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Abstract 

Artificial neural networks (ANNs) have been successfully applied to solve a variety of problems. This paper proposes a 
new neural network approach to solve the single machine mean tardiness scheduling problem and the minimum makespan 
job shop schedUling problem. The proposed network combines the characteristics of neural networks and algorithmic 
approaches. The performance of the network is compared with the existing scheduling algorithms under various experimen- 
tal conditions. A comprehensive bibliography is also provided in the paper. 
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1. I ,atroduction 

Over the last decade Artificial Neural Networks 
(ANNs) have been in many areas ranging from 
manufacturing and military to finance and marketing. 
Especially, successful applications of ANNs to vari- 
ous classification (i.e., pattern recognition) problems 
have caused growing research interests in neural 
networks. The ability to map and solve combinatorial 
optimization problems using neural networks has 
also motivated researchers since the beginning of 
ANN research. As a result of these investigations, 
several neural network models have been developed 
for a variety of optimization problems (e.g., travel- 
ling salesman and graph partitioning problems). 
These applications have demonstrated that ANNs 
may not be as effective as conventional OR tools, 
but their inherent parallelism (i.e., parallel process- 
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ing) offers some advantages in dealing with large 
scale optimization problems. 

Detailed discussions on neural networks and their 
applications are beyond the scope of this paper. The 
reader can refer to Burke and Ignizo (1992), Zahedi 
(1991), and Masson and Wang (1990) for an intro- 
duction to ANNs from the OR perspective. In addi- 
tion, the paper by Sharda (1994) provides a compre- 
hensive annotated bibliography of neural networks 
for M S / O R  professionals. There are also excellent 
survey papers on manufacturing applications (Udo 
and Gupta, 1994), combinatorial optimization prob- 
lems (Looi, 1992). The focus of our paper is on 
scheduling problems and their solution with neural 
networks. Specifically, we present a survey of the 
ANN literature pertaining to scheduling and develop 
a new neural network model to solve two well 
known scheduling problems. 

The rest of the paper is organized as follows. 
Section 2 provides a survey of the ANN scheduling 
literature. In Section 3, the detailed description of the 
proposed network is given. This is followed by 
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implementation of the proposed network in Section 
4. First, the proposed network is used to solve the 
single machine mean tardiness scheduling problem 
and then its computational results are presented for 
the job shop scheduling problem. Finally, concluding 
remarks are given and future research directions are 
identified in Section 5. 

2. Li tera ture  review 

In general, scheduling problems have received a 
lot of interests from ANN researchers. As a result, a 
number of neural networks have been developed to 
solve a wide range of scheduling problems. The 
exiting studies can be classified according to the 
following network structures (or types): 1) Hopfield 
model and other optimizing networks, 2) Competi- 
t ive networks, 3) Back propagation networks. 

The majority of the existing studies are based on 
Hopfield network or its extensions. T h i s  may be 
partly due to successful applications of Hopfield 
network to the Traveling Salesman Problem (TSP) 
and other optimization problems, Essentially, the 
Hopfield network (Hopfield, 1982) is a single lay- 
ered and fully interconnected neural network model. 
It is an optimizer in the sense that the states of the 
neurons are updated in a random and asynchronous 
manner to minimize the energy o f  the network. The 
most important part of any neural network imple- 
mentation is to find a proper map from the problem 
to the network. In the Hopfield case, this is accom- 
plished by coding both the objective function (i.e., 
soft constraints) and hard constraints (i.e., constraints 
of the original problem) into a single energy function 
with appropriate connection weights. For example, 
the TSP is mapped by Hopfield and Tank (1985) to a 
two dimensional neuron matrix using N neurons, 
where N is the number o f  cities. 

Foo and Takefuji (1988a,b) have utilized the Hop- 
field approach to map the nlm job  shop scheduling 
problem to an mn by (mn + 1) 2D neuron matrix. In 
this formulation the energy function is composed of 
hard constraints (i.e., precedence and resource con- 
straints) and the cost of total completion times of all 
jobs. The method has been applied to several 4[3 job 
shop scheduling problems. In their later work, Foo 
and Takefuji (1988c) represented the same problem 
as an integer linear program and developed a Hop- 

field based network called an integer linear program- 
ming neural network (ILPNN). With this new formu- 
lation, the total number of neurons in the network 
was reduced to nm(nm + 1)/2. Zhou et al. (1990, 
1991) further improved the performance of ILPNN 
by unifying the indices of operations and machines 
to obtain simpler integer programming representation 
of the problem. In a later study, Van Hulle (1991a,b) 
replaced the single objective o f  ILPNN by several 
objectives to design a goal programming network. 
This network was also used for job shop scheduling 
problems. The further discussions on the Hopfield- 
based networks and their applications to scheduling 
problems can be found in Lo and Bavarian (1991), 
Gulati and Iyengar (1987), Arizono et al, (1992), 
Vaithyanathan and Ignizo (1992), and Johnston and 
Adorf (1992) . . . . .  

