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Variable coefficient third order Korteweg—de Vries type
of equations
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It is shown that the integrable subclasses of the equations g ,=f(x,t)q ;
+H(x,t,q,9,,) are the same as the integrable subclasses of the equations g ,=¢ ;
+F(q,9,1). © 1995 American Institute of Physics.

Classification of nonlinear partial differential equations possessing infinitely many symmetries
in 1+1 dimensions was started almost two decades ago. So far the complete classification has
been done for some evolution types of autonomous equations.!~> There are some partial attempts
of the classification of the nonautonomous types of equations.z‘é'9 In 1+1 or 240 dimensions
almost all definitions of integrability coincide. But what is important is the ease of applicability.
Recently we have introduced a new approach which is based on the compatibility of the symmetry
equation (linearized equation) and an eigenvalue equation.’® Our method can be put into an
algorithmic scheme and utilized for two purposes. The first is to test whether a given partial
differential equation is integrable. The second is to classify nonlinear partial differential equations
according to whether they admit generalized symmetries.

In this work we show that the most general equations of the type g ,=f(x,t)q
+H(x,t,q9,9 ), up to coordinate transformations, have the same integrable subclass as the au-
tonomous equations g ,=q 3+ F(q,q ;). Here f(x,t) is an analytic function of the independent
variables x and ¢, H is a function of the dependent variable g, its x-derivative ¢ ;, and also on the
independent variables x and ¢. The function F depends on only ¢ and ¢ ;. First we will give an
outline of the method.

Consider an evolution equation of the form

q,t=K(x’t’q’q,1’q,29"'vq,n)EK(q)9 (1)

where q.,r=(<?/<9x)"q, i=0,1,2,...,n. The order of K(=n) is called the order of the equation. A
symmetry o(x,?,q) of Eq. (1) satisfies

JK
-0 @

n
O',r=K,(0')=2 ﬁ

i=0
such that Eq. (1) is form invariant under the transformation
g — q+eo, (e, infinitesimal). 3)

Here of(x,t,q) is a differentiable function of ¢,g 1,4 ,,... and the prime denotes the Fréchet
derivative.

In Ref. 10 we conjectured that a nonlinear partial differential equation is integrable if the
linearized equation (2) supports an eigenvalue equation. Therefore let us introduce an eigenvalue
equation, linear in A, for o in the form

0022-2488/95/36(72/3485/7/$6‘00
J. Math. Phys. 36 (7), July 1995 © 1995 American Institute of Physics 3485
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n—1
o.=2 (AN+B)a,, )
i=0

where A; and B, are functions of x, ¢, and g ;. Their dependences on g ; are decided by the order
of K. The order of the eigenvalue equation is determined by the order of K. The compatibility of
linearized and eigenvalue equations, at all powers of A, gives

(a) a set of algebraic equations among 4;, B,, and dK/dq ;’s;

(b) a set of coupled partial differential equations (PDEs) among A;, B;, and dK/dq ;’s. Using
the definition of total derivatives

®

df . of of
E—D,f—é;+l§0 9ist o (5)
G s o &
E—DJ—E-%Z K; Py (6)

for any function f in the set b of coupled PDEs and comparing coefficients of ¢ ;’s, we obtain
several classes of A;, B, along with the explicit forms of X in a self-consistent way. If the
integrability is proved for a given class, the eigenvalue equation (4) can always be put in the form

Mo=ANo, (7)

where M and N are local operators and depend on x,#,q ;. Equation (7) is nothing but the
definition of the recursion operator, provided that N 1 exists

R=N"'M, (®)
which maps symmetries to symmetries
R On=0pn+1> (9)

where #n is a non-negative integer. Thus the existence of an eigenvalue equation (4) is equivalent
to the existence of a recursion operator.

As an illustration let us give the classification of third order autonomous evolution equations
of the form

q9.=93+tF(q.q,1). (10)

This classification has been investigated by several authors, mainly from the point of view of their
integrability.">*!! Let us follow the method outline above.
Linearized equation:

+ oF + oF (11)
g,=0c3t+t—o;+—o0.
B3 .3 anI W1 aq
Eigenvalue equation:
0',3=(A2)\+Bz)0',2+(A1)\.+Bl)0',1+(A0)\+Bo)0', (12)

where A; and B, depend on ¢, q ;, and g ,. The compatibility equation of Eqgs. (11) and (12) gives
the following integrable equations with nonzero eigenvalue coefficients:
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a , b,
Case I q,,=q,3+g gyt Eq‘1+cq,1+d, (13)
with
By=—22_ g =—}1ﬁ 242bg +2¢], A,=1
2 ag,+b’ 1 3149, 9. ) 1= 1,
(14)
B =————1—~——[q (2ac—b%)], Ag=- —d2_
% 3(aq,+b) -*? TU0T ag+b
Here a, b, ¢, and d are constants, and
Case II —g it g +b 3d%+4 db—o 15
ase Il q,=q,3+ z4,+b(9)q.s, P 4= (15)
with
1| bg, _db ] L, 9,
Bo=x|2—=-3—gq,|, B=—(agi+2b), B,=-Z
0 3 [ q. dq q,l 1 3 ( q,l ) 2 q.
(16)

A0=_B2, A1=l.

