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Abstract-The radiation from circular cylindrical reflector 
antennas is treated in an accurate manner for both polarizations. 
The problem is first formulated in terms of the dual series equa- 
tions and then is regularized by the Riemann-Hilbert problem 
technique. The resulting matrix equation is solved numeridy 
with a guaranteed accuracy, and remarkably Little CPU time is 
needed. The feed directivity is included in the analysis by the 
complex source point method. Various characteristic patterns are 
obtained for the front and offset-fed reflector antenna geometries 
with this analysis, and some comparisons are made with the 
high frequency techniques. The directivity and radiated power 
properties are also studied. 

I. INTRODUCTION 

OR electrically large reflectors, high frequency techniques F such as the aperture integration (AI) and the geometrical 
theory of diffraction (GTD) are commonly employed for 
predicting the far-field radiation characteristics of reflector 
antennas. Recently, in the papers of Suedan and Jull [l], 
[2], it is demonstrated that the complex source point (CSP) 
method can be successfully used in combination with AI or 
GTD to take account of source directivity in reflector antenna 
simulations, since the replacement of the real coordinate of a 
uniform source with the complex one generates a beam field 
in real space [3]. Both AI and GTD, however, have well- 
known intemal shortcomings for reflector antenna problems. 
The former gives less accurate results off the main beam and 
completely fails in shadow region. The latter, oppositely, is 
not applicable in main beam direction. That is why, usually, 
one has to compose the results of two methods without any 
clear rule of choosing the matching point. Although these 
high frequency techniques are applicable to many practical 
problems, the range of validity of the results, in terms of 
acceptable accuracy, is unpredictable. 

Provided that the reflector is not electrically large, more 
accurate results can be obtained by numerical techniques such 
as method of moments (MOM). Normally, the matrix size 
involved in computations with this method is 10-30 times 
the parameter D/X, where D is the reflector dimension, and 
A is the wavelength. If the entire-domain basis functions 
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are used [4], the matrix size can be smaller, but the matrix 
filling time increases impressively. In any case, the accu- 
racy and convergence properties are quite dependent on the 
implementation. 

Thus, there is still a need for a technique for the analysis and 
simulation of the reflector antennas with any desired accuracy. 
We present such a technique for circular cylindrical reflectors 
in which the dual series formulation is used in combination 
with the complex source approach. The aim is to demonstrate 
the unique opportunities offered by using this combination. In 
the core of the analysis, there lays the idea of regularization, 
i.e., a partial inversion of original integral operator. In our 
treatment, the inverted part of the integral operator is its static 
part. First, we reduce the problem to dual series equations 
[5]-[7] for surface current expansion coefficients. Then, we 
extract certain canonical equations and solve them exactly 
using the Riemann-Hilbert problem technique. The details of 
this approach, as it is used here, can be found in [7]-[9]. The 
resulting matrix equations enable one to conclude two facts of 
primary importance. First, the exact solution (of infinite matrix 
equation) really exists and second, it can be approximated 
with a desired accuracy (within digital precision) by solving 
truncated equations of large enough order. Actually, in far-field 
computations with the uniform accuracy of 0.1 %, the needed 
matrix size is onIy 6D/X plus 5-10 for a realistic front-fed 
reflector with 60 degree-wide aperture. 

To use the conventional dual series approach for the sim- 
ulation of reflector antennas, one has to restrict the reflector 
geometry to a circular cross section. Although actual reflectors 
are of parabolic shape, the aperture dimensions compared to 
focal distance are often rather small. This offers a way to 
approximate the parabola by a part of a circle with great 
accuracy and thus avoid the modification of the method. 