In competitive networks, t he  inhibitory links are 
established as a result of competition rather than 
being determined initially as in the hopfield case. In 
designing such a network, one usually develops 
equations of motion for  the elements of the problem 
and defines an appropriate energy function to show 
the convergence of the network. Indeed, this network 
type has not received enough attention from ANN 
scheduling research. There are only two;reported 
applications o f  competitive networks (Fang and Li, 
1990; Pellerin :and Herault, 1994). Whereas, back- 
propagation networks (BP nets) have been used more 
frequently. :Especially, their generalization property 
has: been explored to find the: relationship between 
problem :data and optimal schedules (Sabuncuoglu 
and Hommertzheim, 1992; Hayes and Sayegh, 1992), 
to determine the :proper value of a look ahead param- 
eter of a job priority rule (Kim and Lee, 1993), and 
to establish adequate weights between an operational 
policy at the work center level and the overall per- 
formanCe measure  o f  : a manufacturing~ system 
(Chrysso!ouris et al., 1:991), They have also been 
used together with OR andAI  tools in an integrated 
manner for realtime scheduling systems (Rabelo et 
al., 1993; Yih et al., 1993). 

In the ANN literature, another related topic is 
simulated annealing (SA). SA is not a neural net~ 
work. But it has proved to be useful in some o f  the 
neural network applications. In general, the neural 
networks discussed in this paper minimize some 
function during either the learning process (e.g., 
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error function in a BP network) or the recall process 
(e.g. energy function in a Hopfield network). The 
problem with the conventional search methods (e.g., 
gradient descent) is that once a local optimum is 
detected, further improvements cannot be made. As a 
stochastic search method, SA just tries to overcome 
this problem. For that reason, it has been applied 
successfully to various scheduling problems (Osman 
and Potts, 1989; Potts and Van Wassenhove, 1991). 
The interesting readers can also refer to Van 
Laarhoven et al. (1992) to see how the SA algorithm 
asymptotically converges to a global minimum solu- 
tion. 

In summary, all these studies showed that 
scheduling problems can be attacked by neural net- 
works. At present, the neural network approach may 
not seem to be competitive with the conventional OR 
algorithms in terms of the quality of solutions and 
computational times. However, their inherent paral- 
lelism (i.e., parallel processing) offers some advan- 
tages that should be explored in the future research 
work. It is also observed that the majority of the 
scheduling applications of neural networks are based 
on the Hopfield network. There are only few applica- 
tions of competition based networks. Although the 
exiting applications of ANNs yield promising results, 
they still inherit the problems of the Hopfield model 
in the TSP applications (i.e., feasibility problems and 
excessive computation times on the large size prob- 
lems). Moreover, performances of these networks 
have not been adequately measured. In most of the 
cases, they were applied to simple instances of 
scheduling problems. Because there is a lack of 
objective comparisons between ANNs and OR based 
scheduling algorithms, it is hard to judge on their 
relative performances. Hence, there is a need for 
further experimental studies to test performances of 
ANNs under various conditions, in addition to the 
existing research efforts to develop new neural mod- 
els for scheduling and other combinatorial optimiza- 
tion problems. 

3. The proposed network 

In this section, we describe the structure of a new 
neural network model developed for scheduling 
problems. The proposed model is similar to the 
Hopfield network, but yet there are some noticeable 

differences. The main difference is that it has an 
additional external processor to monitor and control 
evolution of the network. With this processor, the 
network is also forced to converge to a final solution 
after a certain number of iterations. In our case, the 
network is emulated on a traditional computer which 
employs sequential algorithms for ANN implementa- 
tions. Here, the extemal processor is used to accom- 
plish parallelism in the proposed network. The physi- 
cal (i.e., electronic) equivalent of the proposed net- 
work might eliminate this processor with its parallel 
architecture, but our aim is not to design such a 
physical ANN. 