Here a is a constant. The basic equations in the classification are the Korteweg—de Vries (KdV)
(@a=0, b=6g4, in case II), potential Korteweg—de Vries (pKdV) (¢=0, in case I), modified
Korteweg—de Vries (mKdV) (a=0, b=642, in case II), potential modified Korteweg—de Vries
(pmKdV) (b=0, in both cases), and Callegero—Degasperis—Fokas (CDF) equation (a=— 3, in
case II). The recursion operators for Egs. (13) and (15) are found by the utility (14) and (16). They
are, respectively, given by

2c aqh  2bq, aq, b
. =D > d > -1 -1
L R=D* 54—+ 5= = D7 (g2) - 3 D7 (g2, an
2
aqy  2b aq, q.1 db
. =p?+ — 4 ——— "2 p-1 + Ll p-1y 27
L R=D*+—=+—5—-—-D"'(q2) 3 D <dq , (18)

where D™= [* _ .dx. We have the following proposition.

Proposition 1:'"* Under the symmetry classification the equations of the type
q.=93+F(q,q ), up to coordinate transformations, has integrable subclasses given in Eqs. (13)
and (15).

Our aim, in this work, is to give a classification of the nonautonomous type of integrable
equations (10)

q,t=f(x7t)q,3+H(x’t’q’q,l)- (19)

We divide the classification procedure, for Eq. (19), into the following three cases: (i) f depends
only on ¢, (ii) f depends only on x, and (iii) f depends on both x and ¢.
(i) f depends only on t: One of the integrable subclass, using our classification scheme, is
5 hw?g? R wq
q,=v’q3+ T+c1wth+hczv g1+ SV L B Sl (20)
where f(1)=v(1)3, h, w depend on ¢ only and ¢, ¢, are constants. The dot appearing over a
quantity denotes ¢ derivative. The recursion operator is given by

J. Math. Phys., Vol. 36, No. 7, July 1995
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v? w? 2¢; 2 w? - cw -
502"'?4,11—) (Q-)+TQ,1D . (21)

We observe that Eq. (20) is transformed into an equation which belongs to the case II (a=0) in
Eq. (15) through the transformation

g=wlu(&,7),

172 (22)

£=xB(1), B=— 'r=ft 3% dr.

’
v

In the classification programs, if it is possible, we transform (by coordinate or contact transfor-
mations) the given class of PDEs to more simpler ones. To this end in the sequel we shall
transform all cases (i), (ii), (iii) to the form

q,.,=q3tHy£,7.9.9,)) (23)

and then classify this type of equation. In this first case (i) we have the following proposition.
Proposition 2: Under the symmetry classification equations of the type

‘I,rzf(f)fI,3+F1(X,fsq’q,1) (24)

up to coordinate transformations, give the same integrable subclass as in Eq. (23). Equation (24)
reduces to Eq. (23) by the transformation dt=(1/f)d7 and x=¢§.
(ii) f depends only on x: In this case the form of the equation is

q,=f(x)q3+Fyx,1,9.9,1) (25)

and one integrable class turns out to be simply
q,,=q,3+q’21+clx+c2. (26)
The recursion operator for Eq. (26) is
R=D*+3q,—3c;t—3D"!(q,2)- (27

Now, differentiate Eq. (26) with respect to x and substitute g=z ; and use the transformations
x=§— %cltz, t=r7 then Eq. (26) belongs to Eq. (13). Before proceeding to the next case, we
observe the following:

Proposition 3: Under the symmetry classification the equations of the type (25) up to coordi-
nate transformation

g=f"u(¢),
(28)
['7
= dx', 7=t
3 77
give the same integrable subclass as in Eq. (23).
(iii) f depends on both x and ¢: In this case we have g ,=f(x,t)q 3+ F3(x,t,9,9 ) type of

equation and its one integrable class turns out to be relatively simple. Below we give this equation
and its recursion operator as

—,,3
q.,=uqs3t

a 2 3 9 u,l
g s u(~2uug) || 40— 2t g, 29)
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where a is an arbitrary constant. Here we have set f(x,t) =u(x,r)? and u(x,t) satisfies the Harry
Dym equation

u,=uu . (30)

This means that Eq. (29) is integrable if u satisfies Eq. (30). The recursion operator is given by
1
R=usD"1uD(—s—R1.), 31

where

2
U192 U249, Up ag v
R o=p2— 222y 2 7y + .,
1=D us us u | 3u® sD (s )’

(32)
2s

a 1 1
U193 qauzt —= (“%1‘1,3*’4,1".3)}

VTRA T

and s=—gq ,+4q(u, /u). Equation (29) together with Eq. (30) is equivalent to the mKdV. We will
give the proof of this in two steps: Let f=u> and g=uz then we have

a 3
—uz2+—-uu,21)2,1, (33)

_. 3 2
=u 314 U
2 Z,3+ ’12,2+ 2 P

where z(x,?) is the new dynamical variable. Now let us perform the following transformation:

—_— * dx, —_—
§~j m, T=1. (34)

It is straightforward to show that under this transformation Eq. (33) goes to the mKdV. Now we
state the following proposition.

