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We retrieve, within the strong-coupling theory, the quasi-one dimen- 
sional analog of the standard optical polaron relevant to a cylindrical 
quantum well wire. Under the assumption of perfect confinement the 
ground state binding energy, effective polaronic mass and the phonon- 
coupling-induced potential well profiles are given as a function of the 
wire radius and the electron-phonon interaction strength. 
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1. INTRODUCTION 

THE STUDY of quantum well-heterostructure-type 
systems continues to be an attractive field from both 
theoretical and experimental viewpoints. Such sys- 
tems with reduced dimensionality have become 
important as a basis for novel devices, owing to the 
possibility of tailoring their electronic and optical 
properties. The impressive progress achieved in 
microfabrication technology (such as molecular 
beam epitaxy, lithographic and etching techniques) 
has created a variety of opportunities tbr the fabrica- 
tion of new semiconductor structures. Of particular 
interest is the quantum well wire (QWW) configura- 
tion based on the confinement of electrons in a thin 
semiconducting wire where the motion is quantised in 
the transverse directions normal to its length. Since 
their early prediction [1] and subsequent fabrication 
[2-5], there has appeared quite a large interest in 
phonon-coupling-induced effects and polaronic prop- 
erties of one-dimensionally confined electrons. Some 
considerable amount of the literature published 
within this context has been devoted to the interaction 
of electrons with bulk-like LO-phonons and the study 
of the relevant polaron properties [6-13]. The 
common prediction led by these works is that in 
quantum wires wherethe electrons are fundamentally 
quasi-one dimensional (QID) the polaronic binding 
is far deeper than in comparable quasi-two dimen- 
sional systems. In other words, high degrees of 
confinement (as realised in thin wires) led to a 

pseudo-enhancement in the effective electron- 
phonon coupling, which in turn brings about the 
possibility that, in spite of weak polar coupling as in 
GaAs for instance, the polaron problem may also 
have a strong-coupling counterpart coming from 
confinement effects. This salient feature can be more 
prominent in II-VI compound semiconductors or in 
alkali halides where the relevant coupling strengths 
are almost an order of magnitude larger or even much 
stronger than those in III-V materials. We thus feel 
that for not too weak and pseudo-enhanced electron- 
phonon coupling, the strong-coupling polaron theory 
should not be accounted for as a totally academic 
formalism but may provide some insight into the 
study of polarons in confined media consisting of 
materials of somewhat stronger polar crystals. 

In this context we therefore find it worthwhile to 
retrieve the polaron problem in a cylindrical wire 
within the framework of the strong-coupling theory. 
In fact, a similar problem has been treated previously 
for a parabolic boundary potential providing a Q1D- 
tubular confinement where the free optical polaron 
properties have been derived as a function of the 
effective reduction in the dimensionality [10, 12]. For 
completeness we review the same problem where now 
we refer to the case of an electron perfectly confined 
within a cylindrical boundary with infinite potential. 

For the present we refrain from including the 
coupling of the electron to the confined phonon 
modes as well as interface SO-phonons and adopt the 
so-called bulk-phonon approximation, where a laterally 

509 



510 QUASI-1D POLARONS IN 

confined electron is visualised as interacting via the 
Fr6hlich Hamiltonian with the bulk LO-phonons of 
the relevant well material. As such, the fundamental 
approach followed in this work is to take into 
account only the generic Q1D aspect of the dynamic 
behaviour of the electron confined in a free-stand 
tubular geometry and leave out all the other effects; 
thus our concern is primarily to give a view of the 
bulk phonon effects stripped from all other perturb- 
ing quantities. Apart from omitting the contribu- 
tions that may come from all other kinds of 
phonon mode, we also ignore any screening effects 
and further complications such as those due to the 
nonparabolicity corrections to the electron band or 
the loss of validity of both the effective-mass 
approximation and the Fr6hlich continuum 
Hamiltonian in thin microstructures. In view of 
these simplifying assumptions we study the ground 
state properties (the binding energy, mass and the 
phonon coupling-induced effective potential) of the 
Q1D strong-coupling polaron as a function of the 
coupling strength and the QWW radius. 

2. THEORY 

2.1. Hamiltonian and wavefunction 
Selecting the phonon quantum hcoLO as a unit of 

energy and (h/2m*coto) 1/2 as a unit of length, the 
Hamiltonian of a quasi one-dimensional electron 
immersed in the field of bulk LO-phonons is given by 

H =  - V 2 + Z a ; a Q  

O 

+ ~ ro{ao_ exp (iQ. r) + hc}, (1) 
Q 

in which aQ (a;) is the phonon annihilation (creation) 
operator, and ~ = (O, z) denotes the electron position 
in cylindrical coordinates. The interaction amplitude is 
related to the phonon wavevector Q = (q, q:) through 
FQ = ~ / Q  where a is the coupling constant. 