The organization of the paper is as follows. In Section I1 
we discuss the formulation of the problem. Section 111 is 
concerned with the approximation of a parabolic reflector 
by a circular one and the range of validity of such an 
approximation. In Section IV, we derive basic equations 
and discuss their advantages. The formulas for the far-field 
radiation patterns, total radiated power, and directivity are 
presented in Section V. Section VI presents the numerical 
results obtained for far-field radiation patterns of front-fed and 
offset reflectors excited by magnetic or electric type sources. 
The comparison with the available results of AI and GTD is 
given. The effect of varying the directivity of the source and 
that of increasing the size of the reflector is illustrated. The 
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Fig. 1. A circular reflector antenna geometry and the truncation error de- 
pendence on the matrix order for two sample geometries: ka = 100 (dashed 
curve) and ka = 150 (solid curve), BO = 0, B,, = 30 degrees, kb = 9. 

frequency dependences of radiated power and directivity are 
given and discussed showing the effect of the feed directivity 
and aperture dimension. Finally, principal conclusions are 
given in Section VII. 

The time dependence e-Zwt is omitted throughout the anal- 
ysis. 

11. FOFUWLATION 

A general two-dimensional (2-D) reflector antenna geometry 
is shown in the inset of Fig. 1. The perfectly-conducting 
reflector M is a part of a circle of radius a. The reflector has 
zero thickness and angular width 28,, with the central point at 
Bo which is the offset angle. For a front-fed reflector, 00 = 0. 

The radiation pattern of the primary line source feed is 
characterized by using the CSP method [1]-[3]. It is known 
that main radiation beams of most antennas are Gaussian near 
the beam axis, and so the idea of analytic continuation of the 
real source position to the complex space has been found to 
be extremely fruitful. In our structure, the source is placed at 
the geometrical focus, i.e., .'o (a/2)a; in real space, and its 
directivity is characterized by b, so that the complex position 
vector becomes 

The real number b is a measure of the source directivity, and 
the aiming angle p measured from the x-axis represents the 
beam direction. For the front-fed reflector case ,L? = 0. 

Depending on the polarization, we denote by u(7) the H ,  
or E, component of the field. The total field utot(7) can be 
written as the sum of the incident uin(3 and the scattered 
~""(3 fields. The incident. field due to the line source of 
amplitude C at the complex position r', is given by 

where IC = w / c ,  and H,$')(lcr) is the Hankel function of the 
first kind. With the use of the addition theorem for the Hankel 
functions, it can be written as 

uin(r, Cp) = c J,(lcr,)H~)(lcr)ei"('P-'.), r > I T = [  

(3) 

00 

n=--00 

where 

r,  = drf + 2irob cos p - b2 

e, =  COS-^ (4) 

with the condition of Re (r , )  > 0. 
The complex source is a model of a radiating aperture where 

the aperture width is 2b [2]. Furthermore, as explained in [lo, 
p. 1501, it can be thought of as a cylindrical source in real space 
located at d = T< with the radius I bl. For some geometries, the 
reflector surface may be in the near zone of the feed antenna, 
but expression (3) is valid both at near and far zone of the 
feed as far as T > lrSl is satisfied. A note should be made that 
function (2) is an exact solution of the Helmholtz equation; this 
is unlike Gaussian-type exponents frequently used to represent 
beam waves. 

To obtain the rigorous solution of the problem, the scattered 
field has to satisfy the Helmholtz equation, the Neumann or 
Dirichlet type boundary condition on the screen depending on 
the H- or E-polarization, the Sommerfeld radiation condition, 
and the Meixner condition at the reflector edges. These require- 
ments guarantee the uniqueness of the solution and, moreover, 
the existence in a certain class of functions [ l l ,  p. 1161 for 
any smooth open contour M. 

The scattered fields can be expressed in integral form as 
a single-layer or double-layer potential over M. Then, the 
following equations are obtained by imposing the boundary 
conditions 

H-Polarization 

E-Polarization 

-uZn(F, 2) = jE(J)Go(.', ,)dJ; ?'E M (6) 

where n' is the outer unit normal, j ~ , ~ ( 7 )  are the unknown 
current densities, and Go(.',,) is the 2-D Green's function 
(i.e., z/4Hh1)(kld - .'I)). 