Proposition 4: Under the symmetry classification the equations of the type
q.=f(x,t)q 3+ F3(x,t,q,9 1), up to the transformations

g=r"z(¢,7),
35)

x 1
= dx', T1=1,
4 f 77
like in the previous example, give the same integrable subclass [for z(£,7)] as in Eq. (23).
Hence whatever the coefficient function f(x,#) we showed that in general the type of equation
(19), by coordinate transformations, reduces to the following type of equations:
9,593+ P(x,1,9.9,1). (36)

We now give the classification of this type of equations.
a , w
(1) Q,:=4,3+§‘I,1+b4,1_—61+0, (37)
w
with
J. Math. Phys., Vol. 36, No. 7, July 1995

Downloaded 07 May 2013 to 139.179.14.46. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions



3490 M. Grses and A. Karasu: KdV type of integrable equations
»=b 3+bb i d_h d "R 38
b= ,3+ ,1—ac,1+ﬁb+§’~l— ;2- + 2h ? X, ( )

where w = a/\/ﬁ,a,d,h depend on ¢ only and b, ¢ depend on x, ¢.

2 g 3 2 gaa_ he™®+b +i . 39)
(2) q9.,=q3 g 21t e~ whe a1t 5p XS at =,

where a, w, and b depend on ¢ only.

a b

h(w
(3) q,t=q,s+242q,1+(

112 A W 2
;;) QQ,1+('2—hx+C)q,1+§;q—'2'(7;) d, (40)
where b=~h2d, and all parameters appearing in the equation depend on 1.

2 .
4 — +fl_ 2g . +b _l _.ﬁ _..é_.+i +2’_1 2._1 1v__2_b—b
4) g9.=q9; 54°q1tbgg — o Ty xT iy 114

2 2\w a
1 . h ) c . h
ey ~ab—2ab,3—zb,1ax—b b’1+zb,1+2ba"zab s 41)

where w=alh, a, h,c, depend on ¢ only and b depends on x, ¢.

1w 1
(5) g¢,=qs5+aqq,+bg,— 5| -"2b1]9- 5

2 2a
X| —2b3—2bb | +2b ¢ _h +2}i2 hb+2h 42
3 1 K on CREY T h RC) “2)
where w=a?/h, a depend on ¢ only and b depends on x, .
&) armastidr L L[t rpram g - L[4 g2 43
( ) 4.:=4,3 6q,1 2 q,l 5 hx a h 9.1 2 aq ’ ( )
with
R PPN L IO 44
»1—_2 3 ,1 h'x a h h ( )
where b, d depend on ¢, x and a, ¢ and & depend on ¢ only.
; L, @ oy 3aby , (b . abf . h L hd 3b% d
(7N 9.=q3- g 91~ g5 qat| e e R T T IS

+

bi .. Kb, . kb, b 3biby | 156 cb, dhb, W
a7 T BT ¢ T Zabh*tab” Tab? ' Bab’ | 2abh 2ab aw)’

(45)
where w=ah/b, a,c depend on ¢ only, b depends on x,t, and d,f are constants. All these classes

are transformable to those given in Egs. (13) and (15). For this purpose, we first perform the
following transformation:

q=a(1)z(x,1)+ B(x,1), (46)
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where « and £ are arbitrary functions, and z(x,?) is the new dynamical variable. By choosing «
and B properly we eliminate arbitrary functions of x and ¢ appearing in these equations. Secondly,
if the resultant equations contain further arbitrary functions depending upon ¢, we perform the
transformation of the following type:

z=v(x,t)+sox’+s5,x+5, (47)

to eliminate such arbitrary functions as the products of x* and x in these equations. Here sq, 5,
and s, depend only on ¢ and v(x,?) is now the new dynamical variable. At this point we transform
dependent and independent variables according to

v(x,t)=pu(t)u(é,7),
(48)
E=xp(t)+y(t), T=v(1),

which reduces the classes (1)—(7) to one of the type given in Eqs. (13) and (15) exactly. As an
example Eq. (41) is transformed into the Eq. (13) through the following transformations:

172
9= u(é,n— =

(49)
t
£=xh"2+ y(1), »r=f W2 ar,
where
ff_¢ 2/3
7=_f m+h dr'. (50)

Finally we have the following proposition.

Proposition 5: Under the symmetry classification the integrable subclass of the type of equa-
tions (36) is, up to coordinate transformations, equivalent to Egs. (13) and (15).

In conclusion this work shows that there are no generic integrable nonautonomous type of
equation (19). Any integrable PDE (admitting infinitely many generalized symmetries) containing
explicit (x,t) dependencies of the form (19) is transformable into Eq. (10).
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