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Abstract 

For each k > 1, let rk be the countable universal homogeneous k-hypergraph. In this paper, we 
shall classify the closed permutation groups G such that AUt(rk ) < G < &vn(rk). In particular, 
we shall show that there exist only finitely many such groups G for each k 2 1. We shall also 
show that each of the associated reducts of rk is homogeneous with respect to a finite relational 
language. 

1. Introduction 

Let _A be a countable w-categorical structure. The structure N for the language L 

is defined to be a reduct of A if 

(1) JV has the same underlying set as ~2’; 

(2) for each R E L, RN is definable without parameters in 4. 

Thus if JV is a reduct of A?, then AM(M) is a closed permutation group such that 

Aut(~)~Aut(Jlr)~Sym(Jli/). (Here Sym(A’) denotes the group of all permutations 

of the underlying set of _A’.) Conversely, if G is a closed permutation group such 

that Aut(A!)dG<Sym(A), then there exists a structure N for a suitably chosen lan- 

guage L such that .Af is a reduct of A and G = Aut(N). (For example, see [7].) 

Two reducts Jv;, .Afz of A are said to be equivalent if and only if each is a reduct 

of the other. This occurs if and only if Aut(fi) = Aut(Jlr2). Thus the problem of 

classifying the reducts of A? up to equivalence is the same as that of classifying the 

closed permutation groups G such that Aut(A) < G <Sym(A). 
There are currently very few w-categorical structures A’ for which the reducts of 

A? have been explicitly classified. The classification problem seems most manageable 
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in the case when A? is also o-stable. In this case, it is possible to make use of 

the powerful techniques developed in [5]. We shall illustrate this method with two 

examples. The first example is extremely simple, and can be dealt with by an easy 

permutation group theoretic argument. In contrast, it appears to be difficult to find a 

purely permutation group theoretic argument to deal with the second example. (We 

have included the first example only because this result will be needed later in the 

paper.) In both of the following examples, R and deg denote Morley rank and degree 

respectively. 

Example 1.1. Let A’= (M; Ao), where Aa is a O-definable subset such that both Aa and 

Ai = A4\& are infinite. Then A&(A) = Sym(Ao) x Sym(Ai). Furthermore, R(d) = 1 

and deg(A’) = 2. 

Suppose that G is a closed permutation group such that A@_&‘) < G <Sam. 

Then G acts transitively on M. Let JV be a reduct of JZ such that G = Aut(Jlr). Then 

JV is also o-stable and co-categorical; and R(M) = 1, deg(Jlr) < 2. If deg(Jlr) = 1, 

then A’” is strictly minimal and it follows that G = Sym(A). So suppose that deg(&“) = 

2. By the Finite Equivalence Relation Theorem, there exists a nontrivial O-definable 

equivalence relation E on Jf. It is clear that the E-classes must be As and A 1. Thus, 

in this case, 

G = {rt E Sym(A) 1 There exists i E (0, 1) such that ~[A01 = Ai}. 

Hence there are exactly three closed permutation groups G such that Auf(A) d G < 

X?Jm(JQ. 

Example 1.2. Let 2 dk E w, and let [N]” be the set of k-subsets of N. Consider the 

graph r = ([ Nlk; -), where A - B if and only if IA n BJ = k - 1. Then r is a totally 

categorical structure; and the automorphism group of r is Sym( N ) acting in the natural 

way. 

Suppose that G is a closed permutation group such that Ad(T) < G<Sym(T). Let 

JV be a reduct of r such that G = ,4ut(~V). Then JV is w-stable and o-categorical. 

Since Ad(T) acts primitively on r, A&(M) also acts primitively on JV”. By the Co- 

ordinatization Theorem [5], _Af is isomorphic to a grassmannian over a strictly rank 1 

set. Thus there exists a transitive strictly rank 1 set S and a finite algebraically closed 

subset X C S such that JV z Gr(X, S), where Gr(X, S) is the set of all subsets of S 

which are conjugate to X under the action of A&(S). Suppose that deg(S) = d > 1. 

Then there exists a subgroup H < G of finite index such that H acts imprimitively 

on JV. Notice that [A&(T) : H fl Au(T)] is also finite. Since A&(T) = Sym(N) 

has no proper subgroups of finite index, it follows that AZ&(T) <H. But this con- 

tradicts the fact that Aut(T) acts primitively on r. Thus S is strictly minimal. 

For each n > k, consider the subset r, = [nlk of r. Since r, is algebraically closed in 

r, it is also algebraically closed in JV. Hence r,, is a finite homogeneous substructure 
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of Jlr. Since G # A&(T), for all sufficiently large n, the setwise stabiliser of r, in G 

induces a group P, of permutations on r, such that 

But if IZ > max{%k,6}, this implies that AZt(T,)<P, (see [lo]). It follows that G is 

highly transitive, and hence G = S,vm(T). 

In [9], the notion of a smoothly approximated structure was introduced, and the 

primitive smoothly approximated structures were classified. Cherlin and Hrushovski 

have extended much of the theory of w-stable o-categorical structures to the more 

general class of smoothly approximated structures (see [S]). It is natural to ask whether 

the reducts of the smoothly approximated structures can be classified. Unfortunately, 

there is no reason why a reduct of a smoothly approximated structure should also be 

smoothly approximated. And, indeed, Evans [6] has found an example which shows 

that the class of smoothly approximated structures is nol closed under taking reducts. 

This suggests the following problem. 

Question 1.3. If _&’ is a smoothly approximated structure, under what conditions are 

all of its reducts also smoothly approximated? 

In [ 121, I studied the reducts of the random graph r= (V;E); i.e. the countable uni- 

versal homogeneous graph. The starting point of this work was [4], in which Cameron 

found the following three examples of closed permutation groups G such that A&(T) < 

G < Sym(T). 

Example 1.4. Let F = (V;i?) be the complementary graph of r; i.e. E = [V12\E. 

Then clearly r N 7. Hence if D(T) is the closed subgroup of Sym(T) consisting of 

all isomorphisms and anti-isomorphisms of r, then [D(T) : AU(T)] = 2. (Note that 

D(T) preserves the parity of edges in every 4-subset of r.) 

Example 1.5. If X, Y are graphs and A C: X, then a bijection rc :X + Y is a switch 

with respect to A if 

(1) rc preserves the adjacency relation for pairs of vertices in A and for pairs of 

vertices in X\A; and 

(2) rt does not preserve the adjacency relation for pairs of vertices of the form 

{a, b}, where a E A and b E X\A. 
(Of course, this means that rc is also a switch with respect to X\A.) Notice that if 

Tc:X - Y is a switch with respect to A CX and 4 : Y + Z is a switch with respect 

to B C Y, then 4 o rc :X + Z is a switch with respect to A n TC-‘[B] CX. (Here n 

denotes the symmetric difference.) In particular, the set 

S(T) = (7r E Sym(T) 1 TC is a switch with respect to some A G r} 

is a subgroup of Sym(T) such that Aut(T) <S(T) <Sym(T). 
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First we shall check that Ant(T) < S(T). Let A be any subset of r. Define the graph 

SWA(~) = (I’;&) by 

EA = (En [A]*) U (En [r\A]*) U {{a,b} 1 a E A, b E r\A, {a,b) $! E) 

Then it is easily seen that if A is any finite nonempty subset of r, then SWA(~) 2~ r. 

Let rt E Sym(T)\Aut(T) be an isomorphism from r onto SWA(~) such that z[A] = A. 

Then rc: r + r is a switch with respect to A. 

Next we shall check that S(T) # Sym(T). To see this, simply note that if rc E S(T) 

then n preserves the parity of edges in every 3-subset of r. In fact, it can be shown 

that 

S(r) = {Z E Sym(T) ] rc preserves the parity of edges in every 3-subset of r}. 

Hence S(T) is a proper closed subgroup of Sym(T). 

Notice that S(T) is generated as a topological group by 

(1) Aut(T), together with 

(2) the set of all rr E S(T) such that rr is a switch with respect to {a} for some 

v E r. 
This set of permutations does not generate S(T) as a group, since there exist infinite 

subsets A of r such that T\A is also infinite and swA(r) 21 r. 

Example 1.6. Let B(T) = (S(T), D(T)). Then B(T) is a proper closed subgroup of 

Sym(T). (Note that B(T) preserves the parity of edges in every Ssubset of r.) 

In [12], I proved that Cameron’s three examples are the only closed permutation 

groups G such that A&(T) < G < Sym(T). My published proof of this result used a 

mixture of combinatorics and group theory; and it seems to be very difficult to adapt its 

method to deal with the reducts of other homogeneous structures. Later I discovered a 

purely combinatorial proof. Using this new approach, my student James Bennett ([2]) 

managed to classify the reducts of the countable universal homogeneous tournament, as 

well as various other binary homogeneous structures. In this paper, I will use this purely 

combinatorial approach to classify the reducts of the countable universal homogeneous 

k-graphs for all k 2 1. (When k > 2, a k-graph is usually called a uniform hypergruph.) 

Definition 1.7. If k > 1, then a k-graph is a structure of the form (V; E), where E C 

[Vlk. 

Definition 1.8. For each k B 1, rk will denote the countable universal homogeneous 

k-graph. r, is also called the random k-graph. 

Thus ri is just a countably infinite set, equipped with a O-definable subset E such 

that both E and ri \E are infinite; and r2 is the random graph r. For each k 22, 

rk is the unique countable k-graph which satisfies the following property: 
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l Suppose that H is a finite subset of rk and that E 5 [Hlk-‘. Then there exists a 

vertex G’ E I’k\H such that for each S E [Hlk-‘, S U {II} is a k-edge of rk if and 

only if S E E. 

