r}^{k-1}$. Since $\left|T_{v}\right|$ is large, there exists an element $\theta \in S_{Y}\left(\Gamma_{k-1}\right)$ such that $\theta\left\lceil T_{v}=\phi_{v}\right.$. It follows that $\phi \upharpoonright T \cup\{v\}$ is induced by an element of $S_{X}\left(\Gamma_{k}\right)$. Hence $\psi \upharpoonright T \cup\{v\}$ is also induced by an element of $S_{X}\left(\Gamma_{k}\right)$. Continuing in this fashion, we see that there exists $g \in S_{X}\left(\Gamma_{k}\right)$ such that $g \upharpoonright H=\psi$.

Case 2: Suppose that there exists $i \in X$ such that $\binom{k}{i} \equiv 1$. By the implication (3) \Rightarrow (1) of Theorem 2.3, $0 \in c \ell_{k}(X)$ and so $S_{X}\left(\Gamma_{k}\right)$ contains the set of anti-isomorphisms of Γ_{k}. Let $Y=\{i-1 \mid 0<i \in X\}$. We claim that if N is a sufficiently large integer, then $\Phi_{X}^{k}=\left\{m+1 \mid m \in \Phi_{Y}^{k-1}\right\}$ and N satisfy our requirements. Clearly (1) holds. The main point is to check that (2) holds. So suppose that H is a finite k-subgraph of Γ_{k} such that $|H| \geqslant N$; and that $\psi: H \rightarrow \Gamma_{k}$ is an injection such that ψ preserves the parity of k-edges in every n-subset of H for all $n \in \Phi_{X}^{k}$. By Ramsey's Theorem, there exists a large k-subgraph $S \subset H$ such that $\psi \upharpoonright S$ is either an isomorphism or an antiisomorphism. Since $S_{X}\left(\Gamma_{k}\right)$ contains both the isomorphisms and the anti-isomorphisms of $I_{k}, \psi \upharpoonright S$ is induced by an element $h \in S_{X}\left(\Gamma_{k}\right)$. Arguing as in Case 1, we see that there exists $g \in S_{X}\left(\Gamma_{k}\right)$ such that $g \mid H=\psi$.

Theorem 2.7. For each $X \subseteq\{0,1, \ldots, k-1\}$, the reduct $\Gamma_{k}(X)$ is homogeneous with respect to a finite relational language.

Proof. Let $\Phi_{X}^{k} \subset \mathbb{N}$ and $N \in \mathbb{N}$ be as in Theorem 2.6. Let $t=\max \left(\Phi_{X}^{k} \cup\{N\}\right)$. For each orbit Δ of $S_{X}\left(\Gamma_{k}\right)$ on $\left[\Gamma_{k}(X)\right]^{\dagger}$ for $1 \leqslant \ell \leqslant t$, let R_{Δ} be a corresponding ℓ-ary relation symbol; and let L_{X}^{k} be the resulting finite relational language. Then Theorem 2.6 implies that $\Gamma_{k}(X)$ is a homogeneous L_{X}^{k}-structure.

3. The strong finite submodel property

In this section, we shall introduce the notion of the strong finite submodel property (sfsp), and prove that Γ_{k} has the sfsp. This result will be used in Sections 5 and 6.

Definition 3.1. A countable structure \mathscr{M} has the strong finite submodel property (sfsp) if it is possible to express $\mathscr{M}=\bigcup_{n \in \mathbb{N}} M_{n}$ as the union of an increasing chain of substructures M_{n} such that
(1) $\left|M_{n}\right|=n$ for each $n \in \mathbb{N}$; and
(2) for each sentence σ such that $\mathscr{M} \models \sigma$, there exists an integer N_{σ} such that $M_{n} \models \sigma$ for all $n \geqslant N_{\sigma}$.

Theorem 3.2. For each $k \geqslant 1, \Gamma_{k}$ has the sfsp.
My original proof of this result was very long and involved. But then Jeff Kahn pointed out that it is an easy consequence of the Borel-Cantelli Lemma.

Definition 3.3. If $\left\langle A_{n} \mid n \in \mathbb{N}\right\rangle$ is a sequence of events in a probability space, then

$$
\left\{A_{n} \text { i.o. }\right\}=\bigcap_{n \in \mathbb{N}}\left[\bigcup_{n \leqslant k \in \mathbb{N}} A_{k}\right]
$$

is the event that consists of the realisation of infinitely many of the A_{n}.
Theorem 3.4 (The Borel-Cantelli Lemma). Let $\left\langle A_{n} \mid n \in \mathbb{N}\right\rangle$ be a sequence of events in a probability space. If $\sum_{n=0}^{\infty} P\left(A_{n}\right)<\infty$, then $P\left(\left\{A_{n}\right.\right.$ i.o. $\left.\}\right)=0$.

Proof. For example, see [3].
Proof of Theorem 3.2. It is easily seen that Γ_{1} has the sfsp. So from now on, we shall suppose that $k \geqslant 2$. Remember that the theory $\operatorname{Th}\left(\Gamma_{k}\right)$ of the random k-graph is axiomatised by the set $\left\{\phi_{\ell}^{k} \mid \ell \in \mathbb{N}\right\}$ of extension axioms, where ϕ_{ℓ}^{k} is the sentence which says the following:

- For each ℓ-set C and each $E \subseteq[C]^{k-1}$, there exists a vertex $v \notin C$ such that for each $S \in[C]^{k-1}, S \cup\{v\}$ is a k-cdge if and only if $S \in E$.
Let Ω be the probability space of all k-graphs of the form $\langle\omega ; E\rangle$, where each set $A \in[\omega]^{k}$ is a k-edge independently with probability $\frac{1}{2}$. For each $\ell<n \in \mathbb{N}$, let $B_{\ell, n}$ be the event that

$$
\left\langle n ; E \cap[n]^{k}\right\rangle \not \equiv \phi_{f}^{k}
$$

Then clearly

$$
P\left(B_{f, n}\right) \leqslant\binom{ n}{\ell} 2^{\left(k_{-1}^{\prime}\right)}\left(1-\left(\frac{1}{2}\right)^{\left({ }_{k}^{\prime}-1\right)}\right)^{n-\ell} .
$$

Let $f: \omega \rightarrow \omega$ be a slow-growing nondecreasing function and let $A_{n}=B_{f(n), n}$. By choosing f appropriately, we can ensure that $\sum_{n=0}^{\infty} P\left(A_{n}\right)<\infty$, and hence that $P\left(\left\{A_{n}\right.\right.$ i.o. $\left.\}\right)=0$. Thus there exists a k-graph $\langle\omega ; E\rangle$ and an integer N such that $\left\langle n ; E \cap[n]^{k}\right\rangle \models \phi_{f(n)}^{k}$ for all $n \geqslant N$. Clearly $\langle\omega ; E\rangle \simeq \Gamma_{k}$, and so Γ_{k} has the sfsp. This completes the proof of Theorem 3.2.

4. Pseudo-reducts

In Sections 5 and 6, we shall classify the reducts of Γ_{k} for all $k \geqslant 1$. Our approach will be purely combinatorial, and no essential use will be made of the fact that we are dealing with a group of permutations of Γ_{k}. The combinatorial content of this paper is best stated in terms of the more general notion of a pseudu-reduct.

Definition 4.1. Let \mathscr{M} be a countable structure. Then a pseudo-reduct of \mathscr{M} is a set \mathscr{F} of functions which satisfies the following conditions.
(1) If $\pi \in \mathscr{F}$, then $\operatorname{dom} \pi \in[\mathscr{M}]^{<\omega}$ and $\pi: \operatorname{dom} \pi \rightarrow \mathscr{M}$ is an injection.
(2) If $g \in \operatorname{Aut}(\mathscr{M})$ and $X \in[\mathscr{M}]^{<\omega}$, then $g \mid X \in \mathscr{F}$.
(3) If $\pi \in \mathscr{F}$ and $X \subseteq \operatorname{dom} \pi$, then $\pi \mid X \in \mathscr{F}$.
(4) If $\pi \in \mathscr{F}$ and $\operatorname{dom} \pi \subseteq Y \in[\mathscr{M}]^{<\omega}$, then there exists $\phi \in \mathscr{F}$ such that $\operatorname{dom} \phi=$ Y and $\phi \upharpoonright \operatorname{dom} \pi=\pi$.
(5) If $\pi, \phi \in \mathscr{F}$ and $\operatorname{ran} \pi=\operatorname{dom} \phi$, then $\phi \circ \pi \in \mathscr{F}$.

Example 4.2. Let G be any group such that $\operatorname{Aut}(\mathscr{M}) \leqslant G \leqslant \operatorname{Sym}(\mathscr{M})$. Then

$$
\mathscr{F}(G)=\left\{g \upharpoonright X \mid g \in G, X \in[\mathscr{M}]^{<\omega}\right\}
$$

is a pseudo-reduct of \mathscr{M}. If \bar{G} is the closure of G in $\operatorname{Sym}(\mathscr{M})$, then $\mathscr{F}(G)=\mathscr{F}(\bar{G})$.
Suppose that the pseudo-reduct \mathscr{F} of \mathscr{M} also satisfies the following condition:

- If $\pi \in \mathscr{F}$, then $\pi^{-1} \in \mathscr{F}$.

Then an easy back-and-forth argument shows that there exists a group G such that $\operatorname{Aut}(\mathscr{M}) \leqslant G \leqslant \operatorname{Sym}(\mathscr{M})$ and $\mathscr{F}=\mathscr{F}(G)$. By choosing the maximal such group, we can suppose that G is a closed permutation group. In an earlier version of this paper, I asked whether every pseudo-reduct of a countable ω-categorical structure \mathscr{M} arises from a closed permutation group in this fashion. However, the referee pointed out that this is not the case. To see this, we shall make use of the following characterisation of the pseudo-reducts of \mathscr{M}.

Definition 4.3. Let \mathscr{M} be a countable structure, and let

$$
\operatorname{Inj}(\mathscr{M})=\{\phi \mid \phi: \mathscr{M} \rightarrow \mathscr{M} \text { is an injection }\} .
$$

Let $\mathscr{I} \subseteq \operatorname{Inj}(\mathscr{M})$.
(1) $C(\mathscr{I})$ is the set of all maps $\pi: \mathscr{M} \rightarrow \mathscr{M}$ such that $\pi=g_{1} \circ \cdots \circ g_{n}$ for some $g_{1}, \ldots, g_{n} \in \operatorname{Aut}(\mathscr{M}) \cup \mathscr{I}$.
(2) $\mathscr{F}(\mathscr{I})=\left\{\pi|X| \pi \in C(\mathscr{I}), X \in[\mathscr{M}]^{<\omega}\right\}$.

Proposition 4.4. Let \mathscr{M} be a countable structure.
(1) If $\mathscr{I} \subseteq \operatorname{Inj}(\mathscr{M})$, then $\mathscr{F}(\mathscr{I})$ is a pseudo-reduct of \mathscr{M}. (We shall say that $\mathscr{F}(\mathscr{I})$ is the pseudo-reduct of \mathscr{M} generated by \mathscr{I}.)
(2) Conversely, if \mathscr{F} is any pseudo-reduct of \mathscr{M}, then there exists a subset $\mathscr{I} \subseteq \operatorname{Inj}(\mathscr{M})$ such that $\mathscr{F}=\mathscr{F}(\mathscr{I})$.