In the proposed model, the hard constraints (i.e., 
feasibility constraints) of the problem are also 
dropped from the energy function and both feasibil- 
ity and cost calculations are carried out by this 
external processor. Hence, as compared to the Hop- 
field model, most of the interconnections are elimi- 
nated and the network is simplified. The network 
also possesses a "competi t ion" property. With this 
property, the neurons (representing jobs in schedul- 
ing problems) are allowed to compete with each 
other to get the first available position in the se- 
quence. 

In the proposed model, a sequence of jobs (tasks) 
on a given machine (resource) is represented by an 
n x n neuron matrix. In this representation, each row 
refers to a job and each column indicates a position 
in the sequence (or schedule). Since each job can 
occupy at most one position, the final feasible solu- 
tion matrix has only one activated neuron at each 
row and column with the rest of the elements are 
zero (i.e., a permutation matrix). In what follows, we 
define the state of a n e u r o n  ai, j = 1 when it is 
activated (i.e., job i is assigned to the jth position), 
ai,j= 0 when it is deactivated (i.e., job i is not 
assigned to the jth position). If  the activation value 
is between 0 and 1 (i.e., 0 < ai. j < 1) then it means 
that job i is assigned to the jth position with a 
probability of ai j .  In the single machine scheduling 
case, having a final matrix as a permutation matrix 
gives a solution for the problem (Fig. 1). 

In the job shop scheduling problem, there are m 
matrices corresponding to m machines. Hence, we 
define a three dimensional matrix of size m × n X n. 
As a notation, we call such an n × n matrix that 
represents a machine, a layer. Again, each row 
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Fig. 1. A neural matrix and the resulting schedule for a three job 
problem. 

indicates an operation of a job and each column 
indicates a position of this operation in the sequence 
of that machine. 

In general, the Hopfield-based networks use in- 
hibitory connections to achieve feasibility. In the 
proposed model, this is partially achieved by normal- 
ization (i.e. dividing activation values o f  each neuron 
by the sum of the activation values of its row and 
column in the matrix). Moreover, the activation val- 
ues of the neurons are passed from a sigmoid func- 
tion so that some of neurons get stronger and the rest 
get weaker. Hence, neurons compete with each other 
to win the first available position in the sequence. 
During this competition process, the sum of each 
row and column are kept constant (i.e., one) so that 
only one neuron with the highest activation value in 
each row and column reaches to 1 while get zeros. 
At the end of the process, the neural matrix becomes 
a permutation matrix and a final feasible schedule is 
decoded. In the formulation, the set of positions that 
has only one neuron with the activation value 1 and 
others 0 is called Partial Sequence Positions (PSP) 
set. Thus, the neuron matrix becomes a permutation 
matrix when all positions of the schedule are  added 
into the PSP set. 

In addition to feasibility, the network searches for 
a minimum energy level corresponding to the value 
of a cost function (i.e., makespan or mean tardiness). 
Both starting with a suitable initial neuron matrix 
and evolution of neurons are required to obtain good 
solutions. In our case, initialization of the network is 
a problem specific issue and will be discussed in the 
applications below. During the evolution of the net- 
work, the external processor makes interchanges of 
two randomly selected rows corresponding to the 

: . . . .  7ZZS222ZZZS222Z2Z2~ 

t . . . . . . . . . . . . . . . . . . . . . . .  t 

PROPOSED NETWORK 

Fig. 2. A Hopfield-network and the proposed Network. 

positions o f  two jobs in the sequence of a machine. 
In the job shop case, machines are also selected 
randomly as well as jobs. The energy (or cost) for 
each interchange is computed by this processor. I f  
the energy of the network is improved after this 
interchange, then the new state of network is used. 
Otherwise, the neurons assume their previous states 
and the same process is repeated. In the job shop 
case, an annealing procedure is also applied. Accord- 
ing to this procedure if the energy of the network 
does not  decrease for some number of  iterations, an 
interchange that causes an increase of energy up to 
10% is accepted, But the previous minimum energy 
state is saved in the memory in case that a lower 
energy state is not reached by the network again. 

As compared to the Hopfield networks, the  pro- 
posed network is not a fully connected graph. There 
is a lso  an external processor to support the network 
operations. As seen in Fig. 2 and Fig. 3, connections 
o f  the: proposed network are directed edges  that 
transfer the activation values of neurons correspond- 
ing to the positions of jobs in the sequence. Also, all 
neurons are connected to  the external processor by 
directed edges to provide communication between 
the network and the processor. 