We take the electron trial wavefunction as con- 
sisting of two adjustable parameters ,~ and # account- 
ing for the anisotropic nature of the confined system 

~e(O, Z) = (/~2/Tr)l/40(Lo)exp(--l/~2z2)eiWZ (2) 

and 

O(O) = noJo(nO) exp(-  ~#-U). (3) 

In the above, the exponential factor e iwz (with co 
being a further variational parameter) sets the 
system in motion, thus enabling one to trace the 
polaron mass along the wire axis. J0 is the zeroth 
order cylindrical Bessel function of the first kind in 
which n =Jo,l/R, where J0,1 ~ 2.4048... is its first 
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zero. The normalisation constant n o is given 
through 2rr f0 R dco0~#2(co) = 1. With the form of (3) 
adopted for the lateral part of the electron trial state, 
the Bessel function takes care of the geometric con- 
finement, and the further confinement induced by 
phonon coupling is governed by the Gaussian 
counterpart through parameter #. 

2.2. Adiabatic formulation 
In the foregoing approximation we assume a 

highly rapid charge density fluctuation for the elec- 
tron, to which the lattice responds by acquiring a 
relaxed static deformation clothing the entire extent of 
the electron. The adiabatic polaron ground state thus 
formed can be written in a product ansatz consisting 
of the electron and lattice parts, i.e. 

k~g = ~e(O, z)UlO >, (4) 

where 10 > is the phonon vacuum state, and 

U =  exp Z UQ(##e)[aQ - a;], (5) 
Q 

is the unitary displacement operator changing the 
reference system of virtual particles by an amount 
uo(~e). It should be noted that simultaneous optimi- 
sations with respect to q5 e and UQ(~e) correspond to 
the self-trapping picture of the polaron where the 
electron distribution and the lattice polarisation influ- 
ence each other in such a way that a stable relaxed 
state is eventually attained. Under the canonical 
transformation H --+ U-IHU, equation (1) conforms 
to 

H' = He + ~ u~ - ~ £ouo_[exp(iQ.r) + cc] 
O Q 

+ Z a)QaO + Z{[PO exp(iQ'r) 
0 Q 

- uQ]aQ + hc}. (6) 

Since the Hamiltonian is invariant to translations of 
the electron together with its concomitant lattice 
distortion, the total momentum along the wire axis 

.0  v-" aJfa 
P: = - t ~ z z + 2 _ ~ q :  O Q (7) 

Q 

must be conserved. The variation therefore requires 
an optimisation of the polaron state ~g, which mini- 
mizes <~glHIq2g> subject to the constraint that 
<~glPzlq~g> is a constant of motion. Thus, minimiz- 
ing the functional 

F(A, #, %; co, uo) 

= <  q, e l U l ( H  - vzPz)Ulr~ e >, (8) 
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with respect to w and UQ yields 

= ½v_- and UQ(Oe) = FQSQr~Q, 

where 

s O = <  ~elexp (±iQ.r)lq~e >, 

r/Q = (1 - v:q:) -j , 
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take part in equations (14) and (15) 

9 ~2) 2 (3) (9) ~k~__l /~2+ 2_r_#2 2 _ - % ( 0 ) 0 , / . ) % ( o ) ' ~  
" % 0  ( 0 )  j 

and 
(10) 

(11) SQ = rq exp -- , 

in which the Lagrange multiplier v_ is to be identified 
as the polaron velocity along the wire axis as it turns 
out (see, e.g. [141). 

In what follows we adopt the case of a stationary 
polaron, i.e. take < fie] U - I p z u I d ~ e  > as zero, and thus 
regard v. as a virtual velocity which we retain in the 
foregoing steps to keep track of the effective mass of 
the coupled electron phonon complex. 