Proof. Left to the reader.
Now we can give the referee's examples of some pseudo-reducts of Γ_{k} which do not arise from closed permutation groups.

Example 4.5. Let $k \geqslant 1$ and let C be an infinite complete k-subgraph of Γ_{k}. Let $\phi: \Gamma_{k} \rightarrow C$ be an injection, and let $\mathscr{F}_{0}=\mathscr{F}(\{\phi\})$ be the pseudo-reduct generated by $\{\phi\}$. If E is a k-edge of Γ_{k}, then $\pi[E]$ is also a k-edge for all $\pi \in \mathscr{F}_{0}$. Hence
$\mathscr{F}_{0} \neq \mathscr{F}\left(\operatorname{Sym}\left(\Gamma_{k}\right)\right)$. Suppose that G is a closed group such that $\operatorname{Aut}\left(\Gamma_{k}\right) \leqslant G \leqslant \operatorname{Sym}\left(\Gamma_{k}\right)$ and $\mathscr{F}_{0}=\mathscr{F}(G)$. Let X, Y be finite subsets of Γ_{k} such that $|X|=|Y|$. Since $\phi[X]$, $\phi[Y] \subset C$, there exist $g, h \in G$ such that $g[X], h[Y] \subset C$. It follows easily that G is highly transitive. But this means that $G=\operatorname{Sym}\left(\Gamma_{k}\right)$, which is a contradiction. (We can obtain similar examples by taking $\phi: \Gamma_{k} \rightarrow N$ to be an injection into an infinite null k-subgraph of Γ_{k}.)

Definition 4.6. Let $k \geqslant 1$ and let \mathscr{F} be a pseudo-reduct of Γ_{k}. Then \mathscr{F} is said to be a trivial pseudo-reduct if either of the following two conditions hold.
(a) For each $X \in\left[\Gamma_{k}\right]^{<\omega}$ such that $|X| \geqslant k$, there exists $\pi \in \mathscr{F}$ such that $\pi[X]$ is a complete k-graph.
(b) For each $X \in\left[\Gamma_{k}\right]^{<\omega}$ such that $|X| \geqslant k$, there exists $\pi \in \mathscr{F}$ such that $\pi[X]$ is a null k-graph.

Example 4.7. Let $k \geqslant 1$. Let Γ_{k}^{*} be the k-graph obtained from Γ_{k} by changing exactly one k-nonedge into a k-edge. Then clearly $\Gamma_{k}^{*} \simeq \Gamma_{k}$. Hence there exists $\psi \in \operatorname{Sym}\left(\Gamma_{k}\right)$ such that
(1) there exists a k-nonedge A such that $\psi[A]$ is a k-edge; and
(2) $\psi \upharpoonright E$ is an isomorphism for all $E \in\left[\Gamma_{k}\right]^{k} \backslash\{A\}$.

Let $\mathscr{F}_{1}=\mathscr{F}(\{\psi\})$ be the pseudo-reduct generated by $\{\psi\}$. Suppose that X is any finite k-subgraph of Γ_{k} such that $|X| \geqslant k$, and that $B \in[X]^{k}$ is a k-nonedge. Then there exists $\theta \in \operatorname{Aut}\left(\Gamma_{k}\right)$ such that $\theta[B]=A$. Thus $\sigma=\psi \circ \theta \mid X \in \mathscr{F}_{1}$, and $\sigma[X]$ has one less k-nonedge than X. Continuing in this manner, we eventually obtain an element $\pi \in \mathscr{F}_{1}$ such that $\pi[X]$ is a complete k-graph. Arguing as in Example 4.5, we see that $\mathscr{\mathscr { F }} \neq \mathscr{\mathscr { F }}\left(\operatorname{Sym}\left(\Gamma_{k}\right)\right)$. In fact, we have the following proper inclusions

$$
\mathscr{F}_{0} \sqsubseteq \mathscr{F}_{1} \sqsubseteq \mathscr{F}\left(\operatorname{Sym}\left(\Gamma_{k}\right)\right)
$$

of trivial pseudo-reducts.
In Section 6, we shall prove that if \mathscr{F} is a nontrivial pseudo-reduct of Γ_{k}, then there exists a subset $X \subseteq\{0,1, \ldots, k-1\}$ such that $\mathscr{F}=\mathscr{F}\left(S_{X}\left(\Gamma_{k}\right)\right)$. Clearly this implies Theorem 1.15. We end this section by dealing with the easy case when $k=1$. We shall make use of the following observation, which will also be used in Section 6.

Lemma 4.8. Let $k \geqslant 1$ and let \mathscr{F} be a pseudo-reduct of Γ_{k}. Suppose that for each $X \in\left[\Gamma_{k}\right]^{<\omega}$ such that $|X| \geqslant k$, there exists $\pi \in \mathscr{F}$ such that $\pi[X]$ is either a complete or a null k-graph. Then \mathscr{F} is a trivial pseudo-reduct.

Proof. Express $\Gamma_{k}=\bigcup_{n \in \mathbb{N}} X_{n}$ as the union of an increasing chain of finite k-subgraphs. We can suppose that there is an infinite subset I of \mathbb{N} such that for each $n \in I$, there exists $\pi_{n} \in \mathscr{F}$ such that $\pi_{n}\left[X_{n}\right]$ is a complete k-graph. This implies that if X is any finite k-subgraph of Γ_{k} such that $|X| \geqslant k$, then there exists $\pi \in \mathscr{F}$ such that $\pi[X]$ is a complete k-graph.

Proposition 4.9. If \mathscr{F} is a nontrivial pseudo-reduct of Γ_{1}, then there exists a subset $X \subseteq\{0\}$ such that $\mathscr{F}=\mathscr{F}\left(S_{X}\left(\Gamma_{1}\right)\right)$.

Proof. Let \mathscr{F} be a nontrivial pseudo-reduct of Γ_{1}. Remember that Γ_{1} is just a countably infinite set, equipped with a 0 -definable subset E_{0} such that both E_{0} and $E_{1}=\Gamma_{1} \backslash E_{0}$ are infinite. Since \mathscr{F} is nontrivial, there exists $X_{0} \in\left[\Gamma_{1}\right]^{<\omega}$ such that $\pi\left[X_{0}\right] \nsubseteq E_{0}$ and $\pi\left[X_{0}\right] \nsubseteq E_{1}$ for all $\pi \in \mathscr{F}$. First suppose that there exists a closed permutation group G such that $\operatorname{Aut}\left(\Gamma_{1}\right) \leqslant G<\operatorname{Sym}\left(\Gamma_{1}\right)$ and $\mathscr{F}=\mathscr{F}(G)$. By Example 1.1, there exists a subset $X \subseteq\{0\}$ such that $G=S_{X}\left(\Gamma_{1}\right)$.

So we can suppose that there does not exist a group G such that $\mathscr{F}=\mathscr{F}(G)$. Hence there exists an element $\psi \in \mathscr{F}$ such that $\psi^{-1} \notin \mathscr{F}$. Using Definition 4.1(4), we can inductively construct an injective function $g: \Gamma_{1} \rightarrow \Gamma_{1}$ such that $\psi \subset g$ and $\left\{g|X| X \in\left[\Gamma_{1}\right]^{<\omega}\right\} \subseteq \mathscr{F}$. Since \mathscr{F} is nontrivial, there must exist
(1) an infinite subset $A \subseteq E_{0}$ and an $i \in\{0,1\}$ such that $g[A] \subseteq E_{i}$, and
(2) an infinite subset $B \subseteq E_{1}$ such that $g[B] \subseteq E_{1-i}$.

Since $\psi^{-1} \notin \mathscr{F}$, we must also have that
(3) either there exists $u \in E_{0}$ such that $g(u) \in E_{1-i}$, or there exists $u \in E_{1}$ such that $g(u) \in E_{i}$.
(Suppose not. Then $g: \Gamma_{1} \rightarrow g\left[\Gamma_{1}\right]$ is either an isomorphism or an anti-isomorphism. But this implies that $\psi^{-1} \in \mathscr{F}$.) Notice that $A \cup B \cup\{u\} \simeq \Gamma_{1}$. Hence, without loss of generality, we can suppose that $\Gamma_{1}=A \cup B \cup\{u\}$, and that $u \in E_{0}, g(u) \in E_{1-i}$. Let

$$
P=\left\{h \in S y m\left(\Gamma_{1}\right) \mid h \uparrow X \in \mathscr{F} \text { for all } X \in\left[\Gamma_{1}\right]^{<\omega}\right\}
$$

Then $g \in P$ and $k^{1} \circ g \circ k \in P$ for all $k \in \operatorname{Aut}\left(\Gamma_{1}\right)$. Also if $h_{1}, h_{2} \in P$ then $h_{1} \circ h_{2} \in P$. But this easily implies that for each $X \in\left[\Gamma_{1}\right]^{<\omega}$, there exists $h \in P$ such that $h[X] \subset E_{1-i}$. This contradicts the fact that \mathscr{F} is a nontrivial pseudo-reduct.

5. Analysing parity-preserving maps

In this section, we shall prove the following result.
Theorem 5.1. Suppose that \mathscr{F} is a pseudo-reduct of Γ_{k}, and that X is the largest subset of $\{0,1, \ldots, k-1\}$ such that $\mathscr{F}\left(S_{X}\left(\Gamma_{k}\right)\right) \subseteq \mathscr{F}$. Then there exists an integer ℓ such that whenever $f \in \mathscr{F} \cap \mathscr{F}\left(B\left(\Gamma_{k}\right)\right)$ and $\operatorname{dom} f \models \phi_{\ell}^{k}$, then $f \in \mathscr{F}\left(S_{X}\left(\Gamma_{k}\right)\right)$.

In the statement of the above theorem, ϕ_{ℓ}^{k} is the $\ell^{\text {th }}$ extension axiom in the usual axiomatisation of $T h\left(\Gamma_{k}\right)$ (see Section 3). From now on, fix a pseudo-reduct $\overline{\mathscr{F}}$ of Γ_{k}, and let $X \subseteq\{0,1, \ldots, k-1\}$ be the largest subset such that $\mathscr{F}\left(S_{X}\left(\Gamma_{k}\right)\right) \subseteq \mathscr{F}$. Also fix a $B\left(\Gamma_{k}\right)$-good integer n.

Lemma 5.2. There exists an integer $N>n$ with the following property. Suppose that $f \in \mathscr{F}$ satisfies
(1) $|\operatorname{dom} f| \geqslant N$; and
(2) for all $A \in[\operatorname{dom} f]^{N}, f\left\lceil A \in \mathscr{F}\left(S_{X}\left(\Gamma_{k}\right)\right)\right.$.