MACHINE 1 MACHINE 2 

PROCESSOR 

Fig. 3. The proposed network for the job shop problem. 
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The basic functions of this external processor are 
as follows: 

(i) Sequentially selecting two random rows during 
the  interchange process, where all neurons in those 
rows are involved in the decision process and af- 
fected; in traditional Hopfield network emulations a 
single neuron is randomly selected and involved in 
the process. As a result, the external processor pro- 
vides a higher level parallelism in our implementa- 
tion. 

(ii) During the interchange process rows may 
violate the normalized matrix of neurons (i.e., feasi- 
bility). The normalization is enforced by the external 
process so that the feasibility constraints can be 
removed from the ANN model. The external proces- 
sor is entitled to monitor and change the neuron 
values when necessary, to keep the matrix normal- 
ized. 

(iii) Additionally, the external processor is in- 
volved in calculation of the expected cost (i.e., en- 
ergy function) as it can monitor the overall network. 
It is much easier and faster for the external processor 
to calculate the expected cost in the emulation model. 

4. Applications o f  the proposed approach 

In this section, the structure and computational 
requirements of the proposed approach are discussed 
in detail using the single machine mean tardiness 
scheduling problem and the minimum makespan job 
shop scheduling problem. These two problems were 
selected because they are the most studied NP-hard 
problems in the scheduling literature. 

4.1. Single machine mean tardiness problem 

The single machine mean tardiness problem is 
defined as follows: a single machine is to process n 
jobs with known processing times ( p )  and due dates 
(d). All the jobs are ready at time zero. Tardiness is 
the positive lateness a job incurs if it is completed 
after its due date and the objective is to sequence the 
jobs to minimize the mean tardiness. This problem 
has been recently proved to be NP-hard (Du and 
Leung, 1990). In general, research efforts in the 
single machine mean tardiness problem have fol- 
lowed two approaches: optimization and  heuristics. 

In the former approach, several exact methods based 
on implicit enumeration have been developed (Fisher, 
1976; Schrage and Baker, 1978). The current limit 
on solvability of this problem is around 100 jobs. In 
the second track, various heuristic procedures have 
been proposed ranging from simple dispatch rules to 
more sophisticated algorithms (Panwalker et al., 
1993; Potts and Van Wassenhove, 1991; Wilkerson 
and Irwin, 1971). 

In the proposed approach, the neuron matrix may 
not be a permutation matrix at the beginning and 
intermediate stages of the evaluation process due to 
the random initialization of the activation values. For 
that reason, the external processor computes ex- 
pected mean tardiness, E[T], rather than exact mean 
tardiness. Assuming a i j  is the probability of assign- 
ing job i to the jth position and using pl and d i as 
the processing time and the due date of job i respec- 
tively, the expected mean tardiness (or the energy 
function to be minimized) is defined as follows: 

E[T] ~_, max(O'E[Ci]-di) 
= (1) 

i = 1  n 

where E[C i] is the expected completion time of job i 
and it is calculated as 

E[Ci] = j~=laiJ~l ~=1 k=l~aklPi+aiJPi 

o r  

j - I  

gEe, I= E % E Ea.pk +p, (2) 
j = l  l = 1  k=l 

since 
n 

E ai j  = 1 
j=l 

Since the number of positions added into the PSP 
set increases as the network evolves, the cost is 
computed faster as the algorithm proceeds. The com- 
plexity of the proposed model is mainly determined 
by the complexity of calculating the cost. In our 
case, the initial neuron matrix gives a completely 
infeasible schedule due to random initializations of 
the neurons. This brings O(n 2) complexity in the 
worst case because the double sum over n is used for 
calculating E[Ci]. However, when the neuron matrix 
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produces a completely feasible schedule (or permuta- 
tion matrix) at the end of the process, this complex- 
ity is reduced to O(n). 

