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Mathematical Institute, Ufa Scientific Center, Russian Academy of Sciences,
Chernishevski str. 112, Ufa, 450000, Russia

~Received 2 December 1994; accepted for publication 17 July 1995!

Boundary value problems for integrable nonlinear partial differential equations are
considered from the symmetry point of view. Families of boundary conditions
compatible with the Harry-Dym, KdV, and mKdV equations and the Volterra chain
are discussed. We also discuss the uniqueness of some of these boundary
conditions. ©1995 American Institute of Physics.

I. INTRODUCTION

In our previous paper1 we have briefly discussed a method to construct boundary value
problems of the form

ut5 f ~u,u1 ,u2 ,...,un!, ~1!

p~u,u1 ,u2 ,...,uk!ux5050, ~2!

completely compatible with the integrability property of Eq.~1!. Hereu5u(x,t), ui5] iu/]xi and
f is a scalar~or vector! field. The aim of the present paper is to expound in detail our scheme and
also extend it to the integrable differential-difference equations.

Let the equation

ut5g~u,u1 ,...,um!, ~3!

for a fixed value ofm, be a symmetry of Eq.~1!. Let us introduce some new set of dynamical
variables, consisting of the variablev5(u,u1 ,u2 ,...,un21), and itst-derivativesv t , v tt ,... . One
can express the higherx-derivatives ofu, i.e.,ui for i>n and theirt-derivatives, by using Eq.~1!,
in terms of the dynamical variablev and theirt-derivatives. Heren is the order of Eq.~1!. In these
terms the symmetry~3! may be written as

vt5G~v,v t ,v t ,...,v tt•••t!. ~4!

We call the boundary value problem, Eqs.~1! and ~2!, as compatible with symmetry~3! if the
constraintp(v)50 @or constraintspa(v)50, wherea51,2,...,N and N is the number of con-
straints# is consistent with thet-evolution,

]p

]t
50 ~mod p50!. ~5!

Equation~5!, by virtue of the equations in~4!, must be automatically satisfied. In fact,~5! means
that the constraintp50 defines an invariant surface in the manifold with local coordinatesv. This
definition of consistency of the boundary value problem with symmetry is closer to the one
introduced in Ref. 2, but not identical.
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We call the boundary condition~2! compatible with the equation if it is compatible at least
with one of its higher-order symmetries.

Our main observation is that if the boundary condition is compatible with one higher sym-
metry, then it is compatible with an infinite number of symmetries that form a setSwith an infinite
elements. HereS may or may not contain the whole symmetries of~1!. For instance,S contains
the even-ordered time-independent symmetries for the Burgers’ equation.

We note that all the known boundary conditions of the form~2! consistent with the inverse
scattering method are indeed compatible with the infinite series of generalized symmetries. On the
other hand, stationary solutions of the symmetries compatible with~2! allow one to construct an
infinite-dimensional set of ‘‘exact’’~finite gap! solutions of the corresponding boundary value
problem~1! and~2!. However, in this work we do not discuss analytical aspects of this problem.
We note also that, in this paper we shall deal with boundary conditions of the form given in~2!.
An effective investigation of boundary conditions involving an explicitt-dependence is essentially
more complicated. Such a problem has been studied, for instance, in Ref. 3.

The paper is organized as follows. In Sec. II we present some propositions related to the
boundary conditions compatible with the infinite number of higher symmetries and prove them. As
an illustrative example we find all possible boundary conditions discussed in Sec. II of the Bur-
gers’ equation in Sec. III. In Sec. IV we consider the nonlinear Schro¨dinger, Harry-Dym,
Korteweg de Vries, and modified KdV equations. Using the symmetry approach we find a bound-
ary condition compatible with the symmetry algebra of the Harry-Dym equation,

ut5u3uxxx , ux5cu, x50, uxx5c2u/2, x50, ~6!

wherec is an arbitrary real constant. Actually one has here two constraints. Although we are
taking the boundary conditions atx50, one can shift this point to an arbitrary pointx5x0 without
losing any generality. We conjecture that the boundary value problem given in~6! is compatible
with the Hamiltonian integrability and solvable by the inverse scattering technique. In addition, we
conjecture that~using the idea in Ref. 4! one can prove that on the finite intervalx1<x<x2 the
Harry-Dym equation with the boundary conditionsux5c0u, uxx5c0

2u/2 for x5x1 andux5c1u,
uxx5c1

2u/2 for x5x2 is a completely integrable Hamiltonian system.
Section V is devoted to the differential-difference equations. In the last section we propose a

further generalization of the compatibility and discuss some open questions.