Then $f \in \mathscr{F}\left(S_{X}\left(\Gamma_{k}\right)\right)$.
Proof. This is an easy consequence of Theorem 2.6.
Now suppose that $f \in \mathscr{F} \cap \mathscr{F}\left(B\left(\Gamma_{k}\right)\right)$ and that dom $f \models \phi_{\ell}^{k}$ for some extremely large integer ℓ. In particular, $|\operatorname{dom} f|>N$, where N is the integer given by Lemma 5.2. Let $T \in[\operatorname{dom} f]^{N}$ be arbitrary. Then it is enough to show that $f \upharpoonright T \in \mathscr{F}\left(S_{X}\left(\Gamma_{k}\right)\right)$. To accomplish this, we shall adjust f repeatedly via multiplication by elements of $\mathscr{F}\left(S_{X}\left(\Gamma_{k}\right)\right)$ until we eventually obtain an element $h \in \mathscr{F} \cap \mathscr{F}\left(B\left(\Gamma_{k}\right)\right)$ such that $h\lceil T$ is an isomorphism. Our strategy is based upon the following lemma.

Lemma 5.3. Suppose that $h \in \mathscr{F}\left(B\left(\Gamma_{k}\right)\right)$ and that the following conditions hold.
(1) $U, T \subseteq \operatorname{dom} h$ are disjoint subsets, and $|U| \geqslant n-k$.
(2) If $B \in[T \cup U]^{k} \backslash[T]^{k}$, then $h \mid B$ is an isomorphism.

Then $h \upharpoonright T$ is an isomorphism.
Proof. Suppose that there exists $C \in[T]^{k}$ such that $h \uparrow C$ is not an isomorphism. Let $D \in$ $[U]^{n-k}$ and consider $h \uparrow C \cup D$. Since $h \uparrow B$ is an isomorphism for all $B \in[C \cup D]^{k} \backslash\{C\}$, h fails to preserve the parity of k-edges in the n-set $C \cup D$. But this contradicts the fact that $B\left(\Gamma_{k}\right)$ preserves the parity of k-edges in every n-subset of Γ_{k}.

We shall make use of the following characterisation of X.
Lemma 5.4. There exists a finite k-subgraph H of Γ_{k} with the following property. For each $0 \leqslant i \leqslant k-1, i \in X$ if and only if there exists a set $A \in[H]^{i}$ and an element $f \in \mathscr{F}$ such that
(1) $\operatorname{dom} f=H$, and
(2) $f: H \rightarrow \Gamma_{k}$ is a switch with respect to A.

Proof. Suppose that $0 \leqslant i \leqslant k-1$ and that $i \notin X$. Then there exists a finite k-subgraph H_{i} of Γ_{k} and an i-subset $A_{i} \in\left[H_{i}\right]^{i}$ such that

- if $f \in \mathscr{F}$ with $\operatorname{dom} f=H_{i}$, then $f: H_{i} \rightarrow \Gamma_{k}$ is not a switch with respect to A_{i}.

Let σ_{i} be the sentence

$$
\left(\forall a_{1} \ldots a_{i}\right)\left(\exists b_{1} \ldots b_{\left|H_{i}\right|}\right) \Psi\left(a_{1}, \ldots, a_{i}, b_{1}, \ldots, b_{\left|H_{i}\right|}\right)
$$

which says the following:
$(\dagger)_{i}$ For every i-subset $A=\left\{a_{j} \mid 1 \leqslant j \leqslant i\right\}$, there exists an $\left|H_{i}\right|$-subset $B=\left\{b_{j} \mid\right.$ $\left.1 \preccurlyeq j \leqslant\left|H_{l}\right|\right]$ such that
(a) $A \subset B$, and
(b) there exists an isomorphism $\pi: B \rightarrow H_{i}$ such that $\pi[A]=A_{i}$.

Let σ be the sentence $\bigwedge_{i \notin X} \sigma_{i}$. Then $\Gamma_{k} \models \sigma$. Hence, by Theorem 3.2, there exists a finite k-subgraph H of Γ_{k} such that $H \models \sigma$. Clearly H satisfies our requirements.

We shall also make use of the following rather technical notion.
Definition 5.5. Let $m>k$. Suppose that $f \in \mathscr{F}\left(B\left(\Gamma_{k}\right)\right)$ and that $Z=\operatorname{dom} f$ satisfies $|Z| \geqslant m$. Then an m-analysis of f consists of a finite sequence of elements $g_{0}, g_{1}, \ldots, g_{t}$ of $\mathscr{F}\left(B\left(\Gamma_{k}\right)\right)$ which satisfies the following conditions:
(1) $g_{0}=f$.
(2) For each $0 \leqslant j \leqslant t-1$, there exists $Y_{j} \in[Z]^{m}$ and an element $0_{j} \in B\left(\Gamma_{k}\right)$ such that
(a) θ_{j} is a switch with respect to some i_{j}-subset A_{j} of Y_{j};
(b) $\theta_{j} \upharpoonright Y_{j}=g_{j} \circ \cdots \circ g_{0} \upharpoonright Y_{j}$;
(c) $g_{j+1}=\theta_{j}^{-1} \upharpoonright \operatorname{ran} g_{j} \circ \cdots \circ g_{0}$.
(3) $g_{t} \circ \cdots \circ g_{0}: Z \rightarrow \Gamma_{k}$ is an isomorphic embedding.

As the above notion is quite difficult to understand, we shall now give an idea of the manner in which it will be used. Let H be the finite k-graph given by Lemma 5.4, and let $m=|H|$. Let $f \in \mathscr{F} \cap \mathscr{F}\left(B\left(\Gamma_{k}\right)\right)$ and suppose that $Z=\operatorname{dom} f$ satisfies $|Z| \geqslant m$. We want to show that $f \in \mathscr{F}\left(S_{X}\left(\Gamma_{k}\right)\right)$. Suppose that we can find an m-analysis $g_{0}, g_{1}, \ldots, g_{t}$ of f with the further property that $Y_{j} \simeq H$ for each $0 \leqslant j \leqslant t-1$. We shall show that $i_{j} \in X$ and $g_{j+1} \in \mathscr{F}\left(S_{X}\left(\Gamma_{k}\right)\right)$ for all $0 \leqslant j \leqslant t-1$. First consider the case when $j=0$. Then θ_{0} is a switch with respect to some i_{0}-subset A_{0} of Y_{0}, and $g_{0} \backslash Y_{0}=\theta_{0} \upharpoonright Y_{0}$. Since $Y_{0} \simeq H$, Lemma 5.4 yields that $i_{0} \in X$. Hence $g_{1}=\theta_{0}^{-1} \mid \operatorname{ran} g_{0} \in \mathscr{F}\left(S_{X}\left(\Gamma_{k}\right)\right)$. Now consider the case when $j=1$. Then θ_{1} is a switch with respect to some i_{1}-subset A_{1} of Y_{1}, and $g_{1} \circ g_{0} \upharpoonright Y_{1}=\theta_{1} \upharpoonright Y_{1}$. Since $g_{1} \circ g_{0} \in \mathscr{F}$ and $Y_{1} \simeq H$, Lemma 5.4 yields that $i_{1} \in X$. Hence $g_{2}=\theta_{1}^{-1}\left\lceil\operatorname{ran} g_{1} \circ g_{0} \in \mathscr{F}\left(S_{X}\left(\Gamma_{k}\right)\right)\right.$. Continuing in this fashion, we obtain that $i_{j} \in X$ and $g_{j+1} \in \mathscr{F}\left(S_{X}\left(\Gamma_{k}\right)\right)$ for all $0 \leqslant j \leqslant t-1$. This implies that $g_{j+1}^{-1} \in \mathscr{F}\left(S_{X}\left(\Gamma_{k}\right)\right)$ for all $0 \leqslant j \leqslant t-1$. Finally note that there exists an isomorphic embedding $\pi: Z \rightarrow \Gamma_{k}$ such that

$$
f=g_{0}=g_{1}^{-1} \circ \cdots \circ g_{t}^{-1} \circ \pi .
$$

It follows that $f \in \mathscr{F}\left(S_{X}\left(\Gamma_{k}\right)\right)$.
The next lemma shows that $f \in \mathscr{F} \cap \mathscr{F}\left(B\left(\Gamma_{k}\right)\right)$ has an m-analysis if $|\operatorname{dom} f|$ is sufficiently large. (However, it does not say that there exists an m-analysis such that $Y_{j} \simeq H$ for all $0 \leqslant j \leqslant t-1$.)

Lemma 5.6. For each $m>k$, there exists an integer $s(k, m)$ such that whenever $f \in$ $\mathscr{F}\left(B\left(\Gamma_{k}\right)\right)$ satisfies $|\operatorname{dom} f| \geqslant s(k, m)$, then there exists an m-analysis of f.

Proof. We shall argue by induction on $k \geqslant 1$. First suppose that $k=1$. Remember that Γ_{1} consists of a countably infinite set equipped with a partition $E_{0} \cup E_{1}$ into two infinite subsets. Also

$$
B\left(\Gamma_{1}\right)=\left\{\pi \in \operatorname{Sym}\left(\Gamma_{1}\right) \mid \pi\left[E_{0}\right]=E_{i} \text { for some } i \in\{0,1\}\right\} .
$$

Then we can take $s(1, m)=m$. For suppose that $f \in \mathscr{F}\left(B\left(\Gamma_{1}\right)\right)$, and that $Z=\operatorname{dom} f$ satisfies $|Z| \geqslant m$. Then $f: Z \rightarrow \Gamma_{1}$ is either an isomorphic or an anti-isomorphic
embedding. Let $g_{0}=f$. In the former case, g_{0} is an m-analysis of f of length $t=0$. In the latter case, let Y_{0} be any m-subsct of Z and let $\theta_{0} \in B\left(\Gamma_{1}\right)$ be an anti-isomorphism such that $\theta_{0} \upharpoonright Y_{0}=g_{0} \upharpoonright Y_{0}$. (Thus $i_{0}=0$ and $A_{0}=\emptyset$.) Let $g_{1}=\theta_{0}^{-1} \upharpoonright$ ran g_{0}. Then $g_{1} \circ g_{0}\left\lceil Y_{0}=i d_{Y_{0}}\right.$, and so $g_{1} \circ g_{0}: Z \rightarrow \Gamma_{1}$ is an isomorphic embedding. Hence g_{0}, g_{1} is an m-analysis of f of length $t=1$.