Cameron’s examples of closed groups G such that At(T2) < G < Sym(T2) can 

easily be generalised to rk for arbitrary k > 1. 

Definition 1.9. Let X, Y be k-graphs and let A E [Xl’ for some 0 6 i < k - 1. The 

bijection rc : X -+ Y is a switch with respect to A if for all B E [Ilk, 71 rB is an 

isomorphism if and only if A $ B. 

Example 1.10. If rc : X -+ Y is a switch with respect to 8, then rr is an anti- 

isomorphism. 

Remark 1.11. Suppose that A E [rk]’ for some Obi<k - 1. Let E be the set of 

k-edges of rk. Define the k-graph SWA(rk) = (rk;EA) by 

Then it is easily seen that SW&k) 2~ rk. Let 71 E SyVZ(rk)\AUqk) be an isomorphism 

from rk onto swA(rk) such that rr[A] = A. Then rc: rk 4 rk is a switch with respect 

to A. 

Definition 1.12. If X C{O, 1,. . ., k- l}, then &(rk) is the closed subgroup of Sym(rk) 

generated as a topological group by 

(1) A&(&), together with 

(2) the set of all rc E SYm(rk) such that there exists an i E X and a subset A E [&I’ 

such that rc is a switch with respect to A. 

Example 1.13. Thus Sa(rk) = Ant(&); and S{c}(rk) is the group of all isomorphisms 

and anti-isomorphisms Of rk. 

Definition 1.14. When X = {O,l,..., k - l}, we write B(rk) = &(rk). 

The following theorem is the main result of this paper. 

Theorem 1.15 (The Classification Theorem). Zf G is a closed permutation group such 

that AUt(r&G < Sym(rk), then there exists a subset X s{O, l,...,k - 1) such that 

G = &(rk). 

We shall study the main properties of the groups &(rk) and the associated reducts 

in Section 2. In this section, we shall just show that B(rk) # Sym(Tk); and obtain 

a useful characterisation of the elements of B(&). The following easy observation 

will be used repeatedly. Throughout this paper, m = n means that m - n is divisible 

by 2. 
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Lemma 1.16. Zf n 3 k, then SX(& ) preserves the parity of k-edges in every n-subset 

of r, if and only if n satisjies the following condition. 

(1.16): -_ 0 for all i E X. 

Proof. Let g E SX(&) be a switch with respect to the set A E [rkli, where i E X; and 

let H E [rkln. If A $& H, then g IH is an isomorphism. If A C H and B E [Hlk, then 

grB is not an isomorphism if and only if B is one of the (;I:) k-subsets of H such 

that A C B. Hence gtH preserves the parity of k-edges in H if and only if (:I:) E 0. 

The result follows. q 

Theorem 1.17. There exists an integer n > k such that B(rk) preserves the parity of 

k-edges in every n-subset of rk. In particular, B(rk) # Sym(rk). 

Proof. By Lemma 1.16, it is enough to show that there exists an integer n > k such 

that 

= (n-i)...(n-k+l) 
(k-i)! =O 

for all 0 <i Q k - 1. Clearly we can obtain such an integer n by letting n - k + 1 be a 

sufficiently high power of 2. q 

Definition 1.18. Let k> 1. An integer n > k is &&)-good if (:I;) = 0 for all O<i< 

k- 1. 

The following observation will be useful in many inductive arguments. 

Lemma 1.19. Let k32. Zf n is B(rk)-good, then n - 1 is B(rk_l)-good. 

Proof. For each Odidk - 2, (;I;::) = (Irlf:ii) = 0. 0 

There is also a converse result to Theorem 1.17 which characterises the elements of 

B( rk ) as parity-preserving maps. 

Theorem 1.20. Suppose that 7c E Sym(rk) and that there exists a &&)-good integer 
n such that z preserves the parity of k-edges in every n-subset of rk. Then ?c E B(rk). 

Clearly Theorem 1.20 is an immediate consequence of the following finite version. 

Proposition 1.21. For each B(rk)-good integer n, there exists an integer g(k,n) with 
the following property. Suppose that H is a jinite k-subgraph of rk such that 
IHI >g(k,n); and that II/ : H + rk is an injection such that II/ preserves the par- 
ity of k-edges in every n-subset of H. Then there exists an element 8 E B(&) such 
that 8lH = $. 
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Before proving Proposition 1.21, we need to introduce some important notation. 

Notation 1.22. Let k>2. Suppose that F E [rk]‘” and that v E &\F. Then the (k-l)- 

graph induced on F by v is defined to be F, = (F;E), where B E E if and only if 

B U {v} is a k-edge of rk. 

Now suppose that 4 : F U { } v -+ rk is an injection. Regard 4[F]@,,, as a (k - l)- 

subgraph of rk-1. Then C$ induces an injection 

(Of course, this map is only defined up to an embedding of c$[F]#(,, into rk_r. But 

this is good enough for our purposes.) 

Proof of Proposition 1.21. We shall argue by induction on k 2 1. First suppose that 

k = 1. Remember that ri is just a countably infinite set equipped with a O-definable 

subset E such that both E and T,\E are infinite. Let EC, = E and El = Tl\E. Then 

B(T,) = {n E Sym(T~) 1 ~[Eo] = Ei for some i E {O,l}}. 

It is easily checked that we can take g( 1,n) = n + 1 for each B(I’l)-good integer n. 

Now suppose that the result holds for some k 2 1. Let n be a B(rk+i )-good integer. 

Suppose that H is an extremely large finite (k + 1 )-subgraph of rk+i, and that $ : H 4 

rk+, is an injection such that Ic/ preserves the parity of (k + 1 )-edges in every n-subset 

of H. By Ramsey’s Theorem, there exists a large subset R of H such that $lR is either 

an isomorphism or an anti-isomorphism. In particular, $tR is induced by an element 

of B(rk+] ). Now suppose that R C S c H and that there exists 6 E B(rk+i ) such that 

01s = $ YS. Let v E H\S and let 4 = 8-l o $ YS U {v}. Note that if B E [S U {v}]~” 

and 4 /B is not an isomorphism, then v E B. Let S, be the k-graph induced on S 

by v, and let 4” : S, + rk be the map induced by 4. Since 4 preserves the parity 

of (k + 1)-edges in every n-subset of S U {u}, it follows that 4” preserves the parity 

of k-edges in every (n - 1)-subset of S,. By Lemma 1.19, n - 1 is B(&)-good. We 

can suppose that IS,l >g(k, n - 1). Hence 4” is induced by an element of B(&). It 

follows that # is induced by an element of B(fk+l). (For example, suppose that #,, 

is induced by a switch with respect to some subset A of S,. Then 4 is induced by a 

switch with respect to A U {v}.) Hence $ IS U {v} is also induced by an element of 

B(rk+l). Continuing in this manner, we see that there exists an element f) E B(&+l) 

such that iltH = t,b. 0 

This paper is organised as follows. In Section 2, we shall examine the groups &(rk) 

and the corresponding reducts of rk. In particular, we shall show that each of these 

reducts of rk is homogeneous with respect to a finite relational language. 

In Section 5, we shall prove that if G is a closed permutation group such that 

AUt(rk)6G<B(rk), then there exists a subset X &{O, l,...,k - 1) such that G = 

&(rk). In Section 6, we shall prove that if G is a closed permutation group such that 

Aut(rk)GG < Sym(rk), then GbB(rk). 
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As was mentioned earlier, our approach is purely combinatorial. This means that 

we actually prove a more general classification theorem: namely, we shall classify the 

nontrivial pseudo-reducts of rk. This notion will be introduced in Section 4. 

In Section 3, we shall introduce the notion of the strong finite submodel property; 
and we shall prove that it is possible to express r, = lJnEN R, as the union of a chain 

of finite k-subgraphs R, such that jR,+lI = jRnl + 1 and each R, is random. This result 

will be used in the combinatorial analysis of Sections 5 and 6. 

2. Some properties of the reducts 

In this section, we shall take a closer look at the closed subgroups ,Sx(Tj) and the 

corresponding reducts rk(X) of rk. (For the sake of definiteness, we take r,(x) to be 

the structure for the canonical language. See [5, Section 71.) In particular, we shall 

show that each of the reducts rk(x) is homogeneous with respect to a suitably chosen 

finite relational language. But first we shall consider the problem of deciding when 

&‘(&) = &(rk) for subsets X, Y C{O, l,..., k - 1). 

Example 2.1. StII(r3) = S{o,lj(fi). 

This can be proved as follows. Clearly S{ I 1 (r3 ) <A’{, I }(r3). Hence it &ices to 

prove that if R is a finite subgraph of rs, then there exists $J E S{,l(Ts ) such that 

4 rR is an anti-isomorphism. Let R = {VI,. . , Q}. Define elements q$ E Slil(Ts) for 

0 d i < t inductively as follows. 

40 = id, 

4r+l = ni+l O 4i, where ni+i is a switch with respect to $i(Ui+i). 

Since each B E [RI3 contains an odd number of vertices, it follows that 4t rR is an 

anti-isomorphism. 

Definition 2.2. If X C{O, l,..., k - l}, let C/k(x) be the largest subset Y C{O, l,..., 

k - 1) such that &(rk) = Sr(rk). 

The following result shows that if e E C/k(x)\x for some X G (0, 1, . . . , k - l}, then 

it is essentially for the same reason that 0 E cll( { 1)) in Example 2.1. 

Theorem 2.3. IfX G{O, 1 ,...,k - l} and Od/<k - 1, then the following are equiv- 
alent. 

(1) e E c/k(x). 
(2) For all n > k, if (;I:) G 0 for all t E X, then (;I:) E 0. 

(3) There exists t E X such that t >e and (f-i) z 1. 