Equations (5) and (6) are widely known, as well as the 
MOM-based solutions of them. It is worth noting that to reduce 
the singularity of the kernel, (5) can be transformed into a 
form similar to (6) [12, p. 671. Conventional MOM solutions 
using sub-domain triangle or pulse basis functions, however, 
lead to matrixes of the order N = lO(D/X) to 30(D/A). 
A more reasonable choice of basis functions like a series of 
sinusoids as in [4] may result in a much smaller matrix size, 
but it also drastically increases the filling time due to massive 
numerical integrations for matrix elements found as certain 

s, 
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inner products. In general, as (6) is a Fredholm equation of 
the first kind, it is ill-posed, and so the convergence of direct 
solutions to it is not guaranteed when N + 00. 

For these reasons, it is recommended to regularize (5) 
and (6),  i.e., to convert them to the Fredholm form of the 
second kind. A most straightforward way to achieve this 
is to make use of Tikhonov' s numerical self-regularization 
approach. This idea was exploited in [12] for a number of 
2-D and three-dimensional (3-D) axially-symmetrical open 
surfaces. Here, the convergence of MOM-type algorithms is 
ensured. Nonetheless, all the previous remarks about the 
matrix size (at least lOD/A) and CPU time are valid. 

The indicated problems can be overcome provided that the 
analytical regularization can be performed. The basic idea 
is extracting a certain part of the integral operator which is 
invertible analytically and inverting numerically the remain- 
ing part. Regularization ensures the existence of an exact 
solution and justifies application of a MOM-like numerical 
algorithm which is stable and has a pointwise convergence. 
As for the efficiency, i.e., memory requirements and CPU 
time, it depends on the scatterer shape which determines 
the matrix elements. In case of M being an open circular 
contour, all the matrix elements can be obtained explicitly. 
This procedure is equivalent to a judicious choice of basis 
functions in MOM-solution (as special series of trigonometric 
functions [7, p. 4301) possessing orthogonality, satisfying the 
edge condition in term-by-term manner, and allowing to take 
inner-product integrals analytically. If the reflector is not 
circular, a similar approach can be developed, but the matrix 
elements must be found by numerical integration. Thus, the 
advantages of the regularization in a circular geometry compel 
us to apply it to practical reflectors. 

HI. &'PROXIMATION OF A PARABOLIC 
BY A CIRCULAR REFLECTOR 

Parabolic reflector operation is based on the well-known 
feature of the infinite parabolic surface to focus a plane wave 
to a certain fixed line. By reciprocity, if a line source is placed 
at the focal line, the secondary field has a planar wavefront 
independent of the polarization. If the reflector contour is only 
a part of a parabola, however, then the resulting edge spillover 
and diffraction cause the scattered field not to be a plane wave 
anymore. Instead, it is a cylindrical wave, and the total pattern 
contains a main beam and a number of sidelobes. To decrease 
the effect of edges, it is preferable to increase the reflector size 
and to lower the amplitude of the primary field at the edges. 
In fact, this is the main reason for selecting a directive source 
as a feeder. 

It is equally well-known that if the focal distance F of a 
parabolic arc is large enough with respect to the reflector aper- 
ture D, this arc may be well approximated by a circular one 
of the radius a = 2 F  [ 131. Let us denote the axial deviation of 
such a circle from the parabola (i.e., the geometrical error) as 
A(8) Corresponding to the angular position 8. This function A 
monotonically increases with 8, so that the maximum deviation 
is achieved at the reflector upper edge where 8 = e,, + Bo. 
Further, this discrepancy between the parabola and the circle 

I 
1 0 0 2 0 0 3 0 0 m 5 M ) 6 0 0  ka 

Fig. 2. Equal-value curves of the electrical error (shown in dashed lines 
for different values of A/X) and the reflector size (shown in solid lines for 
different values of D/X)  as a function of ka and flap. 

can be expressed in terms of the wavelength, A/A (this error 
can be called the electrical error). After some algebra, we 
obtained a simple formula: A/A = ( k a / ~ )  sin4 +(ea, + 80). 
An engineering rule-of-thumb is that the errors smaller than 
A/16 = 0.06X may be neglected [14], [15]. To illustrate, Fig. 2 
presents the family of equal-value curves of A/A in the plane 
of parameters ka and Bap for Bo = 0. Also, the equal-value 
curves of the front-fed aperture size D/A = (ka/.rr) sin e,, 
are presented for convenience. They indicate that the domain 
of validity in approximating a parabolic by a circular reflector 
is not restricted to electrically small reflectors. Indeed, in the 
case of a front-fed geometry, if e,, = 30 degrees (a deep 
dish), one may take ka as much as 42.2, that is D = 6.69A 
for F / D  = 0.5. If, however, e,, = 15 degrees (a shallow 
dish), the corresponding values expand to ku = 649.4 and 
D = 53.5A ( F / D  = 0.97). For a practical offset reflector 
geometry where Bo x ea,, an allowed aperture dimension is 
approximately half as large. 