Now suppose that the result holds for some $k \geqslant 1$. Let p be a $B\left(\Gamma_{k+1}\right)$-good integer. Fix an integer $m>k+1$. Let $f \in \mathscr{F}\left(B\left(\Gamma_{k+1}\right)\right)$ be such that $Z=\operatorname{dom} f$ is a very large subset of Γ_{k+1}. By Ramsey's Theorem, there exists a large subset R of Z such that $f \upharpoonright R$ is either an isomorphism or an anti-isomorphism. First suppose that $f \upharpoonright R$ is an anti-isomorphism. Choose any m-subset Y_{0} of R, and let $\theta_{0} \in B\left(\Gamma_{k}\right)$ be an antiisomorphism such that $\theta_{0} \upharpoonright R=f \upharpoonright R$. (So $i_{0}=0$ and $A_{0}=\emptyset$.) Let $g_{1}=\theta_{0}^{-1} \upharpoonright$ ran f. Notice that if $f^{\prime}=g_{1} \circ f=g_{1} \circ g_{0}$, then $f^{\prime} \upharpoonright R$ is the identity isomorphism. Also if $g_{0}^{\prime}, \ldots, g_{t}^{\prime}$ is an m-analysis of f^{\prime}, then $g_{0}, g_{1}, g_{1}^{\prime}, \ldots, g_{t}^{\prime}$ is an m-analysis of f. To simplify notation, we shall suppose that $f\lceil R$ is an isomorphism. Let $v \in Z \backslash R$ and consider $f\left\lceil R \cup\{v\}\right.$. Note that if $E \in[R \cup\{v\}]^{k+1}$ and $f \upharpoonright E$ is not an isomorphism, then $v \in E$. Let R_{v} be the k-graph induced on R by v and let $f_{v}: R_{v} \rightarrow \Gamma_{k}$ be the map induced by $f\lceil R \cup\{v\}$. Since f preserves the parity of ($k+1$)-edges in every p-subset of $R \cup\{v\}$, it follows that f_{v} preserves the parity of k-edges in every $(p-1)$ subset of R_{v}. By Lemma 1.19, $p-1$ is $B\left(\Gamma_{k}\right)$-good. Hence Proposition 1.21 yields that $f_{v} \in \mathscr{F}\left(B\left(\Gamma_{k}\right)\right)$. We can suppose that $\left|R_{v}\right| \geqslant s(k, m-1)$. Hence there exists an $(m-1)$ analysis $\tilde{g}_{0}, \ldots, \tilde{g}_{t}$ of f_{v}. Let $\tilde{Y}_{j} \in\left[R_{v}\right]^{m-1}, \tilde{A}_{j} \subseteq \tilde{Y}_{j}$ and $\tilde{\theta}_{j} \in B\left(\Gamma_{k}\right), 0 \leqslant j \leqslant t-1$, be as in Definition 5.5. Then clearly $f\left\{\tilde{Y}_{0} \cup\{v\}\right.$ is induced by a switch $\theta_{0} \in B\left(I_{k+1}\right)$ with respect to $\tilde{A}_{0} \cup\{v\}$. Let $g_{1}=\theta_{0}^{-1} \upharpoonright \operatorname{ran}(f \upharpoonright R \cup\{v\})$. Continuing in this manner, we can convert $\tilde{g}_{0}, \ldots, \tilde{g}_{t}$ into an m-analysis g_{0}, \ldots, g_{t} of $f\left\lceil R \cup\{v\}\right.$. Let $\theta_{0}, \ldots, \theta_{t-1}$ be the corresponding sequence of elements of $B\left(\Gamma_{k+1}\right)$. By clauses $2(\mathrm{c})$ and 3 of Definition $5.5, \theta_{t-1}^{-1} \circ \cdots \circ \theta_{0}^{-1} \circ f\left\{R \cup\{v\}\right.$ is an isomorphism. Let $R^{\prime}=R \cup\{v\}$ and suppose that $w \in Z \backslash R^{\prime}$. Let $h=\theta_{t-1}^{-1} \circ \cdots \circ \theta_{0}^{-1} \circ f$ and consider $h \upharpoonright R^{\prime} \cup\{w\}$. Then $h \uparrow R^{\prime}$ is an isomorphism. Arguing as above, there exists an m-analysis $g_{0}^{\prime}, \ldots, g_{t^{\prime}}^{\prime}$ of $h \uparrow R^{\prime} \cup\{w\}$. By combining the m-analysis g_{0}, \ldots, g_{t} of $f \upharpoonright R^{\prime}$ and the m-analysis $g_{0}^{\prime}, \ldots, g_{t^{\prime}}^{\prime}$ of $h \upharpoonright R^{\prime} \cup\{w\}$, we shall obtain an m-analysis of $f\left\lceil R^{\prime} \cup\{w\}\right.$. First we shall extend the domains of g_{0}, \ldots, g_{t} so that they can form an initial segment of our m-analysis of $f \backslash R^{\prime} \cup\{w\}$. Define $g_{j}^{*}, 0 \leqslant j \leqslant t$, inductively by
(1) $g_{0}^{*}=f \upharpoonright R^{\prime} \cup\{w\}$
(2) $g_{j+1}^{*}=\theta_{j}^{-1} \upharpoonleft \operatorname{ran} g_{j}^{*} \circ \cdots \circ g_{0}^{*}$.

Then $g_{t}^{*} \circ \cdots \circ g_{0}^{*}=h \upharpoonright R^{\prime} \cup\{w\}$. It follows that $g_{0}^{*}, \ldots, g_{t}^{*}, g_{1}^{\prime}, \ldots, g_{t^{\prime}}^{\prime}$ is an m-analysis of $f\left\lceil R^{\prime} \cup\{w\}\right.$. Continuing in this fashion, we eventually obtain an m-analysis of f. The result follows.

We shall also make use of the following generalisation of Ramsey's Theorem, which is due independently to Abramson and Harrington [1] and Nešetřil and Rödl [11].

Definition 5.7. A system of colors of length $n, \alpha=\left(\alpha_{0}, \ldots, \alpha_{n}\right)$ is an $(n+1)$-sequence of finite nonempty sets. An α-colored set consists of a finite ordered set X and a
function $\tau:[X]^{\leqslant n} \rightarrow \alpha_{0} \cup \cdots \cup \alpha_{n}$ such that $\tau(A) \in \alpha_{k}$ for each $A \in[X]^{k}$. For each $A \in[X]^{\leqslant n}, \tau(A)$ is called the color of A.

An α-pattern is an α-colored set whose underlying ordered set is an integer. This integer is called the length of the pattern. Each α-colored set is isomorphic to a unique α-pattern.

Theorem 5.8. (Abramson and Harrington [1]). Given $n, e, M \in \mathbb{N}$, a system a of colors of length n and an α-pattern P, there exists an α-pattern Q with the following property. For any α-colored set (X, τ) with α-pattern Q and any function F : $[X]^{e} \rightarrow M$, there exists $Y \subseteq X$ such that $(Y, \tau \uparrow Y)$ has α-pattern P and such that for all $A \in[Y]^{e}, F(A)$ depends only on the α-pattern of $(A, \tau \mid A)$. (We say that Y is F-homogeneous.)

Proof of Theorem 5.1. Suppose that $f \in \mathscr{F} \cap \mathscr{F}\left(B\left(\Gamma_{k}\right)\right)$ and that $\operatorname{dom} f \vDash \phi_{f}^{k}$ for some extremely large integer ℓ. Let $T \in[\operatorname{dom} f]^{N}$, where N is the integer given by Lemma 5.2. Then it is enough to show that $f \upharpoonright T \in \mathscr{F}\left(S_{X}\left(\Gamma_{k}\right)\right)$. Choose a very large k-subgraph U_{0} of $\operatorname{dom} f$ such that the following conditions hold:
(1) $T \cap U_{0}=\emptyset$.
(2) $T \cup U_{0}$ is a "sufficiently random" k-graph; i.e. for some suitably chosen $t<\ell$, $T \cup U_{0}=\phi_{t}^{k}$.
(As usual, we will not define t explicitly. As the proof proceeds, the reader will see which extension properties we need.)

Fix an ordering \prec of the vertices of $T \cup U_{0}$, chosen so that T is an initial segment, and such that $\left\langle T \cup U_{0} ; \prec\right\rangle$ is "sufficiently complex". We will not define "sufficiently complex" explicitly, but we will give the reader some idea of what we have in mind. (The notion will become clearer as the proof proceeds.) If U^{\prime} is a k-subgraph of U_{0}, then we shall say that $\left\langle T \cup U^{\prime} ; \prec\right\rangle$ is "sufficiently complex" if the following conditions hold:
(a) $T \cup U^{\prime}$ is a "sufficiently random" k-graph.
(b) $\left\langle T \cup U^{\prime} ; \prec\right\rangle$ contains various ordered k-subgraphs which will be defined later.
(c) $\left\langle T \cup U^{\prime} ; \prec\right\rangle$ is such that we can make a certain number of successive applications of Theorem 5.8. (For example, $\left\langle T \cup U_{0} ; \prec\right\rangle$ must be such that we can make $2^{|T|}-1$ successive applications of Theorem 5.8.)
For a suitable system of colors $\boldsymbol{\alpha}$, define an $\boldsymbol{\alpha}$-coloring τ of $\left[U_{0}\right] \leqslant k$ by setting
(3) $\tau(A)=\tau(B)$ iff $|A|=|B|$ and the order-preserving bijection $T \cup A \rightarrow T \cup B$ is a k-graph isomorphism.
Thus if $Z \subseteq U_{0}$, then the α-pattern of $(Z, \tau \mid Z)$ essentially consists of the type $t p(Z \mid T)$ of Z over T. Now define the function $F_{f}:\left[U_{0}\right]^{k} \rightarrow\{0,1\}$ by
(4) $F_{f}(C)=1$ iff $f \upharpoonright C$ is an isomorphism.

Let U_{1} be a very large k-subgraph of U_{0} such that $\left\langle T \cup U_{1} ; \prec\right\rangle$ is still "sufficiently complex". By Theorem 5.8, we can suppose that the α-colored set $\left(U_{1}, \tau \backslash U_{1}\right)$ is F_{f} homogeneous. Finally define a function χ on $\left[U_{1}\right]^{k}$ such that
(5) $\chi(C)=\chi(D)$ iff the order-preserving bijection $\phi: T \cup C \rightarrow T \cup D$ has the property that
$\phi(A)$ is a k-edge $\Leftrightarrow A$ is a k-edge
for all $A \in[T \cup C]^{k} \backslash\{C\}$.
Claim 5.9. If $C, D \in\left[U_{1}\right]^{k}$ and $\chi(C)=\chi(D)$, then $f \upharpoonright C$ is an isomorphism if and only if $f \upharpoonright D$ is an isomorphism.

Proof. Suppose that C, D form a counterexample. (Since U_{1} is F_{f}-homogeneous, it follows that the order-preserving map $T \cup C \rightarrow T \cup D$ is not an isomorphism. Hence exactly one of C, D is a k-cdge.) Without loss of generality, we can suppose that $f \upharpoonright C$ is an isomorphism and that $f \upharpoonright D$ is not an isomorphism. Since $\left\langle T \cup U_{\mathrm{I}} ; \prec\right\rangle$ is "sufficiently complex", there exist $C^{\prime}, D^{\prime} \in\left[U_{1}\right]^{k}$ with the following properties:
(i) $\tau(C)=\tau\left(C^{\prime}\right)$ and $\tau(D)=\tau\left(D^{\prime}\right)$.
(ii) There exist subsets $V, W \subset U_{1}$ such that the following conditions are satisfied:
(a) $C^{\prime} \subset V, D^{\prime} \subset W$ and $|V|=|W|$.
(b) Let $\phi: T \cup V \rightarrow T \cup W$ be the order-preserving bijection. Then $\phi\left[C^{\prime}\right]=D^{\prime}$, and $\phi \upharpoonright E$ is an isomorphism for all $E \in[T \cup V]^{k} \backslash\left\{C^{\prime}\right\}$.
(c) The integer $|V|$ is $B\left(\Gamma_{k}\right)$-good.