We shall make use of the following lemma. 
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Lemma 2.4. If r, s, m are integers such that ~22 and m = 2’ - I > s, then 

(1) (‘f) = 1; 

Proof. It is well-known that (T) - 0 for all 0 < j < 2’. Hence, using the recursion 

formula 

(4+1’) = (j;l> - (“J’), 

we see that (“J’) = 1 for all 0 Q’ d 2” - 1. In particular, (T) z 1. Now suppose that 

1 di6.s - 1. Since (r) zz (7) 3 1, the formula 

m-i ( > (5) (3 _ 
s - i CT) 

implies that (:I*!) F (:). Cl 

Proof of Theorem 2.3. (1) + (2). Suppose that la > k and that (:I:) = 0 for all t E X. 

By Lemma 1.16, Sx(Tk) preserves the parity of k-edges in every n-subset of r’. Since 

rD E CPA(X), a switch with respect to an e-set must also preserve the parity of k-edges 

in every n-subset of rk. Hence (:I’/) = 0. 

(2)=+(3). Suppose that (2) holds, but that (:I,‘) = 0 for all ldt E X. In particular, 

we must have that 8$X. Let n be a natural number such that n - & = 2’ - 1 for some 

very large integer r. Then for all t E X such that t < /), we have that 

= (n - t) * * * (n - [8 - 1]) s.. (n - k + 1) =2 o 

(k - t)! 
- . 

Now suppose that t E X satisfies tc -K t&k - 1. Then s = k - f 22 and 2’ - I > s. 

Hence, by Lemma 2.4, (I;-$ = 1 and 

(;I:)=( i;I;;_i;:;;) z (:I:) zo. 

Thus I’~~:) = 0 for all c E X and (‘1::) E 1. But this contradicts the assumption that 

(2) holds. 

(3) =+ (1). This is just a slight generalisation of the argument of Example 2.1. Let 

R be a finite k-subgraph of r, and let A E [RI’. We must find an element 9 E Sx(Tk) 

such that (t, rR is a switch with respect to A. Let t E X be such that t > C! and (:I:) - 1. 

Let {B; / I <i <r) be an enumeration of the subsets B cz [R]” such that A C B. Define 

elements 4; E Sx(Tk) for 0 <i <r as f0110WS: 

$0 = id, 

4i+i = ni+l O A, where ni+i is a switch with respect to Cpi[Bi]. 



174 S. Thomas/ Annals of Pure and Applied Logic 80 (1996) 165-193 

For each D E [R]k with A c D, there exist (:I,‘) sets B E [RI’ such that A c B c D. It 

follows that &lR is a switch with respect to A. 0 

Next we shall show that each of the groups Sx(Tk) can be characterised as the sub- 

group of SYm(rk) which preserves the parity of k-edges in a suitably chosen collection 

of finite subsets of rk. Then we shall use this result to find a finite relational language 

L$ such that the reduct rk(x) is a homogeneous L$-structure. 

Theorem 2.5. For each X C (0, 1, . . . , k - l}, there exists a finite subset @i c N\k 

such that 

&‘(rk) = 9 E $'m(rk) C For all n E @$, g preserves the parity 

of k-edges in every n-subset of rk * 

Theorem 2.5 is an immediate consequence of the following finite version. 

Theorem 2.6. For each X L{O, 1,. . . , k - l}, there exists a jinite subset @i c N\k 

and an integer N such that the following conditions are satisjied. 

(1) 
(2) 

For all n E @i, n satisjes condition (1.16)$; i.e. (:I;) s 0 for all i E X. 
Suppose that H is a finite k-subgraph of rk such that IH] 3N; and that 
$ : H + l-k is an injection such that I/J preserves the parity of k-edges in 

every n-subset of H for all n E @i. Then there exists an element g E &(rk) 

such that grH = $. 

Proof. We argue by induction on k 2 1. The result is easily seen to be true when 

k = 1. (If X = 0, then we can take N = 1 and @i = (1). If X = {0}, then we can 

take N = 1 and @i = {2}.) So suppose that the result holds for k - 1, where k - 13 1. 

Case 1: Suppose that (r) E 0 for all i E X. By Lemma 2.4, there exists an integer 

a > k such that (t) a~ 1 and (:I:) E 0 for all i E X. In particular, a satisfies (1.16):. 

Let Y = {i-l 1 i E X}. (Notice that 0 4: X, since (t) = 1.) Let D = (m-i-1 1 m E @Fe’}. 
We claim that if N is a sufficiently large integer, then @i = D U {a} and N satisfy 

our requirements. 

First we check that (1) holds. So suppose that n = m + 1 E D. Then m satisfies 

(l.l6)k,-‘. Hence if i EX, then 

(;I;) = ( m-(i-l) ) =O. 

(k- 1)-(i- 1) 

Thus n satisfies ( 1.16);. 

Now we check that (2) holds. So suppose that H is a finite k-subgraph of rk such 

that IH] >N; and that $:H -+ rk is an injection such that II/ preserves the parity of 

k-edges in every n-subset of H for all n E ax. k By Ramsey’s Theorem, there exists a 

large k-subgraph S c H such that $YS is either an isomorphism or an anti-isomorphism. 

Since ISI > a and (z) = 1, it follows that II/IS must be an isomorphism. Now suppose 

that T is a k-subgraph of H such that S C T c H and such that $ IT is induced by 
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an element h E Sx(Tk). Let v E H\T. Let 4 = h-l o $, so that 4 IT = id. Let 7’,, 

be the (k - 1 )-graph induced on T by v, and let & : T, + rk-1 be the map induced 

by 4 1 T U {v}. Then & preserves the parity of (k - 1)-edges in every m-subset of 

T,. for all m E @F-‘. Since 1 T,,l is large, there exists an element 8 E sr(rk_ 1) such 

that f31TL = q&. It follows that $rT U {v} is induced by an element of sX(rk). Hence 

$ IT U {v} is also induced by an element of sX(rk). Continuing in this fashion, we see 

that there exists g E sX(rk) such that grH = $. 

Case 2: Suppose that there exists i E X such that (f) = 1. By the implication (3) + 

(1) of Theorem 2.3, 0 E &k(x) and so sX(rk) contains the set of anti-isomorphisms 

of rk. Let Y = {i - 1 10 < i E X}. We claim that if N is a sufficiently large integer, 

then @.[ = {m + 1 1 m E @b-‘} and N satisfy our requirements. Clearly (1) holds. 

The main point is to check that (2) holds. So suppose that H is a finite k-subgraph 

of rk such that IH 1 2 N; and that $ : H + rk is an injection such that $ preserves the 

parity of k-edges in every n-subset of H for all n E @i. By Ramsey’s Theorem, there 

exists a large k-subgraph S c H such that 1c/ IS is either an isomorphism or an anti- 

isomorphism. Since &(rk) contains both the isomorphisms and the anti-isomorphisms 

of l-k, $ /S is induced by an element h E &‘(rk ). Arguing as in Case 1, we see that 

there exists g E &(rk) such that grH = $. 0 

Theorem 2.7. For each X C{ 0, 1, . . . , k - 1 }, the reduct &(x) is homogeneous with 

respect to a finite relational language. 

Proof. Let @i c N and N E N be as in Theorem 2.6. Let t = max( @j U { N} ). For each 

orbit d of &(rk) on [rk(x)]’ for 1 666 t, let RA be a corresponding P-ary relation 

symbol; and let L$ be the resulting finite relational language. Then Theorem 2.6 implies 

that r’(X) is a homogeneous Li-structure. q 

3. The strong finite submodel property 

In this section, we shall introduce the notion of the strong finite submodel property 

(sfsp), and prove that rk has the sfsp. This result will be used in Sections 5 and 6. 

Definition 3.1. A countable structure _4!’ has the strong jinite submodel property (sfsp) 

if it is possible to express .A = UnErm IV& as the union of an increasing chain of 

substructures A4, such that 

(1) /M,/ = n for each n E N; and 

(2) for each sentence G such that & + 0, there exists an integer N, such that 

IV,, /= cr for all nbN,. 

Theorem 3.2. For each k 2 1, rk has the sfsp. 

My original proof of this result was very long and involved. But then Jeff Kahn 

pointed out that it is an easy consequence of the Borel-Cantelli Lemma. 
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Definition 3.3. If (A, 1 n E N) is a sequence of events in a probability space, then 

{A, i.o.} = n U Ak 
RErm [ 1 n<kEN 

is the event that consists of the realisation of infinitely many of the A,. 

Theorem 3.4 (The Borel-Cantelli Lemma). Let (A, 1 n E N) be a sequence of events 
in a probability space. Zf C,“=, P(A,,) < CO, then P({A, i.o.}) = 0. 

Proof. For example, see [3]. •i 

Proof of Theorem 3.2. It is easily seen that ri has the sfsp. So from now on, we 

shall suppose that k > 2. Remember that the theory Th(Tk) of the random k-graph is 

axiomatised by the set { +“, 1 t E N} of extension axioms, where 43 is the sentence 

which says the following: 

l For each e-set C and each EC [Clk-‘, there exists a vertex v @ C such that for each 

S E [ClkP1, S U {v} is a k-edge if and only if S E E. 

Let Sz be the probability space of all k-graphs of the form (0; E), where each set 

A E [elk is a k-edge independently with probability i. For each e < n E N, let Bf,, 

be the event that 

(n;E n blk) I+ 4% 

Then clearly 

Let f: o + w be a slow-growing nondecreasing function and let A,, = Bftn),,,. By 

choosing f appropriately, we can ensure that C,“=, P(A,) < CO, and hence that 

P({A, i.o.}) = 0. Thus there exists a k-graph (w;E) and an integer N such that 

(n; E n [nlk) b &,,, for all nBN. Clearly (w; E) N rk, and so rk has the sfsp. This 

completes the proof of Theorem 3.2. 0 

4. Pseudo-reducts 

In Sections 5 and 6, we shall classify the reducts of rk for all k 2 1. Our approach 

will be purely combinatorial, and no essential use will be made of the fact that we are 

dealing with a group of permutations of rk. The combinatorial content of this paper is 

best stated in terms of the more general notion of a pseudo-reduct. 