During early development stages of the prorosed 
network, pilot experiments have been performed to 
set the values of parameters (i.e., temperature and 
shift parameters of the sigmoid function). In addi- 
tion, three alternative ways of network initialization 
have been investigated. These are: (1) randomly 
activated neurons, (2) randomly activated neurons 
biased to SPT (shortest processing times) sequence 
(i.e., the activation values of the neurons correspond- 
ing to the SPT sequence are higher than others), (3) 
randomly activated neurons biased to EDD (earliest 
due dates) sequence in which case the activation 
values of the neurons corresponding to the EDD 
sequence are relatively higher than others. The re- 
sults of the experiments indicated that the second 
type of initialization performs well when the tardi- 
ness factor (TF) is smaller than 0.6, otherwise the 
third is a better choice. Here, tardiness factor mea- 
sures the expected proportion of tardiness in a given 
job population. The procedure of the proposed ap- 
proach is as follows: 

Procedure 1. 
Step 1. Initialize the neuron matrix as explained 

above. 
Step 2. Pass the activation values of the jobs from 

the following sigmoid function: 

1 

dij= e x p ( - ( a i j -  S ) / T )  

,where S and T are the shift and the temperature 
parameters, respectively. 

Step 3. Normalize the neuron matrix as: 

a'ij = alj// ~ aik 
k=l 

for rows first and then 

a'ij = aij// ~ akj 
k=l 

for columns. 
Step 4. Compute the value of the energy function 

(i.e.,_ expected tardiness) as 

~ ,  max(O, E[Ci] - di) 
E[T] 

i = 1  n 

Step 5. Select two rows (jobs) randomly, inter- 
change their activation Values and compute the en- 
ergy function again. 

Step 6. If  the energy function is improved accept 
the new state, else return it to the previous state. 

Step 7. Periodically (after a predetermined num- 
ber of iterations), select a column beginning from the 
first position in the schedule. Assign the neuron with 
the highest activation value to 1 and make other 
neurons 0 in the selected column (i.e. one more 
position is included in the PSP set). 

Step 8. Normalize the neuron matrix again. 
Step 9. If  the matrix is still infeasible go to step 2, 

else go to step 10. 
Step 10. Even though, all positions of the neuron 

matrix are feasible repeat the steps 2 through 9 for 
some number of iterations and stop. 

Step 7 is included in the procedure to reduce the 
excessive computations that may b e  required by the 
neurons to converge to 0 or 1 states. The number 
iterations at which this step is invoked has been 
determined as a result of the pilot simulation experi- 
ments (about 10000 randomly generated problems 
were solved). It was noted that this number is a 
function of a constant multiplied by  the problem size 
n. During these experiments, it w a s  also observed 
that the number of iterations required to obtain a 
permutation matrix is a square function of the num- 
ber of jobs n. 

The Step 10 is included to obtain further improve- 
ment in the performance of the network. Essentially, 
at this step we perform a simple neighborhood search 
with random job interchanges. 

4.1.1. Performance evaluation and experimental re- 
suits 

The relative performance of the proposed network 
is measured against two phase algorithm of Wilker- 
son and Irwin (WI). The W-I algorithm was selected 
for comparisons because i t  is generally used  as a 
benchmark in the relevant literature. The other rea- 
son was that its code is readily available. Both the 
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Fig. 4. The geomet~¢ shapes of the data types. 

proposed network and WI were coded using C pro- 
gramming language and run on SUN Spark 2 work- 
stations. 

In the previous studies, test problems have been 
generated from the uniform distributions by using 
two problem parameters: TF (Tardiness Factor) and 
RDD (Range of Due Date). TF measures the rate of 
expected proportion o f  tardiness of jobs and is calcu- 
lated as T F =  1 -  d/(n~). The second parameter 
RDD defines the range of due date and is computed 
a s  (dma  x - d m i n ) / / n p  whereff  is the average process- 
ing time of the jobs and d, dmin,  and drnax a r e  the 

average, minimum and maximum due dates, respec- 
tively. Thus, a geometric shape of the data when 
mapped onto a two dimensional graph (x-axis: pro- 
cessing times, y-axis: due dates) usually resembles a 
rectangular shape. In this study, we also used other 
data types such as linear + ,  l i n e a r - ,  V-shaped + ,  
and V-shaped-  Fig. 4). No research to date has 
studied WI or other single machine scheduling algo- 
rithms for these problem characteristics. In all of the 
test problems, processing times were generated from 
the uniform distribution with the range of 100. Due 
dates were also sampled from the uniform distribu- 

Table 1 
Comparison of Wl and the proposed network on the single machine problem 

Data type Problem size W I / T  W I / C  A N N / T  A N N / C  %A 

Rectangular 50 jobs 235.86 0.30 232.76 51.25 1.32 
Rectangular 100 jobs 913.26 68.51 899.15 626.09 1.54 
Linear + 50 jobs 191.50 0.01 191.43 50.99 0.04 
Linear + 100 jobs 742.56 0.05 742.45 640.14 0.01 
Linear - 50 jobs 321.29 1097.1 306.96 58.14 4.46 
V-shaped + 50 jobs 237.25 0.09 236.51 57.73 0.31 
V-shaped + 100 jobs 921.07 15.04 917.80 624.05 0.35 
V-shaped - 50 jobs 240.81 4.26 232.48 50.50 3.46 
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tion with the ranges specified by TF and RDD 
parameters. 