In complete form, with the optimal fits for co and 
Uo substituted in equation (8) takes the form 

~ 2 F(A, #, v:) =e k + ~ F~2sQ(r/~ 2 - 2r/Q) 
O 

1 2  ~ ~ 2 - av: - ~ PQsOrl~?v:q:, (12) 
Q 

where e~ = <  ~e[ - V2lq'e >- 
In order to trace out the polaron mass from the 

above equation we have to split the right hand side 
into its parts consisting of the binding energy of the 
polaron alone and the additional kinetic contribution, 
which shows up after having imposed a virtual 
momentum on the polaron. We are thus tempted to 
expand the summands in equation (12) in a power 
series up to order v{. We obtain 

F(A, #, v:) = Eg(A, #) - Jv~mp, (13) 

where 

2 Eg(A, l~) = ek - Z F O S Q  (14) 
Q 

refers to the ground state energy and the factor me 
• • 1 ~ • • • multiplying ~ v- is identified as the polaron mass, given 

by 

. * ~ - - - ~ 2  2 2 mp = 1 +,~ 2_..,IQSQq-_. (15) 
Q 

Defining 

f/o.I o -(') (x) dt = tnJm(t)Jm,(t) 
mm' J 0 

[" #2 ,~ 
Jo(xt) e x p l - ~ . z t "  ) , (16) 

we write the following expressions for ek and SQ, which 
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(17) 

(18) 

with 

%0 (q/ ) 
rq - or(in/(0) (19) 

Projecting out the Q-summations: 2_.,Qr-' F2QSQqz,2 2n we 
further write 

Eg(A, #) = ek -- ct dq r~fq, (20) 
JO 

and 

m p =  1 + 4 a  dqr2q A--q fq  , (21) 

where 

f / = e x p  ~5_ erfc q , (22) 

with erfc denoting the complementary error function. 

3. RESULTS AND CONCLUSIONS 

In order to obtain the binding energy and effective 
mass correction of the polaron we numerically 
minimise equation (20) with respect to the variational 
parameters # and A. The parameters thus determined 
are displayed against the wire radius for a succession 
of strong a values in Fig. l(a). It is seen that for large 
wire radii the curves for/~ and A both have the same 
asymptotic 3D limit (# = A = V/2-/97ra), and as R is 
made to approach the bulk-polaron size the curves 
begin to split, depicting the anisotropy due to 
the confinement imposed by the wire boundary. 
We note that the place at which the anisotropy 
starts to show is shifted to smaller R values for 
stronger phonon coupling, since for large ~ the 
starting state of the polaron is already highly localised 
(as implied by the relatively large values of the 
parameters # and A) and a smaller-sized polaron 
feels the effect of the confining boundary only for 
smaller wire radius. 

For a complementary understanding of the varia- 
tion of  the spatial extent of the polaron in the lateral 
and longitudinal directions, we also provide plots 
[Fig. l(b)] of  the direct measures of  localisation of 
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the electron coordinates expressed in terms of the 
corresponding rms-values given by 

= = V °0o / °6o (2 3 ) 

and 

g: = {< ~elzel~e >}1/2 = (2/~2) 1/2. (24) 

It should be noted that the two parameters (c~ 
and R) characterising the system do not enter the 
problem in an independent way but together take part 
in an interrelated manner in the binding, thus inducing 
an implicit coupling between the transverse and lon- 
gitudinal coordinates of the electron. Examining the 
family of curves for # and A and for g0 and ~: we see 
that, even though there is no geometric confinement 
along the wire axis, the axial extent of the polaron 
shrinks monotonically inward contrary to what one 
might have expected if the effective electron-LO 
phonon interaction in the axial direction were insensi- 
tive to the variation of R. 

Going from the bulk case to the quasi-one dimen- 
sional limit (Q1D) there comes about a competitive 
interrelation between whether the charge distribution 
(and hence the lattice deformation) will condense onto 
the origin (the polaron centre) or will expand to relax 
itself in the longitudinal directions along the wire axis. 
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Starting from R >> 1 and then restricting the trans- 
verse spread of the electron the contribution coming 
from the tendency of the polaron to expand lon- 
gitudinally is compensated for by the pseudo- 
enhancement in the effective phonon coupling due to 
lateral localisation towards the wire axis, thus leading 
to an overall shrinking spatial extent in the 4- z direc- 
tions. Meanwhile, with contracting wire size there 
results an alteration in the lateral structure of the 
electron wavefunction as depicted by the #-profile, 
displaying first a monotonic decrease and then an 
increase, implying that the radial part, 4~(0), of the 
electron wavefunction conforms to a form structured 
more by its Bessel-function counterpart, J0(~O), ") 0 
rather than a narrow Gaussian, exp(-# '0"/2),  
decaying far before the boundary is reached (cf., 
Fig. 2). This can alternatively be recognised from 
the fact that, regardless of c~, the curves for ~0 [Fig. 
l(b)] all tend to the same asymptote, meaning that at 
small wire radii the lateral extent of the polaron is 
governed mainly by the geometric confinement rather 
than phonon coupling-induced localisation. A com- 
plementary feature is that when R is far below unity 
both # and A display rather rapidly growing profiles 
compatible with a considerably pronounced effective 
phonon coupling and a highly localised characterisa- 
tion of the polaron in all directions. 