Definition 4.1. Let A be a countable structure. Then a pseudo-reduct of A is a set 

9- of functions which satisfies the following conditions. 

( 1) If rr E 9, then dom rc E [.&I Co and n : dom rc + .4 is an injection. 
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(2) If g E A&(&‘) and X E [A]‘“, then glX E 8. 

(3) If 7c E 9 and X G dom rc, then rt IX E 9. 

(4) If rc E 9 and dom rc C Y E [A’]‘“, then there exists 4 E 9 such that dom 4 = 

Y and 4rdornz = rc. 

(5) Ifrr,~EFandranrc=dom~,then~ozEF. 

Example 4.2. Let G be any group such that Aut(A)<G<Sym(A). Then 

F(G) = {gtX 1 g E G, X E [JH]<~} 

is a pseudo-reduct of A’. If G is the closure of G in Sym(A), then P(G) = F(E). 

Suppose that the pseudo-reduct 9 of A also satisfies the following condition: 

l If rcEB, then K’ ~9. 

Then an easy back-and-forth argument shows that there exists a group G such that 

Auf(A) d G <Sym(A’) and 9 = F(G). By choosing the maximal such group, we 

can suppose that G is a closed permutation group. In an earlier version of this paper, 

I asked whether every pseudo-reduct of a countable o-categorical structure A! arises 

from a closed permutation group in this fashion. However, the referee pointed out that 

this is not the case. To see this, we shall make use of the following characterisation 

of the pseudo-reducts of A. 

Definition 4.3. Let A be a countable structure, and let 

Inj(Jd)={c#~~:h! --+ A! is an injection}. 

Let 9 & Zj( A). 

(1) C(9) is the set of all maps n : J.@ + A such that rr = gr o . . . o gn for some 

g1,...,g, EAut(A)U9. 
(2) F(9) = (7cYX 17-c E C(3), x E [Jtq’w}. 

Proposition 4.4. Let A%’ be a countable structure. 
(1) IfS C Inj(A!), then F(9) is a pseudo-reduct of M. ( We shall say that F(Y) 

is the pseudo-reduct of A! generated by 9.) 

(2) Conversely, if F is any pseudo-reduct of A%‘, then there exists a subset 
9 CI~(JZY) such that 9 = P(9). 

Proof. Left to the reader. 0 

Now we can give the referee’s examples of some pseudo-reducts of rk which do 

not arise from closed permutation groups. 

Example 4.5. Let k 2 1 and let C be an infinite complete k-subgraph of rk. Let 

4 : rk + C be an injection, and let Fe = .F({4}) be the pseudo-reduct generated 

by (4). If E is a k-edge of &, then z[E] is also a k-edge for all rc E Fo. Hence 
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9, # S(Svm(Tk)). Suppose that G is a closed group such that A~t(&)<G<Syrn(Tk) 

and 90 = F(G). Let X, Y be finite subsets of r’ such that IX] = ]YI. Since 4[X], 

$[Y] c C, there exist g, h E G such that g[X], h[Y] c C. It follows easily that G is 

highly transitive. But this means that G = Sym(Tk ), which is a contradiction. (We can 

obtain similar examples by taking 4 : rk --f N to be an injection into an infinite null 

k-subgraph of rk.) 

Definition 4.6. Let k > 1 and let 9 be a pseudo-reduct of rk. Then 9= is said to be a 

trivial pseudo-reduct if either of the following two conditions hold. 

(a) For each X E [rklcw such that 1x1 > k, there exists n E 9 such that n[X] is a 

complete k-graph. 

(b) For each X E [rk]<“such that 1x1 2k, there exists rc E y such that rc[X] is a 

null k-graph. 

Example 4.7. Let k 2 1. Let r’ be the k-graph obtained from rk by changing exactly 

one k-nonedge into a k-edge. Then clearly rc N rk. Hence there exists $ E Sym(&) 

such that 

(1) there exists a k-nonedge A such that $[A] is a k-edge; and 

(2) $fE is an isomorphism for all E E [rklk\{A}. 

Let fi = 9( { $}) be the pseudo-reduct generated by { $}. Suppose that X is any 

finite k-subgraph of rk such that IX/ b k, and that B E [Xlk is a k-nonedge. Then there 

exists H E A&(&) such that fI[B] = A. Thus g = $ o 0 ]X E &, and a[X] has one 

less k-nonedge than X. Continuing in this manner, we eventually obtain an element 

7~ E 4 such that rr[X] is a complete k-graph. Arguing as in Example 4.5, we see that 

fl # B(Sym(rk)). In fact, we have the following proper inclusions 

of trivial pseudo-reducts. 

In Section 6, we shall prove that if 9 is a nontrivial pseudo-reduct of rk, then there 

exists a subset X C{O, 1, _ . . , k - 1) such that P = q(&(rk )). Clearly this implies 

Theorem 1.15. We end this section by dealing with the easy case when k = I. We 

shall make use of the following observation, which will also be used in Section 6. 

Lemma 4.8. Let k 3 1 and let F be a pseudo-reduct of rk. Suppose thut for each 

x E [rk]<” such thut 1x1 > k, there exists 71 E F such that n[X] is either u complete 
or u null k-graph. Then 9 is a triviul pseudo-reduct. 

Proof. Express rk = lJnEN X,, as the union of an increasing chain of finite k-subgraphs. 

We can suppose that there is an infinite subset I of N such that for each n E I, there 

exists TC,, E 9 such that nn[Xn] is a complete k-graph. This implies that if X is any 

finite k-subgraph of rk such that 1x1 >,k, then there exists rz E 9 such that n[X] is a 

complete k-graph. 0 
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Proposition 4.9. Zf 9 is a nontrivial pseudo-reduct of l-1, then there exists a subset 
XC(O) such that B = B(SX(I’I)). 

Proof. Let 9 be a nontrivial pseudo-reduct of Z,. Remember that Zi is just a countably 

infinite set, equipped with a O-definable subset Ea such that both Es and El = Tl\Eo 
are infinite. Since F is nontrivial, there exists X, E [Zi]‘” such that rt[Xa] $ Eo and 

n[&] $ El for all x E 9. First suppose that there exists a closed permutation group 

G such that Aut(Z, ) < G < Sym(Zi ) and P = 8(G). By Example 1.1, there exists a 

subset X C(O) such that G = Sx(Z’l ). 

So we can suppose that there does not exist a group G such that 9 = F’(G). 

Hence there exists an element II/ E 9 such that I+-’ @ 9. Using Definition 4.1(4), 

we can inductively construct an injective function g : r, + r, such that $ c g and 

{g r.Y 1 X E [r,] <,} & 2F. Since 9 is nontrivial, there must exist 

( 1) an infinite subset A & EO and an i E (0, 1) such that g[A] & Ei, and 

(2) an infinite subset B C El such that g[B] C El_,. 
Since I,-’ $ F, we must also have that 

(3) either there exists u E EO such that g(u) E EI_~, or there exists u E El such that 

g(u) E Ei. 
(Suppose not. Then g: Z-1 -+ g[Z’i] is either an isomorphism or an anti-isomorphism. 

But this implies that I+!-’ E 9.) Notice that A U B U {u} N r,. Hence, without loss of 

generality, we can suppose that Zi = A U B U {u}, and that u E Eo, g(u) E El _-i. Let 

P = {h E Sym(T,) 1 hlX E F for all X E [Zr]‘“}. 

Then g E P and k-’ o g o k E P for all k E Aut(Tl). Also if hl, h2 E P then 

hl o h2 E P. But this easily implies that for each X E [Zt]‘“, there exists h E P such 

that h[X] c El-i. This contradicts the fact that B is a nontrivial pseudo-reduct. 0 

5. Analysing parity-preserving maps 

In this section, we shall prove the following result. 

Theorem 5.1. Suppose that 9 is a pseudo-reduct of rk, and that X is the largest 
subset of (0, l,...,k - 1) such that q&(rk))c8. Then there exists an integer & 

such that whenever f E .F fl F(B(G)) and dom f k q$, then f E ?q%(rk)). 

In the statement of the above theorem, c#$ is the eth extension axiom in the usual 

axiomatisation of Th(T’) (see Section 3). From now on, fix a pseudo-reduct P of Zk, 

and let X C{O, 1,. . , k - l} be the largest subset such that F(!&(Zk)) s 9. Also fix 

a B(Zk)-gOOd integer 12. 

Lemma 5.2. There exists an integer N > n with the following property. Suppose that 
f E 9 satisjies 
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(1) ldomf] 2N; and 

(2) for all A E [domflN, ftA E F(Sx(rk)). 

Then f E F(Sx(&)). 

Proof. This is an easy consequence of Theorem 2.6. 17 

Now suppose that f E 9 n fl(B(rk)) and that dom f + 4”, for some extremely 

large integer /. In particular, ldom fl > N, where N is the integer given by Lemma 5.2. 

Let T E [dom flN be arbitrary. Then it is enough to show that f ]r E F(Sx(rk)). 

To accomplish this, we shall adjust f repeatedly via multiplication by elements of 

S(Sx(Tk)) until we eventually obtain an element h E 4 n R(B(rk)) such that hrT is 

an isomorphism. Our strategy is based upon the following lemma. 

Lemma 5.3. Suppose that h E Y(B(r,)) and that the following conditions hold. 

(1) U, T C dom h are disjoint subsets, and 1 UI > n - k. 