In the experiments, we used two problem sizes 
(i.e., n = 50 and n = 100). For each of the five data 
types, values of TF and RDD were varied between 
0.1 and 0.9. Ten random samples (or replications) 
were taken at each  experimental point that resulted 
in total of 2 x 5 X 5 x 5 × 10 = 2 500 test problems. 
Table 1 summarizes the results in terms of the mean 
tardiness and the computation time (in seconds). 
W I / T  and A N N / T  represent the mean tardiness of 
WI and the proposed network. Whereas W I / C  and 
A N N / C  stand for computation times of WI and the 
proposed model, respectively. The symbol %A indi- 
cates the percentage of improvement in mean tardi- 
ness of the  proposed method over WI. 

The results in Table 1 showed that the proposed 
approach improves the mean tardiness from 0.01% to 
4.46%. However, i t  requires more computation times 
than WI. Note that the largest improvement in tardi- 
ness was achieved for the linear data type. As indi- 
cated by Tansel and Sabuncuoglu (t994, 1996), this 
data type is one of the hard data patterns that proba- 
bly makes the problem intractable; We also know 
from previous studies that an opposite pattern of the 
previous data type (i.e, linear + ) defines one of the 
easy problem instances which qualify SPT optimal- 
ity. As shown in Table 1, the smallest improvement 
was obtained by the network for this data type. 

A Confidence Interval (CI) approach was also 
used to determine whether differences in mean tardi- 
ness performances of the methods are statistically 
significant. As shown in Table 2,  the test results are 
significant in favor of the proposed method at et = 

Table 2 
Confidence interval (CI) tests for the relative mean tardiness 
difference between the proposed method and WI 

Data type Problem size Lower Upper 
limit limit 

Rectangular 50 jobs 0.509 5.698 
Rectangular 100 jobs 1.624 26.595 
Linear + 50 jobs 0.027 0.109 
Linear + 100 jobs 0.051 0.153 
L inea r -  50 jobs 5.146 23.508 
V-shaped + 50 jobs 0.294 1.178 
V-shaped + 100 jobs 0.062 6.466 
V-shaped - 50 jobs 1.814 14.845 

0.05. This is because none of confidence intervals 
constructed by using the paired-t approach contained 
zero. The CI approach gives more information than 
the corresponding hypothesis testing. It does not only 
indicates the significance but also gives magnitude 
of the observed differences. As can be noted, the 
95% CI ranges in Table 2 are very wide even though 
the proposed network produces better results than 
WI in most of the test problems. This is mainly due 
to the variance of performance differences between 
the methods. 

4.2. The job shop scheduling problem 

After obtained the promising results from the 
proposed network on the single machine scheduling 
problem, it has been applied to the minimum 
makespan job shop scheduling problem. This prob- 
lem is defined as follows: a shop consisting of m 
machines is to process n jobs with a general process 
flow in a minimum total completion time. Jobs 
consist of  m sub jobs, called operations each of 
which: requires a specified machine for an uninter- 
rupted duration, called its processing time. All the 
jobs are ready at time zero. The objective is to 
determine a set of start and completion times of each 
operation such that the time required to complete all 
the jobs (i.e: makespan) is minimized. This problem 
is also o n e  o f  the most studied problems in the 
literature that there are a number of exact algorithms 
and heuristicS for  its solution (Adams et al., 1988; 
Lageweg et al., 1977; Lawrence, 1984). 

The neural network proposed for this problem is 
an extension of the previous network used for the 
single machineschedul ing  problem. Again, the 
schedule is determined by using the neural matrix 
wi th  n × n nodes. But this time, there are m matri- 
ces corresponding to  m machines (or layers). In the 
job shop case, having a permutation matrix at each 
layer (i.e. satisfying resource constraints) is not suffi- 
cient for the feasibility of the overall problem. Any 
feasible schedule must also satisfy precedence con- 
straints. 