IV. BASIC EQUATIONS AND THE SYMMETRY SPLITI-ING 
Guided by the considerations of the previous sections, 

we restrict our further analysis to the circular reflectors. As 
the regularization procedure which will be used has been 
published elsewhere [7], [8], we shall omit the details. Instead, 
we shall concentrate on transforming the equation in a form 
suitable for an efficient numerical implementation. This is 
achieved by splitting the resulting matrix equations into two 
sets of equations corresponding to even and odd parts of the 
surface current. 

First, we discretize the integral equations (5) and (6) and 
reduce them to the series equations. Thus, for a circular 
contour M the surface current densities are assumed to be 
zero on the rest of the circle (S) and expanded in terms of a 
series of angular functions with coefficients z,H,~, as follows 

-00 
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where a~ = l / k  and QIE = 1 to account for the differentiation 
in (5). Similarly, using the addition theorem the Green's 
function can be expressed in terms of a series of angular 
exponents. Then, substituting all the functions into (5) and (6), 
applying the boundary conditions over M, and taking account 
of the absence of the current on S, one obtains the following 
dual series equations 

-00 -00 

n=--00 

M 

n=-m 

where 

w," ( k a )  = J:, (ka)H?)' ( k a )  
W,E(ka)  = J,(ka)H?)(ka) 

bf = J n (  kr , )Hil) '  ( ka)e-ines 
bf = Jn(kr , )H~l) (ka)e- ines  

and the prime denotes the derivative with respect to the 
argument. 

One can solve these dual series equations using the point- 
matching method [ 161. As we have noted previously, however, 
that approach leads to an ill-posed equation set having no 
proof of universal convergence. Instead, we extract a canonical 
form from the dual series equations which can be converted 
into a Riemann-Hilbert Problem [5]-[9]. Then, the analytical 
solution of the latter leads to a regularized infinite algebraic 
equation system of the Fredholm second kind differing from 
the plane-wave excitation case [6]-[9] only by the right- 
hand part. In terms of the integral equations (5) and (6), 
this procedure is equivalent to extracting and inverting the 
logarithmic part of the kernel function (see (51) in [7], and 
(27) in [SI, as well as (9) in [9]). The equation sets obtained 
have summations going from -cc to +W. After truncation at 
the term Nt,, they will have the order 2Nt, + 1. To reduce 
the computation time, each of them can be split into two 
independent half-size equations. This is done by decomposing 
the problem into even and odd parts with respect to the 
symmetry axis of reflector. Indeed, introducing the even and 
odd expansion coefficients as 

and substituting (14) into matrix equations, one obtains 

for m = (0)1,2,  ..., and the term in parenthesis in the 
summation index exists only for the even case. In (15) 

where 

ZEA,' = T,", f Tfmn, ZEz = TE mn f TE -mn 

and 

Here, 6, is defined as one if n = 0, otherwise two. Other 
coefficients, T,", = Tmn(cos f lap) ,  TEn = Tmn( - cos e,,), 
and the functions A:, A:, Tmn, A&, and A E n  are defined 
in the Appendix. 

When solving a matrix equation, the CPU time is not a 
linear function of the matrix order. Therefore, the reduction 
to two half-size equation sets saves the CPU time especially 
for large matrixes, and it also avoids the inaccuracies resulting 
from the possible round-off errors. 