II. BOUNDARY CONDITIONS COMPATIBLE WITH SYMMETRIES

In the sequel we suppose that Eq.~1! admits a recursion operator of the form~see Refs. 5–7!

R5(
i50

i1

a iD
i1(

i50

k1

a21,iD
21a22,i , i 1>0, k1>0, ~7!

whereai , a21,i , a22,i are functions of the dynamical variables,D is the total derivative with
respect tox, andD21 is defined through the relation

~D21w!~x!5E
2`

x

w~j!dj.

Recursion operators when applied to a symmetry produce new symmetries. Passing to the new
dynamical variablesv, v t , v tt ,..., one can obtain, from~7!, the recursion operatorR of the system
of equations~4! ~we do not prove that every recursion operator may be rewritten in the matrix
form, but we will give below the matrix forms of the recursion operators for the Burgers’, KdV,
mKdV, and Harry-Dym equations!,
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R5(
i50

M

ai~] t!
i1(

i50

K

a21,i~] t
21!a22,i , M.0, K>0, ~8!

where the coefficient matricesai , a21,i , a22,i depend onv and on a finite number of its
t-derivatives, and]t is the operator of the total derivative with respect tot. If ~1! is a scalar
equation,R is a scalar operator, thenR is ann3n matrix valued operator. Our further consider-
ations are based on the following proposition, which really affirms that if an equation admits an
invariant surface, then an infinite number of its higher symmetries admits also the same invariant
surface.

Proposition 2.1:Let Eq. ~4! be of the formvt5T~R!v t whereR is the recursion operator~8!
andT is a polynomial function with scalar constant coefficients. If this equation is consistent with
the constraintp(v)50, where rank ofp equalsn21 ~heren is the dimension of the vectorv!, then
every equation of the formvt5L„T~R!…v t , whereL is arbitrarily chosen polynomial with scalar
constant coefficients, is also compatible with this constraint.

Proof: Introduce new variablesw5(w1,w2,...,wn) in the following way: w15p1,
w25p2,...,wn215pn21, andwn5pn is a function ofv; herepi are the components of the vector
p for i<n21. Then one obtains the equationwt5Pwt from ~5!, whereP5AT~R!A21 and
A5]w/]v is the Jacobi matrix of the mappingv→w. Notice that under this change of variables
the constraintp(v)50 turns into the equationwi50 for i51,2,...,n21. Imposing this constraint
reduces the equationwt5Pwt to the form

S 0
•••
0
wt
n
D 5S P11 ••• P1n

••• ••• •••

Pn21,1 ••• Pn21,n

Pn,1 ••• Pn,n

D S 0
•••
0
wt
n
D .

Let us show that elements of the last column of the matrixP are equal to zero except maybePn,n :
Pi ,n50 for 1< i<n21. Really, by lettingPj ,nÞ0 for somej<n21 the equationPj ,nwt

n50 gives
a connection between variableswn,wt

n,..., which are supposed to be independent. The set of such
operator valued matrices with

(
j51

n21

Pi j ~0!50, ; i51,2,...,n21

constitutes a subalgebraM* in the algebra of all square matrices; hence one can easily conclude
that the operatorL(P) ~modwi50, i<n21! is in M* , so the equationwt5L(P)wt is consistent
with the constraintwi50, i<n21. It completes the proof of Proposition 2.1.

Proposition 2.2:Suppose thatp(v)50 is set of constraints of rankn21 and that there exists
a positive integern0 such that the coefficient matrixbM in the expressionRn0 5 bM(] t)

M

1 bM21(] t)
M21 1 ••• is proportional to the identity matrix. Thenp(v)50 is compatible with the

symmetryvt 5 Rn0v t if and only if it is compatible with the symmetryvt 5 H(Rn0)v t , whereH is
a polynomial with scalar constant coefficients.