In particular, $\tau(E)=\tau(\phi[E])$ for all $E \in[V]^{k} \backslash\left\{C^{\prime}\right\}$. Since U_{1} is F_{f}-homogeneous, it follows that
$f \upharpoonright E$ is an isomorphism $\Leftrightarrow f \upharpoonright \phi[E]$ is an isomorphism
for all $E \in[V]^{k} \backslash\left\{C^{\prime}\right\}$. Because $\tau\left(C^{\prime}\right)=\tau(C)$ and $\tau\left(D^{\prime}\right)=\tau(D)$, we have that $f \mid C^{\prime}$ is an isomorphism and that $f\left\lceil D^{\prime}\right.$ is not an isomorphism. Let

$$
p=\mid\left\{E \in[V]^{k} \mid f \upharpoonright E \text { is not an isomorphism }\right\} \mid
$$

and

$$
q=\mid\left\{E \in[W]^{k} \mid f \upharpoonright E \text { is not an isomorphism }\right\} \mid
$$

Then we have shown that $q=p+1$. But, by (c), $f\lceil V$ and $f \upharpoonright W$ preserve the parity of k-edges in V, W respectively. Hence we must have that $p \equiv 0$ and $q \equiv 0$; which is a contradiction.

Claim 5.10. Suppose that $S_{1}, S_{2} \subseteq U_{1}$ and that $\left|S_{1}\right|=\left|S_{2}\right|$. Let $\phi: T \cup S_{1} \rightarrow T \cup S_{2}$ be the order-preserving bijection. Suppose that
$\phi[E]$ is a k-edge iff E is a k-edge
for all $E \in\left[T \cup S_{1}\right]^{k} \backslash\left[S_{1}\right]^{k}$. Then
$f \upharpoonright E$ is an isomorphism iff $f\lceil\phi[E]$ is an isomorphism for all $E \in\left[S_{1}\right]^{k}$.

Proof. Simply note that $\chi(E)=\chi(\phi[E])$ for all $E \in\left[S_{1}\right]^{k}$. So the result is an immediate consequence of Claim 5.9.

Claim 5.11. $f \upharpoonright U_{1} \in \mathscr{F}\left(S_{X}\left(\Gamma_{k}\right)\right)$.
Proof. Let H be the finite k-graph given by Lemma 5.4, and let $m=|H|$. By Lemma 5.6, there exists an m-analysis of $f \upharpoonright U_{1}$; say $g_{0}, g_{1}, \ldots, g_{t} \in \mathscr{F}\left(B\left(\Gamma_{k}\right)\right)$. Thus for each $0 \leqslant j \leqslant t-1$, there exists $Y_{j} \in\left[U_{1}\right]^{m}$ and an element $\theta_{j} \in B\left(\Gamma_{k}\right)$ such that
(i) $g_{0}=f \upharpoonright U_{1}$;
(ii) θ_{j} is a switch with respect to some i_{j}-subset A_{j} of Y_{j};
(iii) $\theta_{j} \upharpoonright Y_{j}=g_{j} \circ \cdots \circ g_{0}\left\lceil Y_{j}\right.$;
(iv) $g_{j+1}=\theta_{j}^{-1} \mid \operatorname{ran} g_{j} \circ \cdots \circ g_{0}$;
(v) $g_{t} \circ \cdots \circ g_{0}: U_{1} \rightarrow \Gamma_{k}$ is an isomorphic embedding.

If $\left\{i_{0}, \ldots, i_{t-1}\right\} \subseteq X$, then we are done. If not, then let j be minimal such that $i_{j} \notin X$. Thus $g_{\ell} \in \mathscr{F}\left(S_{X}\left(\Gamma_{k}\right)\right)$ for all $1 \leqslant \ell \leqslant j$. Note that $g_{j} \circ \cdots \circ g_{0} \upharpoonright Y_{j}$ is a switch with respect to the i_{j}-subset A_{j} of Y_{j}. Since $\left\langle T \cup U_{1} ; \prec\right\rangle$ is "sufficiently complex", there exists $Y \in\left[U_{1}\right]^{m}$ such that the following conditions are satisfied:
(a) $Y \simeq H$.
(b) Let $\phi: T \cup Y_{j} \rightarrow T \cup Y$ be the order-preserving bijection. Then $\chi(E)=\chi(\phi[E])$ for all $E \in\left[Y_{j}\right]^{k}$.
By Claim 5.10, for all $E \in\left[Y_{j}\right]^{k}, f \upharpoonright E$ is an isomorphism iff $f \upharpoonright \phi[E]$ is an isomorphism. We claim that there exist $g_{1}^{*}, \ldots, g_{j}^{*} \in \mathscr{F}\left(S_{X}\left(\Gamma_{k}\right)\right)$ such that $g_{j}^{*} \circ \ldots \circ$ $g_{1}^{*} \circ g_{0} \upharpoonright Y$ is a switch with respect to the i_{j}-subset $\phi\left[A_{j}\right]$ of Y. But then Lemma 5.4 yields that $i_{j} \in X$. We shall define $g_{\ell}^{*} \in \mathscr{F}\left(S_{X}\left(\Gamma_{k}\right)\right), 1 \leqslant \ell \leqslant j$, inductively so that for all $E \in\left[Y_{j}\right]^{k}, g_{\ell} \circ \cdots \circ g_{1} \circ g_{0}\left\lceil E\right.$ is an isomorphism iff $g_{\ell}^{*} \circ \cdots \circ g_{1}^{*} \circ g_{0} \upharpoonright \phi[E]$ is an isomorphism. In particular, $g_{j}^{*} \circ \cdots \circ g_{1}^{*} \circ g_{0} \upharpoonright Y$ will be a switch with respect to the i_{j}-subset $\phi\left[A_{j}\right]$ of Y. Suppose that we have defined $g_{1}^{*}, \ldots, g_{\ell-1}^{*}$.

Case 1: Suppose that $A_{\ell-1} \nsubseteq Y_{j}$. Then $g_{t} \in \mathscr{F}\left(S_{X}\left(\Gamma_{k}\right)\right)$ restricts to an isomorphism on $g_{\ell-1} \circ \cdots \circ g_{1} \circ g_{0}\left[Y_{j}\right]$. So we can take g_{ℓ}^{*} to be the identity map on $g_{\ell-1}^{*} \circ \cdots \circ$ $g_{1}^{*} \circ g_{0}\left[U_{1}\right]$.

Case 2: Suppose that $A_{\ell-1} \subseteq Y_{j}$. Then $g_{\ell} \in \mathscr{F}\left(S_{X}\left(\Gamma_{k}\right)\right)$ restricts to a switch with respect to $g_{\ell-1} \circ \cdots \circ g_{1} \circ g_{0}\left[A_{\ell-1}\right]$ on $g_{\ell-1} \circ \cdots \circ g_{1} \circ g_{0}\left[Y_{j}\right]$. Let $\theta^{*} \in S_{X}\left(\Gamma_{k}\right)$ be a switch with respect to $g_{\ell-1}^{*} \circ \cdots \circ g_{1}^{*} \circ g_{0}\left[\phi\left[A_{\ell-1}\right]\right]$. Then we can take $g_{\ell}^{*}=$ $\theta^{*} \upharpoonright g_{\ell-1}^{*} \circ \cdots \circ g_{1}^{*} \circ g_{0}\left[U_{1}\right]$.

This completes the induction.
Choose $\theta \in S_{X}\left(\Gamma_{k}\right)$ such that $\theta \upharpoonright U_{1}=f \upharpoonright U_{1}$, and let $h=\theta^{-1} \circ f \upharpoonright T \cup U_{1}$. Then $h \upharpoonleft E$ is an isomorphism for all $E \in\left[U_{1}\right]^{k}$. This completes the first slage of the proof.

Choose a vertex $v \in T$ and consider $h \upharpoonright U_{1} \cup\{v\}$. Notice that if $E \in\left[U_{1} \cup\{v\}\right]^{k}$ is such that $h \upharpoonright E$ is not an isomorphism, then $v \in E$. Define the function $F_{h}:\left[U_{1}\right]^{k-1} \rightarrow$ $\{0,1\}$ by
(6) $F_{h}(C)=1$ iff $h\lceil C \cup\{v\}$ is an isomorphism.

Let U_{2} be a very large k-subgraph of U_{1} such that $\left\langle T \cup U_{2} ; \prec\right\rangle$ is still "sufficiently complex". By Theorem 5.8, we can suppose that the α-colored set $\left.\left(U_{2}, \tau\right\rceil U_{2}\right)$ is $F_{h^{-}}$ homogeneous.

Claim 5.12. Suppose that $S_{1}, S_{2} \subseteq U_{2}$ and that $\left|S_{1}\right|=\left|S_{2}\right|$. Let $\phi: T \cup S_{1} \rightarrow T \cup S_{2}$ be the order-preserving bijection. Suppose that
$\phi[E]$ is a k-edge iff E is a k-edge
for all $E \in\left[T \cup S_{1}\right]^{k} \backslash\left[S_{1} \cup\{v\}\right]^{k}$. Then
$h \uparrow E$ is an isomorphism iff $h \uparrow \phi[E]$ is an isomorphism
for all $E \in\left[S_{1} \cup\{v\}\right]^{k}$.
Proof. Argue as in the proof of Claims 5.9 and 5.10. (Note that we are really only concerned about those $E \in\left[S_{1} \cup\{v\}\right]^{k}$ such that $v \in E$. If $v \notin E$, then $h \upharpoonright E$ and $h \upharpoonright \phi[E]$ are both isomorphisms.)

Claim 5.13. $h \upharpoonright U_{2} \cup\{v\} \in \mathscr{F}\left(S_{X}\left(\Gamma_{k}\right)\right)$.
Proof. Let $R=\left(U_{2}\right)_{v}$ be the $(k-1)$-graph induced on U_{2} by v, and let $h_{v}: R \rightarrow \Gamma_{k-1}$ be the map induced by $h\left\lceil U_{2} \cup\{v\}\right.$. Then h_{v} preserves the parity of $(k-1)$-edges in every ($n-1$)-subset of R. By Proposition 1.21, $h_{v} \in \mathscr{F}\left(B\left(\Gamma_{k-1}\right)\right.$). So, by Lemma 5.6, there exists an $(m-1)$-analysis $\tilde{g}_{0}, \ldots, \tilde{g}_{t}$ of h_{v}. Arguing as in the proof of Lemma 5.6, this yields an m-analysis g_{0}, \ldots, g_{t} of $h \upharpoonright U_{2} \cup\{v\}$ with the following operty. For each $0 \leqslant j \leqslant t-1$, there exists $Y_{j} \in\left[U_{2} \cup\{v\}\right]^{m}$ and an element $\theta_{j} \in B\left(I_{k}^{\prime}\right)$ such that
(i) $v \in Y_{j}$ for all $0 \leqslant j \leqslant t-1$;
(ii) $g_{0}=h \upharpoonright U_{2} \cup\{v\}$;
(iii) θ_{j} is a switch with respect to some i_{j}-subset A_{j} of Y_{j} such that $v \in A_{j}$;
(iv) $\theta_{j} \upharpoonright Y_{j}=g_{j} \circ \cdots \circ g_{0} \upharpoonright Y_{j}$;
(v) $g_{j+1}=\theta_{j}^{-1} \upharpoonright \operatorname{ran} g_{j} \circ \cdots \circ g_{0}$;
(vi) $g_{t} \circ \cdots \circ g_{0}: U_{2} \cup\{v\} \rightarrow \Gamma_{k}$ is an isomorphic embedding.