Note that in (15), the right-hand parts have infinite 
summations that may lead to a certain truncation error in 
practical computations. The selection of new unknowns 
as = lgmAf&,)?* + ir(ka)2b2even/odd and 
riEnE)'* = Sm J: ( k a ) H i )  ( k a )  A: aFnE)'* + Im I bZevenlodd 
modifies (15) to a form which enables one to minimize the 
truncation error in the right hand part. Eventually, any of the 
obtained equations can be written in the following operator 
notation 

(20) 

where I is the identity operator, and all the operators are 
compact in the Hilbert space of infinite sequences, 12 (i.e., 
with finite sum of squared absolute values of coefficients, see 
[7, p. 4301). Hence, any of the operators I - A is of the 
Fredholm second kind in Z2, and so Fredholm's theorems are 
valid (provided that the right-hand part also belongs to Z2); 
then the unique solution 7 exists in Z2. Large-index estimates 
for cylindrical functions show that B E 12 if lrsl < a resulting 
in a restriction a > 2 b / f i  for in-focus primary line source. 
Furthermore, the approximate solution may be obtained with 

( I  - A(H,E) ,even/odd lY( H,E) ,f = B( H,E),even/odd 
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any desired accuracy via truncation to a finite order N,, as the 
uniform pointwise convergence to exact solution is guaranteed 
for N,, + 00. As a rule-of-thumb, for a d-digit accuracy in 
the far-field prediction, one has to take N,,. = ku + (d - 1 ) 2  
(see Fig. 2 of [9]). 

V. FAR-FIELD CHARACTEMS~CS 

The radiation pattern of the primary source is obtained 
from (2) or (3) by using large-kr asymptotic expansions of 
the Hankel functions. Similarly, one obtains the total field 
radiation pattern in the presence of the reflector as 

where gn = Jn(kr,)e-ines +yn, and yn is taken as x ~ J ~ ( k u )  
or x f J n ( k u )  depending on the H- or E-polarization, respec- 
tively. 

For the reflector antenna geometries, an important parameter 
is the total radiated power P normalized to the radiated power 
Po of the complex line source in free space. PO is easily found 
by integrating the squared absolute value of function (2) over 
the circle of a large enough radius klF- r<l >> 1 and is given 
by 

TABLE I 
CPU TIMES OF THE COMPUTER CODES 

I e.. = 300 I1 E-POL I H-POL1 ~~ ~~ ~~~ ~~ ~I .. 
ka = 62.8(0 = lOA), Nt, = 70 11 4 seconds I 4 seconds 

ka = 125.6(0 = %A), Nt, = 130 11 11 seconds I 12 seconds 
ka = 188.4(0 = 30A), Nt, = 195 11 28 seconds I 26 seconds 

I 

0 30 60 90 120 150 180 

THETA ( DEG ) 

Fig. 3. Comparison of E-case radiation pattem of a parabolic reflector from 
[2] ( F / D  = 0.96,D = 1OX) using UTD and AI with a circular one 
(ka = 121.38, 6Jap = 15 degrees, and D = 1OX) calculated with the present 
method. Feed directivity parameter, kb = 9.06 corresponds to a -10 dB 
edge illumination. 

VI. NUMERICAL RESULTS AND DISCUSSION 
(22) 

Po = C2--1,(2kb) 277 
IC 

where 77 is (ZO)-' and 20 for E and H-polarization cases, 
respectively. 20 is the intrinsic impedance of free space, and 
Io is the modified Bessel function of order zero. 

Note that PO increases with kb rapidly as e z k b / & 6 .  By 
following the formulation of Section 11, the expression for 
PIPo is obtained as follows 

- m 

The directivity D in the main beam direction ( 4  = T) is 
readily obtained as 

n=--00 

The frequency dependence of PIP0 and D is important in 
designing the narrow beam reflector antennas for pulse power 
transmission and wide-band communications. The directivity 
should be compared to the prime feed directivity, Do, in the 
source beam direction (4 = p) which is easily found as 

The ratio D/Do shows the efficiency of the reflector as a 
directivity transformer. 

In this section, the normalized radiation patterns of some 
reflector antennas are obtained for various aperture dimensions 
and feed directivities, and some properties of reflector antennas 
are discussed through the results. Although the exploited 
regularization procedure was equally efficient for any an- 
gular width 20ap and offset angle 00, we shall restrict the 
numerical analysis mainly to the reflectors meeting the good 
approximation criterion A(Oap + 60) 5 0.06X as discussed in 
Section III. 