Proof: Assumep(v)50 is compatible withvt 5 H(Rn0)v t . In terms of the variablew we
have introduced proving the previous proposition, the equationvt 5 H(Rn0)v t takes the formwt

5 H(R1
n0)wt . Owing to the fact that the point transformation preserves the commutativity property

of flows, the operatorR15ARA21 is the recursion operator in the new variables. Again, just in the
previous proposition one has that the operatorH(R1

n0) under the substitutionp50 ~or really,
wi50, i<n21! belongs to the subalgebraM* . Our aim now is to prove that the operatorQ
5 R1

n0 ~modwi50, i<n21! is in M* . SettingH(Q)5anQ
n1an21Q

n211•••1a0 and repre-
sentingQ as formal series(k52`

M ck] t
k using the famous Campbell–Hausdorff formula, one ob-

tains that
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H~Q!5an@cM
n ~] t!

nM1ncM
n21cM21~] t!

nM211•••#1•••1a0 .

One has thatH(Q) belongs to the subalgebraM* . By looking at the coefficients of different
power of the operator]t , one can show that the matricesci , i5M21, M22,..., satisfy the
equations

cM
n21ci1SiPM* ,

whereSi are polynomials with scalar coefficients on variablesci11, ci12,...,cM and their deriva-
tives. So, because of assumptionscM5bMPM0 , whereM0 is the set of all matrices proportional
to the identity matrix, and detbMÞ0, it is easy to prove by induction thatciPM0 for all i<M .

Assumep(v)50 is compatible withvt 5 Rn0v t . Now let the polynomialT in Proposition 2.1
beT(z) 5 zn0. So the proof is completed.

III. BOUNDARY CONDITIONS OF THE BURGERS’ EQUATION

For the application of the propositions given in the previous section, in particular Proposition
2.2, we study the Burgers’ equation in detail as an example. It has some special importance. We
can find all possible boundary conditions compatible with the even-ordered generalized symme-
tries. The Burgers’ equation and its recursion operator are, respectively, given by, e.g., in Ref. 8,

ut5uxx12uux , ~9!

R5D1u1uxD
21. ~10!

The simplest symmetry of this equation isut5ux . In terms of the new dynamical variables, this
symmetry equation takes the form

ut5u1 , u1,t5ut22uu1 . ~11!

This equation does not admit any invariant surface of the formp(u,u1)50. Really, differentiating
this constraint with respect tot, one obtains

]p

]u
u11

]p

]u1
~ut22uu1!50. ~12!

Because of independence of the variablesut andu1, we have

]p

]u1
5

]p

]u
50, ~13!

which leads to a trivial solutionp5const. As a conclusion we do not have any invariant surface
~curve! in the (u,u1) plane. Similarly, the third-order symmetryut5u313uu213u1

213u2u1
rewritten in the new variables (u,u1) gives the following system of two equations:

ut5u1,t1uut1~u21u1!u1 ,
~14!

u1,t5utt2uu1,t1~u21u1!ut22uu1~u
21u1!.

This system also does not admit any invariant surface of the formp(u,u1)50. It may be easily
proved that the same is true for every symmetry of the odd order, i.e.,ur5u2m111h(u2m,...,u).
Because the correspondent system of equations has different orders in the highestt-derivatives,

ut5] t
mu11••• , u1,t5] t

m11u1••• . ~15!
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Unlike the symmetries of odd order, for the symmetries of even order the correspondent system of
equations has the same orders in the highestt-derivatives. This fact leads us to show that the
symmetries of even order admit an invariant surfacep(u,u1)50, depending upon two arbitrary
parameters.

Proposition 3.1:If the boundary conditionp(u,u1)ux5050 is compatible with a higher sym-
metry of the Burgers’ equation, then it is of the form~see Ref. 2! c(u11u2)1c1u1c250, and is
compatible with every symmetry of the formut5P~R2!ut , whereP denotes polynomials with
scalar constant coefficients.

Proof: The Frechet derivative of~9! gives the symmetry equation of the Burgers’ equation,

] ts5~D212uD12w!s, ~16!

wherew stands foru1. Our aim is to express the recursion operator in terms of] t ,] t
21. To this end

we rewrite~16! in the form] ts5D(D12u)s, which is equivalent to

D21s5] t
21~D12u!s.

Since the operators are acting on the symmetries, we may take

D215] t
21~D12u! ~17!

in the recursion operator~10!. Consequently, the recursion formulaut i11
5 Rut i

becomes

ut i11
5~u12w ] t

21u!ut i
1~11w] t

21!wt i
. ~18!