If $\left\{i_{0}, \ldots, i_{t-1}\right\} \subseteq X$, then we are done. If not, let $0 \leqslant j \leqslant t-1$ be minimal such that $i_{j} \notin X$. Note that $g_{j} \circ \cdots \circ g_{0} \upharpoonright Y_{j}$ is a switch with respect to the i_{j}-subset A_{j} of Y_{j}. Since $\left\langle T \cup U_{2} ; \prec\right\rangle$ is "sufficiently complex", there exists $Y \in\left[U_{2} \cup\{v\}\right]^{m}$ such that the following conditions are satisfied.
(a) $v \in Y$.
(b) $Y \simeq H$.
(c) Let $\phi: T \cup\left(Y_{j} \backslash\{v\}\right) \rightarrow T \cup(Y \backslash\{v\})$ be the order-preserving bijection. Then $\phi[E]$ is a k-edge iff E is a k-edge for all $E \in\left[T \cup\left(Y_{j} \backslash\{v\}\right)\right]^{k} \backslash\left[Y_{j}\right]^{k}$.
Note that $\phi(v)=v$, and so $\phi\left[Y_{j}\right]=Y$. Also Claim 5.12 yields that
$h \upharpoonright E$ is an isomorphism iff $h \upharpoonright \phi[E]$ is an isomorphism
for all $E \in\left[Y_{j}\right]^{k}$. As in the proof of Claim 5.11, this implies that $i_{j} \in X$.

Using the fact that $v \in A_{j}$ for each $0 \leqslant j \leqslant t-1$, we see that there exists $\psi \in S_{X}\left(\Gamma_{k}\right)$ such that
(7) (a) $\psi \upharpoonright U_{2} \cup\{v\}=h \upharpoonright U_{2} \cup\{v\}$, and
(b) $\psi \upharpoonright E$ is an isomorphism for all $E \in\left[T \cup U_{2}\right]^{k}$ such that $v \notin E$.

Let $h^{\prime}=\psi^{-1} \circ h \upharpoonright T \cup U_{2}$. Now choose a second vertex $w \in T \backslash\{v\}$. Arguing as above, we find a very large k-subgraph U_{3} of U_{2} such that $\left\langle T \cup U_{3} ; \prec\right\rangle$ is still "sufficiently complex", and an element $\psi^{\prime} \in S_{X}\left(\Gamma_{k}\right)$ such that
(8) (a) $\psi^{\prime} \upharpoonright U_{3} \cup\{w\}=h^{\prime} \upharpoonright U_{3} \cup\{w\}$, and
(b) $\psi^{\prime} \upharpoonright E$ is an isomorphism for all $E \in\left[T \cup U_{3}\right]^{k}$ such that $w \notin E$.

Here clause 8(b) is of crucial importance. It means that $\psi^{\prime} \upharpoonright E$ is an isomorphism for all of those k-sets E such that $E \cap T=\emptyset$ or $E \cap T=\{v\}$. Thus when we next adjust h^{\prime} to $h^{\prime \prime}=\left(\psi^{\prime}\right)^{-1} \circ h^{\prime} \upharpoonright T \cup U_{3}$, we do not spoil the progress which we made with our earlier adjustments. Continuing in this fashion, we can deal successively with the other vertices $z \in T \backslash\{v, w\}$. After this, we consider those k-sets E such that $|E \cap T|=2$. As above, we can deal successively with each of the 2 -subsets of T, without spoiling the progress which we have made for those k-subsets E such that $|E \cap T| \leqslant 1$. Then we can deal successively with each of the 3 -subsets of T, and then each of the 4 -subsets of T, etc. Eventually we obtain a large subset U^{*} of U_{3} and a map $h^{*}: T \cup U^{*} \rightarrow \Gamma_{k}$ such that
(9) (a) there exists $\psi^{*} \in S_{X}\left(\Gamma_{k}\right)$ such that $h^{*}=\psi^{*} \circ f \upharpoonright T \cup U^{*}$; and
(b) $h^{*} \upharpoonright E$ is an isomorphism for all $E \in\left[T \cup U^{*}\right]^{k} \backslash[T]^{k}$.

Now Lemma 5.3 implies that $h^{*} \upharpoonright T$ is an isomorphism. Hence $f \upharpoonright T \in \mathscr{F}\left(S_{X}\left(\Gamma_{k}\right)\right)$. This completes the proof of Theorem 5.1.

We shall end this section with the following easy observation, which will be used in the proof of Theorem 6.1.

Lemma 5.14. Let $k \geqslant 1$ and let $X \subseteq\{0,1, \ldots, k-1\}$. Then there exists an integer N_{X}^{k} with the following property. Let $f \in \mathscr{F}\left(S_{X}\left(\Gamma_{k}\right)\right)$, and suppose that $Z=\operatorname{dom} f$ satisfies $|Z| \geqslant N_{X}^{k}$. Suppose further that $T \in[Z]^{<k}$ is a subset such that
(\ddagger) if $E \in[Z]^{k}$ and $f\lceil E$ is not an isomorphism, then $T \subseteq E$.
Then there exists $\theta \in S_{X}\left(\Gamma_{k}\right)$ such that
(a) $\theta \upharpoonright Z=f \upharpoonright Z$; and
(b) if $E \in\left[\Gamma_{k}\right]^{k}$ and $\theta \upharpoonright E$ is not an isomorphism, then $T \subseteq E$.

Proof. We shall prove the following statement by induction on $k \geqslant 1$.
(5.14) $)_{k}$: For each $X \subseteq\{0,1, \ldots, k-1\}$, there exists an integer N_{X}^{k} with the following property. Let $f \in \mathscr{F}\left(S_{X}\left(\Gamma_{k}\right)\right)$, and suppose that $Z=\operatorname{dom} f$ satisfies $|Z| \geqslant N_{X}^{k}$. Suppose further that $T \in[Z]^{<k}$ is a subset such that (\ddagger) holds. Then there exist elements $\psi_{0}, \ldots, \psi_{t} \in S_{X}\left(\Gamma_{k}\right)$ such that the following conditions are satisfied:
(1) $\psi_{0}=i d$.
(2) If $1 \leqslant i \leqslant t-1$, then ψ_{i} is a switch with respect to some subset A_{i} such that $\psi_{i-1} \circ \cdots \circ \psi_{0}[T] \subseteq A_{i}$.
(3) ψ_{t} is an isomorphism.
(4) $\psi_{t} \circ \cdots \circ \psi_{0} \upharpoonright Z=f$.

When $k=1$, we must have that $T=\emptyset$; and so the result is obviously true. Suppose that the result holds for $k-1$, where $k-1 \geqslant 1$. Let $f \in \mathscr{F}\left(S_{X}\left(\Gamma_{k}\right)\right)$, and suppose that $Z=\operatorname{dom} f$ is a very large k-subgraph of Γ_{k}. Suppose that $T \in[Z]^{<k}$ is a subset such that (\ddagger) holds. Clearly we can assume that $T \neq \emptyset$. Let $Y=\{i-1 \mid 0<i \in X\}$, and let $\Phi_{X}^{k}, \Phi_{Y}^{k-1}$ be the finite subsets of \mathbb{N} given by Theorem 2.6. Then f preserves the parity of k-edges in every n-subset of Z for all $n \in \Phi_{X}^{k}$. Also $\left\{m+1 \mid m \in \Phi_{Y}^{k-1}\right\} \subseteq \Phi_{X}^{k}$. Let $v \in T$ and let $Z^{\prime}=Z \backslash\{v\}$. Let Z_{v}^{\prime} be the ($k-1$)-graph induced on Z^{\prime} by v, and let $f_{v}: Z_{v}^{\prime} \rightarrow \Gamma_{k-1}$ be the map induced by f. Since $f\left\lceil Z^{\prime}\right.$ is an isomorphism, it follows that f_{v} preserves the parity of $(k-1)$-edges in every m-subset of Z_{v}^{\prime} for all $m \in \Phi_{Y}^{k-1}$. By Theorem 2.6, $f_{v} \in \mathscr{F}\left(S_{Y}\left(\Gamma_{k-1}\right)\right)$. Notice that if $E^{\prime} \in\left[Z_{v}^{\prime}\right]^{k-1}$ and $f_{v} \upharpoonright E^{\prime}$ is not an isomorphism, then $T \backslash\{v\} \subseteq E^{\prime}$. By induction hypothesis, there exists a sequence of elements $\psi_{0}^{\prime}, \ldots, \psi_{t}^{\prime} \in S_{Y}\left(\Gamma_{k-1}\right)$ which satisfies the conclusion of (5.14) $)_{k-1}$ with respect to $T \backslash\{v\}$. It is now easy to convert this sequence into a sequence of elements $\psi_{0}, \ldots, \psi_{t} \in S_{X}\left(\Gamma_{k}\right)$ which satisfies the conclusion of $(5.14)_{k}$ with respect to T. (For example, if ψ_{1}^{\prime} is a switch with respect to A_{1}^{\prime}, then ψ_{1} is a switch with respect to $A_{1}=A_{1}^{\prime} \cup\{v\}$, etc.)

6. The classification of the pseudo-reducts

In this section, we shall prove the following result.
Theorem 6.1. If \mathscr{F} is a nontrivial pseudo-reduct of Γ_{k}, then there exists a subset $X \subseteq\{0,1, \ldots, k-1\}$ such that $\mathscr{F}=\mathscr{F}\left(S_{X}\left(\Gamma_{k}\right)\right)$.

Proposition 4.9 dealt with the case when $k=1$. So let $k \geqslant 2$. For the rest of this section, we shall fix some nontrivial pseudo-reduct \mathscr{F} of Γ_{k}. Let X be the largest subset of $\{0,1, \ldots, k-1\}$ such that $\mathscr{F}\left(S_{X}\left(\Gamma_{k}\right)\right) \subseteq \mathscr{F}$. Let ℓ be the integer given by Theorem 5.1. Thus whenever $f \in \mathscr{F} \cap \mathscr{F}\left(B\left(\Gamma_{k}\right)\right)$ and $\operatorname{dom} f \models \phi_{\ell}^{k}$, then $f \in \mathscr{F}\left(S_{X}\left(\Gamma_{k}\right)\right)$.

Lemma 6.2. If $\mathscr{F} \subseteq \mathscr{F}\left(B\left(\Gamma_{k}\right)\right)$, then $\mathscr{F}=\mathscr{F}\left(S_{X}\left(\Gamma_{k}\right)\right)$.
Proof. Let $g \in \mathscr{F}$ be arbitrary. There exists $f \in \mathscr{F}$ such that $g \subseteq f$ and $\operatorname{dom} f \vDash \phi_{\ell}^{k}$. Then $f \in \mathscr{F}\left(S_{X}\left(\Gamma_{k}\right)\right)$, and so $g \in \mathscr{F}\left(S_{X}\left(\Gamma_{k}\right)\right)$.

From now on, we shall assume that $\mathscr{F} \nsubseteq \mathscr{F}\left(B\left(\Gamma_{k}\right)\right)$. Eventually we shall derive a contradiction from this assumption. We shall make use of the following two lemmas, each of which witnesses the fact that \mathscr{F} is a nontrivial pseudo-reduct.