All the computations were performed by taking the matrix 
truncation number N,,. equal to the integer value of (ka + 10) 
which guarantees an accuracy of 0.001 in calculating the far 
field. This is demonstrated in Fig. 1 by the behavior of trunca- 
tion error E, = max Ix?v+l -xNir  I /  max 1x271 as a function 
of the matrix order NtT.  It is worth noting that such a test is 
also useful for debugging a computer program. In addition to 
accuracy, computation time is another measure of efficiency 
in a numerical method. Table I presents the computation times 
for different aperture dimensions. The results are from a SUN 
SPARCStation 2 (4 MFLOPS). Thus, 11-12 seconds of CPU 
operation here, for a 20-A scatterer, is comparable to the 
CPU times of the CRAY X-MP supercomputer for a MoM- 
based solution as was reported in [4]. According to [17], 
a CRAY X-MP can operate 50-200 times faster than this 
workstation. 

For the validation of the results, we have checked the CSP 
solution in the limiting case corresponding to the real source 
point excitation. Further, in Fig. 3, the high-frequency solution 
of Suedan and Jull[2] (synthesized from AI and uniform GTD 
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Fig. 4. Comparison of E- and H-case radiation pattems for (a) front-fed 
and (b) offset circular reflector of ka = 121.38, O a p  = 15 degrees. Feed 
parameter is kb = 9.06 (-10 dB edge illumination). In (b), the offset and the 
feed aiming angles are 00 = 22 degrees and = 41.25 degrees, respectively. 

results for a CSP as front feeder) is compared with our circular 
reflector patterns for D = 1OX. To obtain better agreement in 
the regions at the back of the reflector, the edge tangents of 
the parabolic and circular reflectors are equalized by adjusting 
the angular width of the circular reflector. For this geometry, 
the electrical error is 0.001 1 A, and the deviation between two 
patterns is smaller than 1 dB. 

Fig. 4(a) and (b) demonstrates the comparison of E- and H- 
polarization cases, for front-fed and offset reflector antennas, 
respectively, having the aperture of D M 1OX and - 10 dB edge 
illumination. It is seen that the rear sidelobe levels are higher 
in H-polarization. This is expected since the edge effects 
are stronger due to transversal flow of the surface current. 
In Fig. 4(b), there is also a few degrees shift at the main 
beam location (boresight error) of the offset antenna due to 
a nonsymmetrical excitation. and a circular aberration. 

The effect of the source directivity for both E- and H- 
polarizations is examined in Fig. 5(a) and (b) for a D = 
1OX reflector. Source directivity is increased with increasing 

-10.0 

-30.0 

8 

-50.0 

-70.0 
( 

€-Polarization 

) 50.0 100.0 150.0 
TUETA(DEG) 

(a) 
U-Polarization 

\ 
- !&=3.5 

I 
0.0 50.0 100.0 150.0 

-70.0 ' 
TUETA(DEG) 

(b) 

Fig. 5. Effect of the different source directivities for (a) E-polarization case 
and (b) H-polarization case. Front-fed reflector paramaters are ka = 62.8 
and B a p  = 30 degrees ( D  = lox, F / D  = 0.5). Feed directivity parameters, 
kb = 3.5 and kb = 5 correspond to - 13.29 dB and - 18.50 dB edge 
illuminations, respectively. 

parameter kb, and the results show that all the sidelobe levels 
are decreased while the main beam width changes little for 
constant electrical dimensions of the reflector. Fig. 6(a) and (b) 
shows the radiation pattems in E- and H-polarization cases for 
two reflector dimensions, D = 1OX and 20X. It is seen that the 
main beam is narrower for a larger aperture, and the sidelobe 
level is reduced except for the spillover sidelobe which is the 
same due to the same edge illumination. 

We would like to emphasize that the truly new point in 
all the above results is that they are uniformly correct with a 
0.001 accuracy. This ensures an equally accurate computation 
of the important antenna characteristics such as the radiated 
power and the directivity. 