(2) Zf B E [T U ulk\[Tlk, then h rB is an isomorphism. 
Then htT is an isomorphism. 

Proof. Suppose that there exists C E [Tlk such that h tC is not an isomorphism. Let D E 
[UlflPk and consider h/CUD. Since htB is an isomorphism for all B E [C UDlk\{C}, 

h fails to preserve the parity of k-edges in the n-set C U D. But this contradicts the 

fact that B(Tk) preserves the parity of k-edges in every n-subset of rk. 0 

We shall make use of the following characterisation of X. 

Lemma 5.4. There exists a $nite k-subgraph H of rk with the following property. 
For each O<i< k - 1, i E X if and only if there exists a set A E [HI’ and an element 

f E 9 such that 

(1) dom f = H, and 
(2) f : H --+ r, is a switch with respect to A. 

Proof. Suppose that O<id k - 1 and that i 6 X. Then there exists a finite k-subgraph 

Hi of rk and an i-subset Aj E [Hjli such that 

l if f E 9 with domf = Hi, then f :Hi --f rk is not a switch with respect to Ai. 

Let oi be the sentence 

(V’al ...a,)(gbi . ..blH.I)‘Y(al,...,ai,bl,...,bl~,l) 

which says the following: 

(t)i For every i-subset A = {Uj 11 <j<i}, there exists an IHil-subset B = {bj / 

1 <j< IHil} such that 

(a) A cB, and 

(b) there exists an isomorphism n: B + Hi such that z[A] = Ai. 
Let cr be the sentence AieX di. Then rk k 0. Hence, by Theorem 3.2, there exists a 

finite k-subgraph H of rk such that H k CJ. Clearly H satisfies our requirements. 0 
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We shall also make use of the following rather technical notion. 

Definition 5.5. Let m > k. Suppose that f E F(B(Tk)) and that 2 = dom S satisfies 

IZI am. Then an m-analysis of f consists of a finite sequence of elements go, gr, . . . , g1 

of $(B(&)) which satisfies the following conditions: 

(1) go = f. 
(2) For each O<j< t - 1, there exists Yj E [Zlm and an element 0, E B(rk) such 

that 

(a) 0, is a switch with respect to some ii-subset Aj of Yj; 

(b) gjrYj =gjo...ogorYj; 

(c) gj+r = e;ll ran gj 0 . . . 
O 90. 

(3) gto”’ o go : Z + rk is an isomorphic embedding. 

As the above notion is quite difficult to understand, we shall now give an idea of the 

manner in which it will be used. Let H be the finite k-graph given by Lemma 5.4, and 

let m = IHI. Let f E PnS(B(Tk)) and suppose that Z = dom f satisfies IZI 3m. We 

want to show that f E F(sX(rk)). Suppose that we can find an m-analysis ga,gr,. . . ,gt 

of f with the further property that Yj N H for each 0 <j < t - 1. We shall show that 

ij E X and gj+l E y(sx(&)) for all 0 <j < t - 1. First consider the case when j = 0. 

Then 80 is a switch with respect to some io-subset A0 of Yo, and gorYc = go]Yo. Since 

Y. 11 H, Lemma 5.4 yields that io E X. Hence g1 = t&l /rang0 E y(sX(&)). Now 

consider the case when j = 1. Then 61 is a switch with respect to some ir-subset Al 

of Yr, and gr o go ]Yr = 81 ]Yr. Since gt o go E 9 and Yr 21 H, Lemma 5.4 yields 

that il E X. Hence g2 = 6;’ rrangt o go E s(!SX(rk)). Continuing in this fashion, 

we obtain that ij E X and gj+l E B(&!?x(rk)) for all 06 j < t - 1. This implies that 

g,:, E s(sX(rk)) for all 06 j< t - 1. Finally note that there exists an isomorphic 

embedding n:Z + rk such that 

f = go = g;] 0.. . 0 g,’ 0 7-c. 

It fOlloWS that f E y(&(r,)). 

The next lemma shows that f E F n F(B(rk)) has an m-analysis if ldom f 1 is 

sufficiently large. (However, it does not say that there exists an m-analysis such that 

Yj E H for all O<j< t - 1.) 

Lemma 5.6. For each m > k, there exists an integer s(k,m) such that whenever f E 

F(B(&)) satisfies ]dom f 1 >s(k,m), then there exists an m-analysis off. 

Proof. We shall argue by induction on k B 1. First suppose that k = 1. Remember that 

rt consists of a countably infinite set equipped with a partition EoUEl into two infinite 

subsets. Also 

B(Tr) = {rt E Sym(Tl) I z[Eo] = E, for some i E (0, 1)). 

Then we can take s( 1, m) = m. For suppose that f E F(B(& )), and that Z = dom f 

satisfies IZI am. Then f : Z + rl is either an isomorphic or an anti-isomorphic 
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embedding. Let go = f. In the former case, go is an m-analysis off of length t = 0. In 

the latter case, let YO be any m-subset of Z and let 00 E B(Tl) be an anti-isomorphism 

such that 80 1 YO = go 1 Yo. (Thus io = 0 and A0 = 0.) Let g1 = 0,’ trango. Then 

91 0 go tyo = id,, and so gl o go : Z + r, is an isomorphic embedding. Hence go, g1 

is an m-analysis of f of length t = 1. 

Now suppose that the result holds for some k 2 1. Let p be a B(rk+l )-good integer. 

Fix an integer m > k + 1. Let f E F(B(&+l)) be such that Z = domf is a very 

large subset of rk+l. By Ramsey’s Theorem, there exists a large subset R of Z such 

that f rR is either an isomorphism or an anti-isomorphism. First suppose that f/R is 

an anti-isomorphism. Choose any m-subset YO of R, and let 00 E B(&) be an anti- 

isomorphism such that 60 rR = f IR. (S o i. = 0 and A0 = 8.) Let g1 = 0;’ rran f. 

Notice that if f’ = g1 o f = g1 o go, then f’ rR is the identity isomorphism. Also 

if gh,. .., gi is an m-analysis of f ‘, then go, 91, gi,. . . , g: is an m-analysis of f. To 

simplify notation, we shall suppose that f tR is an isomorphism. Let u E Z\R and 

consider f tR U {u}. Note that if E E [R U {v}lk+ and f /E is not an isomorphism, 

then o E E. Let R, be the k-graph induced on R by v and let f o : R, + rk be the 

map induced by f rR U {v}. S’ mce f preserves the parity of (k + 1 )-edges in every 

p-subset of RU {u}, it follows that f c preserves the parity of k-edges in every (p - l)- 

subset of R,. By Lemma 1.19, p - 1 is B(rk)-good. Hence Proposition 1.2 1 yields that 

fL. E .F(B(rk)). We can suppose that jRYl >s(k,m - 1). Hence there exists an (m - l)- 

analysis Go,. . . , ijt of f o. Let pj E [Rulm-‘, ij & Fj and B]i E B(&), O<j< t - 1, be 

as in Definition 5.5. Then clearly f 1 PO U { } v is induced by a switch 00 E B(rk+l) 

with respect to & U (0). Let g1 = 0,’ rran(f rR U {u}). Continuing in this manner, 

we can convert go,. . . , Lj, into an m-analysis go,. , g1 of f tR U {u}. Let Bo, . . . ,8,_ I be 

the corresponding sequence of elements of B(rk+l ). By clauses 2(c) and 3 of Definition 

5.5, e,?, 0 . . . 0 0,’ o f tR U {v} is an isomorphism. Let R’ = R U {v} and suppose 

that w E Z\R’. Let h = e,y, 0.. . o 6,’ o f and consider h IR’ U {w}. Then h /RR’ is an 

isomorphism. Arguing as above, there exists an m-analysis g& . . . , gi, of h tR’ U {w}. By 

combining the m-analysis go,. . . , gI of f tR’ and the m-analysis gb, . , gi, of h tR’U {w}, 

we shall obtain an m-analysis of f /R’ U {w}. First we shall extend the domains of 

go, _. . ,gt so that they can form an initial segment of our m-analysis of f IR’ U {w}. 

Define g;, 0 <j< t, inductively by 

(1) g; = f tR’u 1~) 
(2) gT+, =Q,:ltrangT o...ogz. 

Then g; 0. . o g; = h rR’ U {w}. It follows that got,. . . , gp, g{, . . , gi, is an m-analysis 

of f tR’ u {w}. Continuing in this fashion, we eventually obtain an m-analysis of f. 

The result follows. 0 

We shall also make use of the following generalisation of Ramsey’s Theorem, which 

is due independently to Abramson and Harrington [l] and Negetfil and Rijdl [I 11. 

Definition 5.7. A system of colors of length n, a = (~0,. . . , an) is an (n + 1 )-sequence 

of finite nonempty sets. An a-colored set consists of a finite ordered set X and a 
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function r : [X] Gn + x0 U . . . U cl,, such that z(A) E ak for each A E [Xlk. For each 

A E [Xx]<“, t(A) is called the color of A. 

An a-pattern is an a-colored set whose underlying ordered set is an integer. This 

integer is called the length of the pattern, Each a-colored set is isomorphic to a unique 

a-pattern. 

Theorem 5.8. (Abramson and Harrington [l]). Given n,e,M E N, a system a of col- 

ors of length II and an a-pattern P, there exists an a-pattern Q with the follow- 
ing property. For any a-colored set (X,z) with a-pattern Q and any function F : 

[Xle + A4, there exists Y C X such that (Y, z 1 Y) has a-pattern P and such that for 
all A E [Yle, F(A) depends only on the a-pattern of (A,t /A). (We say that Y is 
F-homogeneous. ) 

Proof of Theorem 5.1. Suppose that f E 9 n y(B(rk)) and that dom f + 4: 

for some extremely large integer d. Let T E [dom flN, where N is the integer 

given by Lemma 5.2. Then it is enough to show that f r T E fl(t?X(r,)). 