Lemma 6.3. There exists a finite k-subgraph R_{0} of Γ_{k} such that $\left|R_{0}\right| \geqslant k$ and such that for all $\pi \in \mathscr{J}$, if $R_{0} \subseteq \operatorname{dom} \pi$ then $\pi\left[R_{0}\right]$ is neither a complete nor a null k-graph.

Proof. This is an immediate consequence of Lemma 4.8.

Lemma 6.4. There exists a finite k-subgraph R_{1} of Γ_{k} such that $\left|R_{1}\right| \geqslant k$ and which satisfies the following property. Suppose that $\pi \in \mathscr{F}$ and that $R_{1} \subseteq$ dom π. Then there do not exist $1 \leqslant i \leqslant k$ and $A \in\left[R_{1}\right]^{i}$ such that either of the following two clauses holds.
(i) For all $E \in\left[R_{1}\right]^{k}, \pi \upharpoonright E$ is not an isomorphism iff E is a k-edge such that $A \subseteq E$.
(ii) For all $E \in\left[R_{1}\right]^{k}, \pi \upharpoonright E$ is not an isomorphism iff E is a k-nonedge such that $A \subseteq E$.

Proof. Let R_{0} be the k-graph given by Lemma 6.3, and let $r=\left|R_{0}\right|$. Let $1 \leqslant i \leqslant k$. Then there exist a k-subgraph $Z_{i}^{0} \in\left[\Gamma_{k}\right]^{r}$ and an i-subset A_{i}^{0} of Z_{i}^{0} such that the following holds:
(1) (a) If $i=k$, then A_{k}^{0} is a k-edge.
(b) Suppose that $\pi \in \mathscr{F}$ and that $Z_{i}^{0} \subseteq \operatorname{dom} \pi$. Then it is not the case that for all $E \in\left[Z_{i}^{0}\right]^{k}, \pi\left\lceil E\right.$ is not an isomorphism iff E is a k-edge such that $A_{i}^{0} \subseteq E$.
For suppose that no such Z_{i}^{0} and A_{i}^{0} exist. Let $Z \in\left[\Gamma_{k}\right]^{r}$ be any non-null k-subgraph. Let $A \in[Z]^{i}$ be arbitrary; subject only to the requirement that if $i=k$, then A is a k-edge. Then there exists $\pi_{A} \in \mathscr{F}$ such that $\pi_{A} \upharpoonright Z$ is an isomorphism, except on those k-edges $E \in[Z]^{k}$ such that $A \subseteq E$. So in passing from Z to $\pi_{A}[Z]$, we have "erased" precisely those k-edges which contain A. Continuing in this fashion, we eventually obtain an element $\pi \in \mathscr{F}$ such that $\pi[Z]$ is a null k-graph. In particular, there exists $\pi \in \mathscr{F}$ such that $\pi\left[R_{0}\right]$ is a null k-graph; which contradicts the choice of R_{0}.

Similarly there exist a k-graph $Z_{i}^{1} \in\left[\Gamma_{k}\right]^{r}$ and an i-subset A_{i}^{1} of Z_{i}^{1} such that the following holds:
(2) (a) If $i=k$, then A_{k}^{1} is a k-nonedge.
(b) Suppose that $\pi \in \mathscr{F}$ and that $Z_{i}^{1} \subseteq \operatorname{dom} \pi$. Then it is not the case that for all $E \in\left[Z_{i}^{1}\right]^{k}, \pi \upharpoonright E$ is not an isomorphism iff E is a k-nonedge such that $A_{i}^{1} \subseteq E$.
Note that Γ_{k} satisfies the following property:
(3) For every $\varepsilon \in\{0,1\}, 1 \leqslant i \leqslant k$ and i-subset A, there exists an r-subset Z such that the following clauses hold:
(a) $A \subseteq Z$.
(b) If $i<k$, then there exists an isomorphism $\tau: Z \rightarrow Z_{i}^{\varepsilon}$ such that $\tau[A]=A_{i}^{\varepsilon}$.
(c) If $i=k, \varepsilon=0$ and A is a k-edge, then there exists an isomorphism $\tau: Z \rightarrow Z_{k}^{0}$ such that $\tau[A]=A_{k}^{0}$.
(d) If $i=k, \varepsilon=1$ and A is a k-nonedge, then there exists an isomorphism $\tau: Z \rightarrow Z_{k}^{1}$ such that $\tau[A]=A_{k}^{1}$.
By quantifying out $A=\left\{a_{1}, \ldots, a_{i}\right\}$ and $Z=\left\{z_{1}, \ldots, z_{r}\right\}$, we can express (3) by a first-order sentence. Hence, by Theorem 3.2, there exists a finite k-subgraph R_{1} of Γ_{k} which also satisfies (3). Clearly R_{1} satisfies our requirements.

In each of the applications of Theorem 3.2 which we have made so far, we have only used the fact that Γ_{k} has the usual finite submodel property. We are finally approaching
the point in this paper where we will use the strong finite submodel property. Using Theorem 3.2, express $\Gamma_{k}-\bigcup_{j \in \mathbb{N}} H_{j}$ as the union of an increasing chain of k-subgraphs such that
(1) $\left|H_{j}\right|=j$ for all $j \in \mathbb{N}$; and
(2) for each sentence σ such that $\Gamma_{k} \vDash \sigma$, there exists an integer N_{σ} such that $H_{j} \models \sigma$ for all $j \geqslant N_{\sigma}$.

Lemma 6.5. For each $j, n \in \mathbb{N}$, there exist $s, N \in \mathbb{N}$ such that the following is true for all t with $N \leqslant t \in \mathbb{N}$.
(6.5) Suppose that $Z \in\left[H_{t}\right]^{j}$ and that $Z \simeq H_{j}$. Then for each $Y \in\left[H_{t}\right]^{n}$, there exists $M \in\left[H_{t}\right]^{s}$ such that
(a) $Y \cup Z \subseteq M$; and
(b) there exists an isomorphism $\tau: M \rightarrow H_{s}$ such that $\tau[Z]=H_{j}$.

Proof. There exists an integer s such that for all $Y \in\left[\Gamma_{k}\right]^{n}$, there exists $\theta \in \operatorname{Aut}\left(\Gamma_{k}\right)$ such that $\theta[Y] \subseteq H_{s}$ and $\theta \upharpoonright H_{j}=i d_{H_{j}}$. Let $Z \in\left[\Gamma_{k}\right]^{j}$ satisfy $Z \simeq H_{j}$, and let $Y \in\left[\Gamma_{k}\right]^{n}$ be arbitrary. Then there exists $\psi \in \operatorname{Aut}\left(\Gamma_{k}\right)$ such that $\psi[Y \cup Z] \subseteq H_{s}$ and $\psi[Z]=H_{j}$. Let $M=\psi^{-1}\left[H_{s}\right]$ Then
(a) $Y \cup Z \subseteq M$; and
(b) $\tau=\psi \upharpoonright M$ is an isomorphism from M onto H_{s} such that $\tau[Z]=H_{j}$.

Thus (6.5) is true if H_{t} is replaced by Γ_{k}. By quantifying out $Z=\left\{z_{1}, \ldots, z_{j}\right\}$, $Y=\left\{y_{1}, \ldots, y_{n}\right\}$ and $M=\left\{m_{1}, \ldots, m_{s}\right\}$, we can express (6.5) as a first-order property σ of H_{t}. Since $\Gamma_{k}=\sigma$, we have that $H_{t} \models=\sigma$ for all $t \geqslant N=N_{\sigma}$.

From now on, let n be a fixed $B\left(\Gamma_{k}\right)$-good integer. Let $g \in \mathscr{F} \backslash \mathscr{F}\left(B\left(\Gamma_{k}\right)\right)$. Then there exists $f \in \mathscr{F}$ such that $g \subseteq f$ and $\operatorname{dom} f=H_{d}$ for some extremely large integer d. (During the course of the proof, it will become clear how large d should be chosen.) We shall define inductively
(1) a decreasing sequence $d_{0}>d_{1}>\cdots>d_{k}$ of integers; and
(2) a sequence of maps $f_{0}, \ldots, f_{k} \in \mathscr{F} \backslash \mathscr{F}\left(B\left(\Gamma_{k}\right)\right)$ such that dom $f_{i}=H_{d_{i}}$.

We shall also define an i-subset $\left\{v_{1}^{i}, \ldots, v_{i}^{i}\right\}$ of $I I_{d_{i}}$ for $1 \leqslant i \leqslant k$ such that the following condition is satisfied:
$(\ddagger)_{i} \quad$ If $E \in\left[H_{d_{i}}\right]^{k}$ and $f_{i} \upharpoonright E$ is not an isomorphism, then $\left\{v_{1}^{i}, \ldots, v_{i}^{i}\right\} \subseteq E$.
We begin by setting $d_{0}=d$ and $f_{0}=f$. Now we shall describe how to find d_{1}, f_{1} and v_{1}^{1}. First choose a very large integer c_{0} such that $c_{0}<d_{0}$.

Lemma 6.6. There exists a k-subgraph Z of $H_{d_{0}}$ such that $Z \simeq H_{c_{0}}$ and $f_{0} \upharpoonright Z$ is either an isomorphism or an anti-isomorphism.

Proof. By Theorem 5.8, there exists a finite k-graph Q with the following property:
(\dagger) Suppose that $\chi:[Q]^{k} \rightarrow\{0,1\}$ is any 2 -coloring. Then there exists a k-subgraph Z of Q such that
(a) $Z \simeq H_{c_{0}}$;
(b) if $E_{1}, E_{2} \in[Z]^{k}$ are k-edges, then $\chi\left(E_{1}\right)=\chi\left(E_{2}\right)$;
(c) if $F_{1}, F_{2} \in[Z]^{k}$ are k-nonedges, then $\chi\left(F_{1}\right)=\chi\left(F_{2}\right)$.

Since d_{0} is extremely large, we can suppose that $Q \subset H_{d_{0}}$. Define a coloring $\chi:[Q]^{k} \rightarrow\{0,1\}$ by

$$
\chi(E)=1 \quad \text { iff } f_{0} \upharpoonright E \text { is an isomorphism. }
$$

Let $Z \subseteq Q$ be a k-subgraph which satisfies the conclusion of (\dagger). Then one of the following conditions must hold.
(i) $f_{0} \upharpoonright Z$ is an isomorphism.
(ii) $f_{0} \upharpoonright Z$ is an anti-isomorphism.
(iii) $f_{0}[Z]$ is a complete k-graph.
(iv) $f_{0}[Z]$ is a null k-graph.

Let R_{0} be the k-graph given by Lemma 6.3. Since c_{0} is very large, there exists an isomorphic embedding $R_{0} \rightarrow H_{c_{0}}$. As $Z \simeq H_{c_{0}}$, it follows that neither (iii) nor (iv) can hold; and so Z satisfies our requirements.

Since $f_{0} \in \mathscr{F} \backslash \mathscr{F}\left(B\left(\Gamma_{k}\right)\right)$, Proposition 1.21 implies that there exists an n-subset Y of $H_{d_{0}}$ such that $f_{0} \upharpoonright Y$ does not preserve the parity of k-edges in Y. By Lemma 6.5, we can suppose that there exists an integer $s>c_{0}$ and a k-subgraph $M \in\left[H_{d_{0}}\right]^{s}$ such that
(a) $Y \cup Z \subseteq M$; and
(b) there exists an isomorphism $\tau: M \rightarrow H_{s}$ such that $\tau[Z]=H_{c_{0}}$.