Fig. 7 presents the plots of the ratio PIP0 as the aperture 
dimension of the reflector increases. The variation of PIP0 
around unity is within 7% and caused by the in-phase or out- 
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Fig. 6. Effect of the different aperture dimensions for (a) E-polarization case 
and (b) H-polarization case. Front-fed reflector angular halfwidth is Oap = 
30 degrees ( F / D  = 0.5). Feed directivity parameter kb = 5 provides - 
18.50 dB edge illumination. 

of-phase interference of the weak edge-diffracted field with 
a stronger reflected field. Besides, the oscillation levels are 
higher in H-polarization because of the stronger edge effects. 
Fig. 8 shows the directivity variation for the same conditions. 
It is seen that there is a slightly oscillatory linear increase in 
the directivity for increasing aperture dimension for the same 
reason as above (we are thankful to one of the reviewers for 
drawing out attention to this fact). Note that the primary feed 
directivity here is only DO = 4.1 1. As expected, increasing 
source directivity reduces the edge effects so that the variations 
in PIP0 decrease rapidly (see Fig. 9). For a practical case, the 
edge illumination can be taken as 9 dB below the center of 
the reflector, then PIP0 = 1 with 0.001 accuracy. Similarly, 
increasing the feed directivity increases the directive gain, 
since the diffraction effect is reduced. Finally, Fig. 10 presents 
the variations of overall directivity D and feed directivity Do 
with kb. 

1.0 2.0 3.0 4.0 5.0 
0.901 ' ' ' ' ' ' ' ' 

APERTURE DlMENSlON (Dflambda) 

Fig. 7. Total radiated power variation with the increasing aperture dimension 
for Bap = 15 degrees ( F / D  = 0.97) and kb = 1.5. 
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Fig. 8. Directivity variation with the increasing aperture dimension for 
Bap = 15 degrees ( F / D  = 0.97) and feed directivity parameter kb = 1.5. 
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Fig. 9. Total radiated power variation with the increasing feed parameter kb 
for Oap = 15 degrees and ka  = 50(D/X = 4.1, F / D  = 0.97). 
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120.0 

SOURCE DlRECTlVlTY PARAMETER (KB) 

Fig. 10. 
B a p  = 30 degrees and ka =62.8 ( D  = lox, F / D  = 0.5). 

Directivity variation with the increasing feed parameter kb for 

VII. CONCLUSIONS 
The dual series formalism is used in combination with 

the complex source point approach to analyze the cylindrical 
reflector antennas via the method of regularization. By the 
present method, the principal results of the reflector antennas 
are verified and compared to the high-frequency approximate 
solutions available for 2-D parabolic reflectors. As this ap- 
proach is numerically exact within the adopted model, it can 
be used to analyze accurately the further properties of reflector 
antennas like the focal shift [18], front-to-back ratio [19], 
and others. In addition, one can use the presented data as a 
benchmark to check the accuracy of the other numerical codes 
and approximate techniques. Also, it is worth mentioning that 
a similar approach can be used to simulate 3-D spherical 
reflectors, however, the regularization procedure is based on 
another analytical technique [20], [21]. 

This approach also overcomes the difficulty in applying the 
CSP method for diffraction by curved scatterers with edges, 
where ray tracing is used. Indeed, then the reflection points 
are in complex space, and the edge diffraction points are 
in real space so that there are difficulties in including both. 
The authors are thankful to one of the reviewers for this 
consideration. 

APPENDIX 

The functions appearing in the solution for H- and E-cases 
are as follows 

AEn = Af(ku)T& (26) 

For In1 > Ica + 5, both A: and A: go to zero as O(1nl-l) 
with In1 + 00 [7]. Also 

where Smn(z) are defined via Legendre’s polynomials Pn(z) 
as 

If n = m, L’Hospital’s rule reduces (3 1) to the following form 

Iml 

where Uo(z)  = l ,Vl (z)  = -z,...,V,(z) = P,(z) - 

For 1721, Iml + 00 all the functions Tm, decay as O(lm - 
2zP,-1(2) + Pn-2(2). 

n + ll-11mnl-(1/2)) uniformly for any Bap  # 0 or T [71. 
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