Choose a very large k-subgraph Ua of domf such that the following conditions 

hold: 

(1) rnu,=0. 
(2) T U UO is a “sufficiently random” k-graph; i.e. for some suitably chosen t < 6, 

TUUo I=& 
(As usual, we will not define t explicitly. As the proof proceeds, the reader will see 

which extension properties we need.) 

Fix an ordering 4 of the vertices of T U (io, chosen so that T is an initial segment, 

and such that (T U UO; 4) is “sufficiently complex”. We will not define “sufficiently 

complex” explicitly, but we will give the reader some idea of what we have in mind. 

(The notion will become clearer as the proof proceeds.) If U’ is a k-subgraph of I,&,, 

then we shall say that (T U U’; 3) is “sufficiently complex” if the following conditions 

hold: 

(a) T U U’ is a “sufficiently random” k-graph. 

(b) (T U U’; 4) contains various ordered k-subgraphs which will be defined later. 

(c) (TUU’;<) IS such that we can make a certain number of successive applications 

of Theorem 5.8. (For example, (T U UO; 3) must be such that we can make 

21rl - 1 successive applications of Theorem 5.8.) 

For a suitable system of colors 01, define an a-coloring r of [UO] Gk by setting 

(3) $A) = z(B) iff IAl = (BI and the order-preserving bijection T U A -+ T U B is 

a k-graph isomorphism. 

Thus if Z C UO, then the a-pattern of (Z, r IZ) essentially consists of the type tp(ZI T) 

of Z over T. Now define the function Ft : [U,lk -+ (0, 1) by 

(4) F,(C) = 1 iff f r C is an isomorphism. 

Let Ul be a very large k-subgraph of UO such that (T U U,; 4) is still “sufficiently 

complex”. By Theorem 5.8, we can suppose that the a-colored set (UI, z IU,) is Ft- 
homogeneous. Finally define a function x on [U,lk such that 
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(5) x(C) = x(D) iff the order-preserving bijection 4 : T U C + T U D has the 

property that 

&A) is a k-edge ej A is a k-edge 

for all A E [T U Clk\{C}. 

Claim 5.9. Zf C, D E [ Ullk and x(C) = x(D), then f r C is an isomorphism if and 

only if f ID is an isomorphism. 

Proof. Suppose that C, D form a counterexample. (Since Ui is Ff-homogeneous, it 

follows that the order-preserving map T U C + T U D is not an isomorphism. Hence 

exactly one of C, D is a k-edge.) Without loss of generality, we can suppose that 

f 1 C is an isomorphism and that f 10 is not an isomorphism. Since (T U Vi ; -c) is 

“sufficiently complex”, there exist C’, D’ E [Ullk with the following properties: 

(i) z(C) = r(C’) and z(D) = z(D’). 

(ii) There exist subsets V, W c Ul such that the following conditions are satisfied: 

(a) C’cV,D’cWand]Vl=]wl. 

(b) Let 4: T U V t T U W be the order-preserving bijection. Then &C’] = D’, 

and 4 rE is an isomorphism for all E E [T U Vlk\{C’}. 

(c) The integer 1 V / is B(& )-good. 

In particular, z(E) = z(4[E]) for all E E [Vlk\{C’}. Since Ul is Ff-homogeneous, 

it follows that 

f 1 E is an isomorphism H f 1 I$[E] is an isomorphism 

for all E E [Vlk\{C’}. B ecause z(C’) = z(C) and z(D’) = z(D), we have that f 1 C’ 

is an isomorphism and that f 10’ is not an isomorphism. Let 

p = I{E E [Vlk I f tE is not an isomorphism}I 

and 

q=I{EW@If tE is not an isomorphism}I . 

Then we have shown that q = p + 1. But, by (c), f 1 V and f 1 W preserve the parity 

of k-edges in V, W respectively. Hence we must have that p = 0 and q F 0; which is 

a contradiction. 0 

Claim 5.10. Suppose that S,, S, C: UI and that ISI I = I&j. Let 4: T US, + T us2 be 

the order-preserving bijection. Suppose that 

4[E] is a k-edge iff E is a k-edge 

for all E E [T U Silk\[,Silk. Then 

f rE is an isomorphism iff f t4[E] is an isomorphism 

for all E E [Silk. 
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Proof. Simply note that x(E) = x(~[E]) for all E E [&lk. So the result is an immediate 

consequence of Claim 5.9. 0 

Claim 5.11. f r U1 E F(Sx(rk)). 

Proof. Let H be the finite k-graph given by Lemma 5.4, and let m = IHI. By 

Lemma 5.6, there exists an m-analysis of f 1 U1 ; say go, 91,. . . , gr E @(B(G)). 

Thus for each O< j=Gt - 1, there exists Yj E [Uilm and an element 0, E B(rk) such 

that 

(i) 90 =f t&i 
(ii) 0, is a switch with respect to some ii-subset Aj of Yj; 

(iii) Oj r rj = gj 0 . . . 0 g0 1 Yj; 

(iv) gj+l = 6;' ~ITiIlgjO~~~ 090; 

(v) gt o . . . o g0 : U, -+ rk is an isomorphic embedding. 

If {io, . . . , it_,} CX, then we are done. If not, then let j be minimal such that 

ij $ X. Thus ge E F(sx(rk)) for all 1 <L < j. Note that gj o . . o go 1 Yj is a switch 

with respect to the ij-subset Aj of Yj. Since (TU Ul ; 3) is “sufficiently complex”, there 

exists Y E [Ullm such that the following conditions are satisfied: 

(a) Y = H. 

(b) Let 4 : T U Yj + T U Y be the order-preserving bijection. Then x(E) = x(+[E]) 

for all E E [rjlk. 

By Claim 5.10, for all E E [Yjlk7 f r E is an isomorphism iff f 1 #El is an 

isomorphism. We claim that there exist g;,. . .,g; E F(sX(rk)) such that g; o .. . o 

g; o go ] Y is a switch with respect to the ij-subset 4[Aj] of Y. But then Lemma 5.4 

yields that ij E X. We shall define g; E F(Sx(rk)), 1 <e< j, inductively so that for 

all E E [Yjlk, ge o . . . o g1 o go r E is an isomorphism iff g; o . . . o g; o g0 1 $[E] is an 

isomorphism. In particular, g; o . . . o g; o go ] Y will be a switch with respect to the 

ij-subset $[Aj] of Y. Suppose that we have defined g:, . . . , &_, . 

Case 1: Suppose that Al-1 $ Yj. Then ge E p(sx(rk)) restricts to an isomorphism 

on gL-] 0 ... o gi o go[Yj]. So we can take g; to be the identity map on gF_, o . . . o 

$2; O YO[UI I. 
Case 2: Suppose that At-1 C Yj. Then ge E F(sX(rk)) restricts to a switch with 

respect to Se-1 0 ... 0 gi 0 g&-I] On gc_1 0 ... 0 g1 0 gc[Yj]. Let 8* E sx(rk) 

be a switch with respect to g;_, o . . . o g; o go[4[Ae-1]]. Then we can take g; = 

g* tg;_* 0. . .o sf 0 SO[Ull. 
This completes the induction. 0 

Choose 0 E sX(rk) such that 13 1 U, = f r U ,, and let h = 0-l of 1 T U Ul. Then 

h r E is an isomorphism for all E E [Ullk. This completes the first stage of the proof. 

Choose a vertex u E T and consider h 1 U, U {u}. Notice that if E E [U, U {u}]~ is 

such that h 1 E is not an isomorphism, then z, E E. Define the function Fh : [Ul]k-l -+ 

iO,l) by 
(6) Fh(C) = 1 iff h 1 C U {u} is an isomorphism. 
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Let U2 be a very large k-subgraph of Ui such that (T U UZ; -x) is still “sufficiently 

complex”. By Theorem 5.8, we can suppose that the a-colored set (Uz,r ]Uz) is Fh- 

homogeneous. 

Claim 5.12. Suppose that S,, SZ & U2 and that ISI 1 = /SI I. Let 4 : T U SI ---) T U S2 be 
the order-preserving bijection. Suppose that 

c$[E] is a k-edge iff E is a k-edge 

for all E E [T U Sllk\[S, U {v}]~. Then 

h tE is an isomorphism iff h t4[E] is an isomorphism 

for all E E [SI U {v}]~. 

Proof. Argue as in the proof of Claims 5.9 and 5.10. (Note that we are really only 

concerned about those E E [St U { v}lk such that u E E. If v $! E, then h 1 E and h t c$[E] 
are both isomorphisms.) 0 

Claim 5.13. h 1 U2 U {v} E F(SX(T~)). 

Proof. Let R = ( UZ)~ be the (k - 1)-graph induced on U2 by v, and let h, : R + rk_1 
be the map induced by h t 17, U {v}. Then h, preserves the parity of (k - 1 )-edges in 

every (n - I)-subset of R. By Proposition 1.21, h, E F(B(rk_1)). So, by Lemma 5.6, 

there exists an (m - I)-analysis &, . . . , @, of h,. Arguing as in the proof of Lemma 5.6, 

this yields an m-analysis go,. . ., gl of h r U2 U {v} with the following operty. For 

each 0 <j d t - 1, there exists 5 E [U2 U {v}]” and an element 0, E B(lk) such that 

(i) v E Yj for all Odj<t - 1; 

(ii) go = h 1 U2 u {v}; 

(iii) %j is a switch with respect to some ij-subset Aj of Yj such that v E Aj; 
(iv) Oj 1 Yj = gj 0 . ' ' o 90 r Yj; 

(V) gj+l =liT' ~EXlgjO~~~Ogo; 

(vi) gt 0 . . o go : 0; U {v} + rk is an isomorphic embedding. 