In the present approach, in order to satisfy the 
precedence constraints the network (m of n X n 
neuron matrices) is initialized using the following 
procedure: first, all of the activation values are set to 
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0 and the first operation of each job is activated at 
the first position of its corresponding layer (or ma- 
chine represented by an n × n matrix) based on its 
job routing. Since there may be more than one 
operation activated in that position (i.e., a machine 
has to process more than one part at the same time), 
we may produce an infeasible schedule. In order to 
overcome this problem, when two or more jobs 
demand for the same position on a machine, addi- 
tional positions are made on that machine so that 
each demand from an operation is fulfilled by a 
single position; hence each position in the sequence 
receives a single demand. By this way, the number 
of positions allocated on the machine will be equal 
to the number of operations assigned to that particu- 
lar machine. When the above procedure is applied to 
each each layer, the positions in the layers contain at 
least one activated neuron as each of the n jobs 
visits each machine once. For that reason, this initial 
state eliminates the possibility of scheduling more 
than one operation to a machine at the same time. 
Then the network is normalized and evolution of the 
network proceeds. Note that the proposed network 
only provides the sequence of operations for each 
machine. As a result, it is not possible for the 
network to propose an infeasible schedule in terms 
of precedence constraints. These sequences are fur- 
ther processed by the external processor to determine 
starting and ending times of each operation. 

In the proposed method, the PSP set is again used 
to compute the energy of the network. Initially, the 
PSP set is an empty set. In order to place new 
positions in the PSP set, the following procedure is 
applied periodically and sequentially to every posi- 
tion beginning from the first position: select a col- 
umn that corresponds to the position to be included 
in the PSP set for each layer. The neuron with the 
highest activation value in the column is determined 
and its state is set to 1 while the states of others are 
set to 0. If  there are two or more neurons having the 
s a m e  activation values, one of the neurons is ran- 
domly selected. In order to calculate the makespan of 
the partial schedule at any intermediate stage, start- 
ing time of an operation is assigned to the maximum 
of the completion times of operations preceding it. 
These starting times are updated until no overlaps 
and any local shifts exist. The largest completion 
time of the scheduled operations is the energy of the 

network (i.e. the makespan). At the end of the 
evolution of the network, each layer becomes a 
permutation matrix (i.e., all the positions are in- 
cluded in the PSP set) and the external processor 
produces a schedule (i.e., a Gantt chart is developed 
by using the sequence on each machine). The energy 
of the network corresponds to the makespan of the 
schedule generated. 

The evolution of the network is carried out similar 
to the single machine case (i.e., based on inter- 
changes of the operations). However, machines are 
also selected randomly. Moreover, an annealing pro- 
cedure is also applied to improve the performance of 
the network. According to this procedure, if the 
subsequent interchanges do not reduce the energy of 
the network for some number of iterations, cost 
increase up to 10% is permitted while keeping the 
minimum current schedule in the memory. This helps 
the network to escape from a possible local minima. 
If  the cost is not reduced as a result of annealing, the 
network is returned back to the previous state. 

Although the evolution of the network is basically 
similar to the single machine case, there are some 
differences. These are: (1) initialization procedure, 
(2) computation of the energy function, (3) the addi- 
tional machine selection procedure, and (4) applica- 
tion of an annealing procedure. The proposed net- 
work uses the following procedure to obtain a feasi- 
ble solution. 

Procedure 2. 
Step 1. Initialize the neuron matrix as explained 

above. 
Step 2. Add the first two positions to the PSP set. 
Step 3. Normalize the neuron matrix of each layer 

and compute the energy function. 
Step 4. Select a machine and two rows (jobs) 

within the PSP set randomly, interchange their acti- 
vation valugs and compute the energy function. 

Step 5. If  the energy function is improved by the 
new state assume the new state, else return back to 
the previous state. 

Step 6. Periodically (after some number of itera- 
tions), select a column from every layer beginning 
from the first position of the job routing. Add this 
position in the PSP set, i.e., the neuron with the 
highest activation value is assigned to 1 and other 
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neurons are assigned to 0 in the selected column. 
Normalize the neuron matrix again. 

Step 7. If  there are still operations not included to 
the PSP set, go to step 4, else go to step 9. 

Step 8. Even though, all operations are added into 
PSP set, repeat steps 4 through 8 for some number of  
iterations and stop. 