For completeness, we also present a pictorial view 
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R a d i u s  

Fig. 1. (a) The variational parameters/,, (solid curve) 
and A (dashed curve), and (b) the spatial extents o~ 
(solid) and ~- (dashed) of the polaron as a function } 
the wire radius. 
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Fig. 2. ~(0) versus 0 for various pairs (c~, R) of c~ 
(= 3, 5, 7) and R (= 0.5, 2, 5). In the plots the peak 
value of 4~ is normalised to unity, and 0 is expressed in 
units of R. 
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Fig. 3. The phonon coupling-induced potential well 
profiles in the radial and longitudinal directions repre- 
sented, respectively, by the upper and lower curves. 
The potentials VQ and V, are given in arbitrary units 
on a linear scale, whereas O and z are expressed in 
terms of R. 

of the phonon-coupling-induced potential well pro- 
files 

1 
V(o, z) = e ~ V Q  < -OIU-l(eiQ'ae + hc)UI0 >, 

Q 

(25) 

along the radial and transverse directions (cf. Appen- 
dix). In Fig. 3 we plot Vo= V(#, z = 0 )  and 
V- = V(# = 0, z) for different permutations of a 
(= 3, 5) and R (0.5, 1.5). It is readily seen that the 
interaction potential gets deeper for strong c~ and/or 
narrow R where the two parameters together play a 
combined role in favour of a more effective coupling 
of the electron to the phonon field. The spatial 
anisotropy mentioned in the preceding paragraph is 
also portrayed in the set of curves for the potential 
profiles in that V_ lies deviated below V o, the digres- 
sion being most significant for small R values and at 
sites more on the boundary side rather than the axial 
region (o/R, zlR <_ 0.1) where V 0 and V__ join and 
form spherically symmetric (isotropic) equipotentials. 

A more brief content of the arguments given above 
is provided in Fig. 4 where we plot the binding energy, 
ep = (Jo, I / R )  2 - Eg (relative to the subband), and the 
polaronic contribution to the band mass, 
Amp =mp - 1, against the wire radius for a set of 
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Fig. 4. ep and Amp as functions of  R. 

distinctive a-values . We once again note the same 
qualitative behaviour where the growth rates of ep and 
mp are  somewhat moderate for large R, but however 
on the opposite extreme where R is tuned to smaller 
values both ~p and mp are observed to increase with 
very pronounced slopes the growth rates, which are 
significantly greater for stronger a. 

The adiabatic theory employed in this work gives 
e(3D) = c~2/37r in the bulk case a n d  ((pZD) = (71./8)Oz2 for 
P 

a strictly two-dimensional polaron [15]. The general 
trend that the polaron quantities are inherently pro- 
nounced in low dimensional systems is also reflected 
in our present studies. For  a wire with c~ = 3 and 
R = 1, for instance, we obtain ep = 3.377. For thinner 
wires the binding gets naturally deeper since the 
electronic wavefunction becomes even more localised 
in all directions perpendicular to the wire axis. We 
obtain ep = 5.485 when R = 0.5 and ep = 9.920 when 
R = 0.2. A comparison of these values with the 
corresponding three- (e(p3#) _- 0.955) and two- 
(e(p2#) = 3.534) dimensional values reveals that the 
polaron binding energy is much greater when the 
effective dimensionality is reduced from three to 
one than when reduced from three to two. The same 
is true for the polaron mass where Amp  in quantum 
wires of small dimensions are much larger than those 
in comparable two-dimensional wells. 
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APPENDIX 

Using equation (6) with Z/Q = ~QSQ, equation (25) 
conforms to 

1 Z FQSQ (eior + cc), (26) v(~ ,  =) = - 

Q 

in which SQ is given by equation (18). Setting z = 0 
and ~ = 0, respectively, for the potential profiles along 
the radial (~)- and longitudinal (z)-directions and 
projecting out the wavevector sum we obtain 

Vo = - -c~  dqrqe;-erfc(t)Jo(~q), (27) 
e 

1 f~ rqe,'-ihq(z) V . . . .  c~ dq + h q ( - Z ) ] ,  (28) 
e 

where 

t = ~A and hq(z) = e:qerfc(t + Az). (29) 