If {io,. . . , it_, } C X, then we are done. If not, let 0 d j 6 t - 1 be minimal such that 

ij Q! X. Note that gj 0 ‘.. o go r Yj is a switch with respect to the ii-subset Aj of Yj. 

Since (T U U2; 4) is “sufficiently complex”, there exists Y E [U2 U {v}lm such that the 

following conditions are satisfied. 

(a) v E Y. 
(b) Y NH. 

(c) Let 4 : T U (Yj\{V}) -+ T U (Y\(v)) be the order-preserving bijection. Then 

4[E] is a k-edge iff E is a k-edge for all E E [T U (Yj\{v})lk\[Yjlk. 

Note that 4(v) = v, and so 4[rj] = Y. Also Claim 5.12 yields that 

h /E is an isomorphism iff h t4[E] is an isomorphism 

for all E E [qlk. As in the proof of Claim 5.11, this implies that ij E X. 0 
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Using the fact that u E A, for each O< j< t - 1, we see that there exists Ic/ E Sx(Tk) 

such that 

(7) (a) $1 U2 U (0) = h 1 u2 U {o), and 
(b) $ ]E is an isomorphism for all E E [T U U# such that u $! E. 

Let h’ = I,!-’ oh 1 TU U2. Now choose a second vertex w E T\(u). Arguing as above, 

we find a very large k-subgraph Us of U2 such that (T U Us; 4) is still “sufficiently 

complex”, and an element t,V E Sx(Tk) such that 

(8) (a) $’ r U, U {IV} = h’ 1 Us U {IV}, and 

(b) $’ rE is an isomorphism for all E E [T U U31k such that w 6 E. 

Here clause 8(b) is of crucial importance. It means that rl/’ rE is an isomorphism for 

all of those k-sets E such that E f’ T = 8 or E n T = {v}. Thus when we next adjust 

h’ to h” = ($‘)-I o h’ 1 T U Us, we do not spoil the progress which we made with our 

earlier adjustments. Continuing in this fashion, we can deal successively with the other 

vertices z E T\{ v, w}. After this, we consider those k-sets E such that IE n TI = 2. As 

above, we can deal successively with each of the 2-subsets of T, without spoiling the 

progress which we have made for those k-subsets E such that IE fl TI 6 1. Then we 

can deal successively with each of the 3-subsets of T, and then each of the 4-subsets 

of T, etc. Eventually we obtain a large subset U* of U3 and a map h’ : T U U’ -+ rk 

such that 

(9) (a) there exists $* E sX(rk) such that h* = $* of 1 T U U*; and 

(b) h’ /E is an isomorphism for all E E [T U U*lk\[Tlk. 

Now Lemma 5.3 implies that h* 1 T is an isomorphism. Hence f r T E p(sx(rk)). 

This completes the proof of Theorem 5.1. 0 

We shall end this section with the following easy observation, which will be used 

in the proof of Theorem 6.1. 

Lemma 5.14. Let k> 1 and let X C{O, 1,. . ., k - 1). Then there exists an integer 

Ni with the following property. Let f E T(sX(rk)), and suppose that Z = dom f 

satisfies IZ] >N$. Suppose further that T E [Zlck is a subset such that 

($) if E E [Zlk and f 1 E is not an isomorphism, then T & E. 

Then there exists fI E sx(&) such that 

(a) 0 ]Z = f ]Z; and 

(b) [f E E [rklk and 0 rE is not an isomorphism, then T C E. 

Proof. We shall prove the following statement by induction on k 2 1. 

(5.14)k : For each X c{O, 1,. . ., k - l}, there exists an integer Ni with the following 

property. Let f E F(&(rk)), and suppose that Z = domf satisfies IZI >Ni. Suppose 

further that T E [Z] <k is a subset such that ($) holds. Then there exist elements 

i,&. . , I+& E sX(rk) such that the following conditions are satisfied: 

(1) $0 =id. 

(2) If 1 did t - 1, then $i is a switch with respect to some subset Ai such that 

$;pl 0 . o &[T] g A,. 
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(3) tit is an isomorphism. 

(4) rGto... OIGO tz=f. 
When k = 1, we must have that T = 0; and so the result is obviously true. Suppose 

that the result holds for k - 1, where k - 12 1. Let f E p(Sx(rk)), and suppose that 

Z = dom f is a very large k-subgraph of rk. Suppose that T E [Z] ik is a subset such 

that (I) holds. Clearly we can assume that T # 0. Let Y = {i - 1 IO < i E X}, and 

let @i, <p;-’ be the finite subsets of N given by Theorem 2.6. Then f preserves the 

parity of k-edges in every n-subset of Z for all 12 E @i. Also {M+ 1 1 m E @F-‘} G CD;. 
Let u E T and let Z’ = Z\(u). Let Zi be the (k - 1)-graph induced on Z’ by u, and let 

JO : Z: ---f rk-_l be the map induced by f. Since f IZ’ is an isomorphism, it follows 

that fv preserves the parity of (k - 1)-edges in every m-subset of ZL for all m E @F-l. 

By Theorem 2.6, fv E p(sY(&1)). Notice that if E’ E [Z:lk-’ and fv 1 E’ is not 

an isomorphism, then T\(v) GE’. By induction hypothesis, there exists a sequence 

of elements $d,. . . , $: E &(rk_1) which satisfies the COnChSiOn of (5.14)&_1 with 

respect to T\(u). It is now easy to convert this sequence into a sequence of elements 

I+$,),. . . ,I,& E sX(rk) which satisfies the conclusion of (5.14)k with respect to T. (For 

example, if &’ is a switch with respect to A’,, then $1 is a switch with respect to 

Ai = A{ U {II}, etc.) 0 

6. The classification of the pseudo-red&s 

In this section, we shall prove the following result. 

Theorem 6.1. Zf 9 is a nontrivial pseudo-reduct of rk, then there exists a subset 

XC{O,l,..., k - 1) such that 9 = F(sX(rk)). 

Proposition 4.9 dealt with the case when k = 1. So let k 2 2. For the rest of this sec- 

tion, we shall fix some nontrivial pseudo-reduct F of rk. Let X be the largest subset of 

{t&l,..., k - 1) such that F(sX(rk)) c F. Let 8 be the integer given by Theorem 5.1. 

Thus whenever f E 9 n F(B(rk)) and dom f k c#$, then f E p(sX(rk)). 

Lemma 6.2. If 9 C p(B(fi)), then B = F(sX(rk)). 

Proof. Let g E 9 be arbitrary. There exists f E 9 such that g G f and dom f + c#I”,. 

Then f E sq%&)), and so g E y(&(&)). 0 

From now on, we shall assume that 9 $ p(B(rk)). Eventually we shall derive a 

contradiction from this assumption. We shall make use of the following two lemmas, 

each of which witnesses the fact that F is a nontrivial pseudo-reduct. 

Lemma 6.3. There exists a jinite k-subgraph R. of rk such that lRol 2 k and such 
that for all 71 E 9, if Ro C dom n: then z[Ro] is neither a complete nor a null k-graph. 

Proof. This is an immediate consequence of Lemma 4.8. 0 
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Lemma 6.4. There exists a finite k-subgraph RI of Tk such that IR, 1 2 k and which 
satisfies the following property. Suppose that 71 E 9 and that Rt 2 domrc. Then 
there do not exist 1 di< k and A E [Rtli such that either of the following two clauses 

holds. 
(i) For all E E [R1lk, II 1 E is not an isomorphism tjjf E is a k-edge such that 

ACE. 
(ii) For all E E [R1lk, z ]E is not an isomorphism zff E is a k-nonedge such that 

ACE. 

Proof. Let Ro be the k-graph given by Lemma 6.3, and let r = IRoj. Let 1 <is k. Then 

there exist a k-subgraph Z! E [rk]’ and an i-subset A! of ZF such that the following 

holds: 

(1) (a) If i = k, then Ai is a k-edge. 

(b) Suppose that rc E % and that Z: & dom rc. Then it is not the case that for all 

E E [ZFlk, ‘IZ 1 E is not an isomorphism iff E is a k-edge such that A: GE. 

For suppose that no such ZF and A: exist. Let Z E [rk]r be any non-null k-subgraph. 

Let A E [Z]’ be arbitrary; subject only to the requirement that if i = k, then A is a 

k-edge. Then there exists zA E % such that nA ]Z is an isomorphism, except on those 

k-edges E E [Zlk such that A GE. So in passing from Z to nA[Z], we have “erased” 

precisely those k-edges which contain A. Continuing in this fashion, we eventually 

obtain an element n: E % such that n[Z] is a null k-graph. In particular, there exists 

rc E 9 such that n[Ro] is a null k-graph; which contradicts the choice of Ro. 
Similarly there exist a k-graph Z,’ E [rk]’ and an i-subset Af of Z,’ such that the 

following holds: 

(2) (a) If i = k, then AL is a k-nonedge. 

(b) Suppose that rc E 9 and that Z) C_ domrc. Then it is not the case that for 

all E E [Zj]“, 7~ r E is not an isomorphism iff E is a k-nonedge such that 

A; GE. 
Note that rk satisfies the following property: 

(3) For every E E (0, l}, 1 <i < k and i-subset A, there exists an r-subset Z such 

that the following clauses hold: 

(a) ACZ. 
(b) If i < k, then there exists an isomorphism r:Z + ZF such that r[A] = A;. 