As in the case of  single machine case, pilot 
experiments were also performed to  determine val- 
ues of  some of  the parameters. These were: (1) the 
duration of  the period after which a position is 
included in the PSP set, (2) the percentage deviation 
that is allowed during annealing, and (3) the number 
of  iterations. The first parameter is set automatically 
by the network in terms of  a time period during 
which the energy of  the network decreases. As speci- 
fied previously, the second parameter is set to 10%. 
During initial experiments it was also observed that 
the number of  iterations is directly proportional to 
size of  the problem. Hence, after several trials this 
parameter was set to L × m × n (m is the number of  
machines, n is the number of  jobs, L is a constant). 
The current value of  L is 5 000 because i( yields 
satisfactory results with the problems tried ~in this 
study. Similarly, when the makespan of  the schedule 
is computed at the beginning of  procedure, the com- 
plexity of  computing cost is directly proportional to 
m. At the end of  the evolution, however, the com- 
plexity becomes O(mn 2) due t o  m updates of  n 
operations on m machines. 

4.2.1. The performance of  the proposed network on 
job shop problems 

The performance of  the proposed method has 
been measured on a number of  job shop scheduling 
problems. The problems given by Applegate and 
Cook (1990)were  used in the experiments. In Table 
3, the item "problem reference" indicates the iden- 
tity of  the problem. For example, the problem which 
is named, MT06 is the problem number 6 c i ted by 
Muth and Thompson (1963). Similarly, ABZ ' s  are 
cited by Adams et al. (1988) and L A ' s  are cited by 
Lawrence (1984). 

In all these problems, the number  of  operations of  
each job equal the number of  machines and each job 
has exactly one operation on each machine. The 
results in Table 3 showed that the proposed approach 

Table 3 
Performance 
problems 

of the proposed method on job shop scheduling 

Problem Problem Optimum ANN ANN/T 
reference size result (s) 

MT06 616 55 55 280 
LA01 10 [ 5 666 666 920 
LA02 10 [ 5 655 655 920 
LA03 10 ] 5 597 604 920 
LA04 10 [5 590 590 920 
LA05 10 [ 5 593 593 920 
LA06 1515 926 926 2300 
LA07 15 [5 890 890 2300 
LA08 15 [ 5 863 863 2300 
LA09 1515 951 951 2300 
LA10 1515 958 958 2300 
LA11 20 [5 1222 1222 3700 
LA12 2015 1039 1039 3700 
LA13 2015 1150 1150 3700 
LAI4 2015 1292 1292 3700 
LA15 2015 1207 1207 3700 
MT20 2015 1165 1165 3700 
MT10 10110 930 940 6800 
ABZ5 10110 1234 1239 6800 
ABZ6 10 [ 10 943 947 6800 
LA16 10110 945 946 6800 
LA17 10110 784 786 6800 
LAI9 10110 842 842 6800 
LA20 10110 902 907 6800 
LA29 15110 1032 1032 19172 

gives very promising results. It found the optimal 
solutions in 18 out of  25 problems. The problems for 
which optimal solutions were found are the problem 
sizes 6 16, 15 15, 20 15 and 15110. In one of  the five 
10t5 job shop problems, a near optimal solution was 
found with 1.2% deviation from the optimality. The 
near optimal solutions were also found in six of  the 
seven 10110 job shop problems w i t h t h e  average 
0.04 percentage deviation from the optimality. It was 
also observed that the computational requirements of  
the algorithm increases polynomial with respect to 
the size of  the problem. In our approach, the number 
of  iterations and the computational requirements per 
iteration are the same for any problem with the same 
size (i.e., same m and n).  However,  there might be 
some differences in the computational times for the 
problems that have the same size due to~ some ran- 
dom iterations added to recover f rom local mini- 
mums. Unfortunately, the computational times pre- 
sented in Table 3 have the accuracy 10 seconds 
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except the last experiment which has the accuracy of 
2 seconds. Hence, the fluctuations of the computa- 
tional times between the same size problems are not 
observable in the experimental results. But those 
fluctuations are not more than 10 seconds for the 
problems of the same size. 

5. Concluding remarks 

In this paper, ANN scheduling literature has been 
reviewed and a new neural network model has been 
proposed. The performance of the proposed network 
has also been measured on various test problems. In 
general, the results are very encouraging. It generates 
better solutions than WI for the single machine 
problem and finds the optimum solutions for most of 
the selected problems of the shop job scheduling. 
Continuing research is now being directed toward 
improving the performance of the network and de- 
veloping a hybrid OR/ANN methodology that in- 
corporates both qualitative and quantitative aspects 
of scheduling problems. 
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