For each $c_{0} \leqslant m \leqslant s$, let $Z_{m}=\tau^{-1}\left[H_{m}\right]$. By Lemma 6.6, $f_{0} \upharpoonright Z_{c_{0}} \in \mathscr{F}\left(B\left(\Gamma_{k}\right)\right)$. Let a be the greatest integer such that $c_{0} \leqslant a \leqslant s$ and $f_{0} \upharpoonright Z_{a} \in \mathscr{F}\left(B\left(\Gamma_{k}\right)\right)$. Since $Y \subseteq Z_{s}$, we have that $a<s$. Let $Z_{a+1}=Z_{a} \cup\{w\}$. Since $a \geqslant c_{0}$, Theorem 5.1 implies that there exists $\left.\theta \in S_{X}\left(\Gamma_{k}\right)\right)$ such that $\theta \upharpoonright Z_{a}=f_{0} \upharpoonright Z_{a}$. We now define $d_{1}=a+1, f_{1}=$ $\theta^{-1} \circ f_{0} \circ \tau^{-1} \upharpoonright H_{a+1}$ and $v_{1}^{1}=\tau(w)$. By the maximality of $a, f_{0} \upharpoonright Z_{a+1} \notin \mathscr{F}\left(B\left(\Gamma_{k}\right)\right)$. Thus $f_{1} \in \mathscr{G} \backslash \mathscr{F}\left(B\left(\Gamma_{k}\right)\right)$. Clearly condition $(\ddagger)_{1}$ holds.

Let $1 \leqslant i<k$. Suppose inductively that we have defined $d_{i}, f_{i} \in \mathscr{F} \backslash \mathscr{F}\left(B\left(\Gamma_{k}\right)\right)$ and $\left\{v_{1}^{i}, \ldots, v_{i}^{i}\right\} \subset H_{d_{i}}$ such that condition $(\ddagger)_{i}$ holds. Let $T=\left\{v_{1}^{i}, \ldots, v_{i}^{i}\right\}$ and $U=$ $H_{d_{i}} \backslash T$. Fix an ordering \prec of $H_{d_{i}}$, chosen so that T is an initial segment. (As the reader will soon see, the ordering \prec does not play a significant role in this argument.) For a suitable system of colors α, define an α-coloring η of $[U]^{\leqslant k}$ by setting
(I) $\eta(A)=\eta(B)$ iff $|A|=|B|$ and the order-preserving bijection $T \cup A \rightarrow T \cup B$ is a k-graph isomorphism.
Thus if $R \subseteq U$, then the α-pattern of $(R, \eta \upharpoonright R)$ essentially consists of the type $t p(R \mid T)$ of R over T. Now define the function $F_{i}:[U]^{k-i} \rightarrow\{0,1\}$ by
(II) $F_{i}(C)=1$ iff $f_{i} \upharpoonright C \cup T$ is an isomorphism.

Let c_{i} be a large integer such that $c_{i}<d_{i}$. Then there exists an α-pattern P such that if $(R, \eta \upharpoonright R)$ has α-pattern P, then $T \cup R \simeq H_{c_{i}}$. By Theorem 5.8, there exists a subset U_{0} of U such that
(III) (a) $\left(U_{0}, \eta \upharpoonright U_{0}\right)$ has α-pattern P, and
(b) $\left(U_{0}, \eta \upharpoonright U_{0}\right)$ is F_{i}-homogeneous.

Notice that if $A, B \in[U]^{k-i}$, then $\eta(A)=\eta(B)$ iff $T \cup A$ and $T \cup B$ are either both k-edges or both k-nonedges. (Thus the ordering \prec is unimportant from this point onwards.) Let $Z=T \cup U_{0}$. Then $Z \simeq H_{c_{i}}$, and one of the following conditions must hold.
(IV) (i) $f_{i} \upharpoonright Z$ is an isomorphism.
(ii) $f_{i} \upharpoonright Z$ is a switch with respect to T.
(iii) For all $E \in[Z]^{k}, f_{i} \upharpoonright E$ is not an isomorphism iff E is a k-edge such that $T \subseteq E$.
(iv) For all $E \in[Z]^{k}, f_{i} \upharpoonright E$ is not an isomorphism iff E is a k-nonedge such that $T \subseteq E$.
Let R_{1} be the k-graph given by Lemma 6.4. Since c_{i} is large, for each $D \in\left[H_{c_{i}}\right]^{i}$ there exists an isomorphic embedding $\psi: R_{1} \rightarrow H_{c_{i}}$ such that $D \subseteq \psi\left[R_{1}\right]$. As $Z \simeq H_{c_{i}}$, it follows that neither (iii) nor (iv) can hold. Thus $f_{i} \upharpoonright Z \in \mathscr{F}\left(B\left(\Gamma_{k}\right)\right)$.

Since $f_{i} \in \mathscr{F} \backslash \mathscr{F}\left(B\left(\Gamma_{k}\right)\right)$, Proposition 1.21 implies that there exists an n-subset Y of $H_{d_{i}}$ such that $f_{i} \upharpoonright Y$ does not preserve the parity of k-edges in Y. By Lemma 6.5, we can suppose that there exists an integer $s>c_{i}$ and a k-subgraph $M \in\left[H_{d_{i}}\right]^{s}$ such that (V) (a) $Y \cup Z \subseteq M$; and
(b) there exists an isomorphism $\tau: M \rightarrow H_{s}$ such that $\tau[Z]=H_{c_{i}}$.

For each $c_{i} \leqslant m \leqslant s$, let $Z_{m}=\tau^{-1}\left[H_{m}\right]$. Let a be the greatest integer such that $c_{i} \leqslant a \leqslant s$ and $f_{i} \upharpoonright Z_{a} \in \mathscr{F}\left(B\left(\Gamma_{k}\right)\right)$. Then $a<s$. Let $Z_{a+1}=Z_{a} \cup\{w\}$. Since $a \geqslant c_{i}$, Theorem 5.1 implies that $f_{i} \upharpoonright Z_{a} \in \mathscr{F}\left(S_{X}\left(\Gamma_{k}\right)\right)$. Remember that condition $(\ddagger)_{i}$ holds. Thus Lemma 5.14 implies that there exists an element $\theta \in S_{X}\left(\Gamma_{k}\right)$ such that
(VI) (a) $\theta \upharpoonright Z_{a}=f_{i} \upharpoonright Z_{a}$; and
(b) if $E \in\left[\Gamma_{k}\right]^{k}$ and $\theta \upharpoonright E$ is not an isomorphism, then $T \subseteq E$.

Consider $g_{i}=\theta^{-1} \circ f_{i} \upharpoonright Z_{a+1}$.

Claim 6.7. If $E \in\left[Z_{a+1}\right]^{k}$ and $g_{i} \upharpoonright E$ is not an isomorphism, then $T \cup\{w\} \subseteq E$.
Proof. Suppose that $E \in\left[Z_{a+1}\right]^{k}$ and that $g_{i}\lceil E$ is not an isomorphism. Then clearly $w \in E$. Suppose that $T \nsubseteq E$. By $(\ddagger)_{i}, f_{i} \upharpoonright E$ is an isomorphism. Condition (VI)(b) implies that if $B \in\left[\Gamma_{k}\right]^{k}$ and $\theta^{-1} \upharpoonright B$ is not an isomorphism, then $\theta[T] \subseteq B$. But $\theta[T]=f_{i}[T]$. Hence $\theta^{-1} \upharpoonright f_{t}[E]$ is an isomorphism, which is a contradiction.

We now define $d_{i+1}=a+1, f_{i+1}=\theta^{-1} \circ f_{i} \circ \tau^{-1} \upharpoonright H_{a+1}$ and $\left\{v_{1}^{i+1}, \ldots, v_{i+1}^{i+1}\right\}=$ $\tau[T \cup\{w\}]$. Then $f_{i+1} \in \mathscr{F} \backslash \mathscr{F}\left(B\left(\Gamma_{k}\right)\right)$; and condition $(\ddagger)_{i+1}$ holds. But now consider f_{k}. Since f_{k} is not an isomorphism, it follows that $f_{k} \upharpoonright\left\{v_{1}^{k}, \ldots, v_{k}^{k}\right\}$ is not an isomorphism. Thus f_{k} satisfies the following condition.
(VII) For all $E \in\left[H_{d_{k}}\right]^{k}, f_{k} \backslash E$ is an isomorphism iff $E \neq\left\{v_{1}^{k}, \ldots, v_{k}^{k}\right\}$.

Let R_{1} be the k-graph given by Lemma 6.4. Since d_{k} is large, there exists an isomorphic embedding $\psi: R_{1} \rightarrow H_{d_{k}}$ such that $\left\{v_{1}^{k}, \ldots, v_{k}^{k}\right\} \subseteq \psi\left[R_{1}\right]$. But now (VII) contradicts Lemma 6.4. This completes the proof of Theorem 6.1.

Acknowledgements

I would like to thank the referee for his very careful reading of an earlier version of this paper. His helpful suggestions have substantially improved both the accuracy and the readability of the final version.

References

[1] F. Abramson and L. Harrington, Models without indiscernibles, J. Symbolic Logic 43 (1978) 572-600.
[2] J. Bennett, The reducts of infinite homogeneous graphs and toumaments, Ph.D. Thesis, Rutgers University, New Brunswick, 1995.
[3] P. Billingsley, Probability and Measure (Wiley, New York, 1979).
[4] P.J. Cameron, Aspects of the random graph, in: B. Bollobás, ed., Graph Theory and Combinatorics (Academic Press, London, 1984) 65-79.
[5] G. Cherlin, L. Harrington and A. Lachlan, \aleph_{0}-categorical \aleph_{0}-stable structures, Ann. Pure Appl. Logic 28 (1985) 103-135.
[6] D. Evans, private communication.
[7] W. Hodges, Model theory, in: Encyclopedia of Mathematics and its Applications, Vol. 42 (Cambridge University Press, Cambridge, 1993).
[8] E. Hrushovski, Finite structures with few types, 175-187, in: N. Sauer, R. Woodrow and B. Sands, eds., Finite and Infinite Combinatorics in Sets and Logic, NATO ASI Series C, Vol. 411 (Kluwer, Norwell, MA, 1993).
[9] W. Kantor, M.W. Liebeck and H.D. Macpherson, \aleph_{0}-categorical structures smoothly approximated by finite substructures, Proc. London Math. Society 59 (3) (1989) 439-463.
[10] M.W. Liebeck, C.E. Praeger and J. Saxl, A classification of the maximal subgroups of the finite alternating and symmetric groups, J. Algebra 111 (1987) 365-383.
[11] J. Nešetrill and V. Rödl, Partitions of finite relational and set-systems, J. Combin. Theory, Ser. A 22 (1977) 289-312.
[12] S. Thomas, Reducts of the random graph, J. Symbolic Logic 56 (1991) 176-181.

[^0]: * Corresponding address: Mathematics Department, Rutgers University, New Brunswick, NJ 08903, USA.
 ${ }^{1}$ Research partially supported by NSF Grants.