(c) If i = k, E = 0 and A is a k-edge, then there exists an isomorphism z :Z --+ Zi 

such that z[A] = A!. 
(d) If i = k, E = 1 and A is a k-nonedge, then there exists an isomorphism z:Z -+ ZL 

such that z[A] = AA. 
By quantifying out A = {al,. . . , ai} and Z = {zi ,. ..,z,.}, we can express (3) by a 

first-order sentence. Hence, by Theorem 3.2, there exists a finite k-subgraph RI of r, 

which also satisfies (3). Clearly RI satisfies our requirements. 0 

In each of the applications of Theorem 3.2 which we have made so far, we have only 

used the fact that rk has the usual finite submodel property. We are finally approaching 
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the point in this paper where we will use the strong finite submodel property. Using 

Theorem 3.2, express rk = UiEN Hi as the union of an increasing chain of k-subgraphs 

such that 

(1) ]Hjl = j for all j E N; and 

(2) for each sentence cr such that rk k (T, there exists an integer N0 such that 

Hj k g for all j>N,. 

Lemma 6.5. For each j, n E N, there exist s, N E N such that the following is true 
for all t with N d t E N. 

(6.5) Suppose that Z E [H,]j and that Z P Hj. Then for each Y E [H,]“, there 
exists A4 E [H,r such that 
(a) YUZGM; and 
(b) there exists an isomorphism r:M -+ H, such that z[Z] = Hi. 

Proof. There exists an integer s such that for all Y E [&I’, there exists 0 E ht(rk) 

such that e[Y] & H, and 8 1 Hj = id”, . Let Z E [r,p satisfy Z y Hi, and let Y E [rk]” 

be arbitrary. Then there exists $ E Aut(rk) such that t,k[Y U Z] &H, and Ic/[Z] = Hi. 
Let M = (I/-’ [Hs] Then 

(a) Y UZCA4; and 

(b) T = IJ IA4 is an isomorphism from M onto H, such that r[Z] = Hi. 

Thus (6.5) is true if H1 is replaced by rk. By quantifying out Z = (~1,. . .,.zj}, 

y = {YI,..., y,} and M = (1121,. . , ms}, we can express (6.5) as a first-order property 

(r of HI. Since rk k 8, we have that H1 k CJ for all t >N = N,. Cl 

From now on, let n be a fixed B(rk)-good integer. Let g E F\F(&rk)). Then there 

exists f E B such that g&f and dom f = Hd for some extremely large integer d. 
(During the course of the proof, it will become clear how large d should be chosen.) 

We shall define inductively 

(1) a decreasing sequence do > d, > . . > dk of integers; and 

(2) a sequence of maps fa, . . . , fk E F\F(B(rk)) such that dom fi = Hd,. 
We shall also define an i-subset {ui,, . . . , ui} of Hd, for 1 <i < k such that the fol- 

lowing condition is satisfied: 

(S)i If E E [Hd,lk and fi 1 E is not an isomorphism, then {vi,. . . , uj} C E. 
We begin by setting do = d and fo = f. Now we shall describe how to find d,, j; 
and ~1. First choose a very large integer CO such that CO < do. 

Lemma 6.6. There exists a k-subgraph Z of HdO such that Z 2~ H,, and fo ] Z is 
either an isomorphism or an anti-isomorphism. 

Proof. By Theorem 5.8, there exists a finite k-graph Q with the following property: 

(t) Suppose that 1: [Qlk + (0, 1) is any 2-coloring. Then there exists a k-subgraph 

Z of Q such that 
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(b) if Et, E2 E [Zlk are k-edges, then X(EI ) = x(E2); 

(c) if Fr, F2 E [Zlk are k-nonedges, then I = x(F2). 

Since do is extremely large, we can suppose that Q C H&. Define a coloring 

x:[Qlk ---) ((411 by 

x(E) = 1 iff fc rE is an isomorphism. 

Let Z C Q be a k-subgraph which satisfies the conclusion of (t). Then one of the 

following conditions must hold. 

(i) fo YZ is an isomorphism. 

(ii) fo /Z is an anti-isomorphism. 

(iii) fo[Z] is a complete k-graph. 

(iv) fc[Z] is a null k-graph. 

Let Ro be the k-graph given by Lemma 6.3. Since CO is very large, there exists an 

isomorphic embedding R. + H,,. As Z 21 H,,, it follows that neither (iii) nor (iv) can 

hold; and so Z satisfies our requirements. 0 

Since fo f 9\9(B(rk)), Proposition 1.21 implies that there exists an n-subset Y 

of Hdo such that fa ] Y does not preserve the parity of k-edges in Y. By Lemma 6.5, 

we can suppose that there exists an integer s > CO and a k-subgraph M E [Hdo]’ such 

that 

(a) Y UZcM; and 

(b) there exists an isomorphism z :M -+ H, such that t[Z] = Hc,. 

For each cc <rn <s, let Z,,, = r -‘[H,J. By Lemma 6.6, fc ] Z,, E F(B(rk)). Let 

a be the greatest integer such that coda<s and f. r Z, E p(B(Tk)). Since Y CZ,, 

we have that a < s. Let Z,+r = Z, U {w}. Since a>co, Theorem 5.1 implies that 

there exists 0 E SX(~,)) such that 0 ]Z, = fc r Z,. We now define dt =a + 1, fr = 

0-l o f. o r-’ rHa+1 and ui = r(w). By the maximality of a, fc rZ,+t 4 B(B(Tk)). 

Thus fr E F\y(B(rk)). Clearly condition ($)I holds. 

Let 1 bi < k. Suppose inductively that we have defined di, fi E 9\9(B(G)) 

and {u’,,..., II:} C Hd, such that condition ($)i holds. Let T = {II;, . . , ui} and U = 

Hd, \T. Fix an ordering 4 of &, , chosen so that T is an initial segment. (As the 

reader will soon see, the ordering -X does not play a significant role in this ar- 

gument.) For a suitable system of colors a, define an a-coloring n of [U] Ck by 

setting 

(I) q(A) = q(B) iff IA] = IBI and the order-preserving bijection T U A -+ TUB is 

a k-graph isomorphism. 

Thus if R & U, then the a-pattern of (R, q 1 R) essentially consists of the type tp(R ) T) 

of R over T. Now define the function Fj : [Ulk-’ + (0, 11 by 

(II) F,(C) = 1 iff f, r C U T is an isomorphism. 

Let c, be a large integer such that ci < di. Then there exists an a-pattern P such that 

if (R,q 1 R) has a-pattern P, then T U R N H,,. By Theorem 5.8, there exists a subset 

U. of U such that 
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(III) (a) (UO, q t UO) has a-pattern P, and 

(b) (Uc, q 1 Uo) is Fi-homogeneous. 

Notice that if A, B E [U]‘-‘, then q(A) = q(B) iff T U A and 2’ U B are either 

both k-edges or both k-nonedges. (Thus the ordering + is unimportant from this point 

onwards.) Let Z = T U 170. Then Z N H,,, and one of the following conditions must 

hold. 

(IV) (i) f; 1 Z is an isomorphism. 

(ii) fi tZ is a switch with respect to T. 

(iii) For all E E [Zlk, fi tE is not an isomorphism iff E is a k-edge such that 

TGE. 

(iv) For all E E [Zlk, fi 1 E is not an isomorphism iff E is a k-nonedge such 

that T C E. 

Let Ri be the k-graph given by Lemma 6.4. Since ci is large, for each D E [H,,]’ 

there exists an isomorphic embedding $ : RI + Hc, such that D & $[RI]. As Z 21 H,!, 

it follows that neither (iii) nor (iv) can hold. Thus fi ]Z E F(B(I’,‘,)). 

Since & E 9\9(B(T,)), Proposition 1.21 implies that there exists an n-subset Y of 

Hd, such that fi 1 Y does not preserve the parity of k-edges in Y. By Lemma 6.5, we 

can suppose that there exists an integer s > ci and a k-subgraph M E [Hd,]s such that 

(V) (a) Y U Z GM; and 

(b) there exists an isomorphism r :M -+ H, such that r[Z] = H,,. 

For each ci <M <s, let Z,,, = 7-l [HJ. Let a be the greatest integer such that ci <a <s 

and fi YZ, EF(B(I”)). Then a <s. Let Z,+i = Z, U {w}. Since a>ci, Theorem 5.1 

implies that fi ]ZQ E S(Sx(Tk)). Remember that condition ($.)i holds. Thus Lemma 

5.14 implies that there exists an element 8 E SX(Tk) such that 

(VI) (a) 8 ]ZU = fi tZ,; and 

(b) if E E [I’,‘,lk and 8 tE is not an isomorphism, then T GE. 

Consider gi = 19-l o f;: ]Z,+i . 

Claim 6.7. Zf E E [Z,+llk and gi 1 E is not an isomorphism, then T U {w} C E. 

Proof. Suppose that E E [Z,+,lk and that gi 1 E is not an isomorphism. Then clearly 

w E E. Suppose that T $ E. By ($)i, h 1 E IS an isomorphism. Condition (VI)(b) 

implies that if B E [rk]& and 0-l 1 B is not an isomorphism, then e[T] 2 B. But 

t.?[T] = h[T]. Hence 8-l / fi[E] is an isomorphism, which is a contradiction. q 

We now define d;+i = a + 1, fi+t = 8-l o h o r-l 1 H,+1 and {$+I,. . . ,t(tt} = 

z[TU{w}]. Then A+i E 9\9(B(Tk)); and condition ($)i+i holds. But now consider fk. 
Since fk is not an isomorphism, it follows that fk I{ ~1,. . . , uk} is not an isomorphism. 

Thus fk satisfies the following condition. 

(VII) For all E E [Hd,lk, fk tE is an isomorphism iff E # {ut,. . . , vi}. 

Let RI be the k-graph given by Lemma 6.4. Since dk is large, there exists an 

isomorphic embedding $ : RI + Hdk such that {ul,. . . ,I$} c t&R,]. But now (VII) 

contradicts Lemma 6.4. This completes the proof of Theorem 6.1. 0 
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