Differentiating it with respect tox and replacingwx5u25ut22uw, one obtains

wt i11
5@] t12~ut22uw!] t

21u#ut i
1@2u1~ut22uw!] t

21#wt i
, ~19!

for i51,2,... . Thus the matrix form of the recursion operatorR is given by

R5S u12w ] t
21u 11w] t

21

] t12~ut22uw!] t
21u 2u1~ut22uw!] t

21D . ~20!

It is well known that every higher-order local polynomial symmetry may be represented as a
polynomial operatorP0~R! applied to the simplest classical symmetryut5ux . It is more conve-
nient to use the following equivalent representation:

S uwD
t

5P~R2!S uwD
t

1P1~R
2!S w

ut22uwD , ~21!

whereP andP1 are polynomials with scalar constant coefficients andP0 mentioned above may be
taken as

P0~R!5P~R2!R1P1~R
2!.

Note that one could not apply immediately Proposition 2.2 to this because the coefficient of]t in
the representation~20! is not diagonal. On the other hand, the operatorR2 has a scalar leading
part. First, we will prove that if the symmetry~21! admits an invariant surface thenP1 in this
equation vanishes. Let us take the invariant surface asu5q(w). Suppose that the functionq(w) is
differentiable at some pointw5w0. Linearizingq around the pointw0 ~or asw→w0!, we obtain

u2q~w0!5q8~w0!~w2w0!1o~w2w0!.
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It follows from ~20! that in this caseR2 reduces to a scalar operator:R2→[ ] t2w01q2(w0)] I as
w→w0, whereI is the unit matrix. Thus, in the linear approximation Eq.~21! takes the form

S uwD
t

5P@] t2w01q2~w0!#S uwD
t

1P1@] t2w01q2~w0!#S wut D , ~22!

where nowP[ ] t2w01q2(w0)] andP1[ ] t2w01q2(w0)] are scalar operators. It is clear that the
linearized equation is consistent with the linearized boundary condition
u2q(w0)5q8(w0)(w2w0), providedP150. Supposing that Eq.~21! is compatible with the
constraintw5c wherec is a constant and then linearizing about the point~u50, w5c!, one can
easily obtain thatP1 vanishes in this case also.

It is evident now that in Proposition 2.2 one should putn052, becauseR25I ] t1••• . With this
choice the constraintp(u,w) describes an invariant surface for the following system:

S uwD
t

5R2S uwD
t

, ~23!

which is exactly the coupled Burgers’ type integrable system~see Ref. 5!,

ut5utt12~w1u2!ut , wt5wtt12ut
212~w1u2!wt . ~24!

It is straightforward to show that the above system~24! is compatible with the constraint
p(u,w)50 only if p5w1u21c1u1c2 or u5const.

The above uniqueness proof of the boundary conditionp5w1u21c1u1c2 can be more
easily shown if we use a new property of the Burgers’ hierarchy. We have the following proposi-
tion.

Proposition 3.2:The functionu(t,x,tn), for n>21, satisfy infinitely many Burgers’-like
equations,

u,t i ,t i2u,t2i12
522u,t iD

21u,t i, ~25!

for all i521,0,1,2,... .
Burgers’ equation corresponds toi521 ~t215x andt05t!. All ut i

for i.21 correspond to
higher symmetries. Using this relation it is straightforward to determine the even numbered sym-
metries of the Burgers equation from~25!. It is very interesting thatu satisfies the Burgers’-like
equations with respect to the variables (t i ,t2i12) for all i521,0,1,2,... .

The proof of this proposition depends crucially on definition of the higher symmetries of the
Burgers’ equation. They are defined through the equation

utn
5Rn11ux , ~26!

whereR is the recursion operator given in Eq.~10! andn>21. Equation~26! can also be written
asutn

5 Rutn21
. Differentiating this equation once bytn and using~26!, one arrives at~25!.

If we let the most general boundary condition of the formp5 f (u,ux)50 atx5x0 and taketi
andt2i12 derivatives fori>0 of the functionp and use Eq.~25!, we obtain

f ux
2 f ,u,u1 f u

2f ,ux ,ux22 f ,ux
3 22 f ,uf ,uxf u,ux50. ~27!

Letting u5x1 andux1u21c1u1c25x2 , then Eq.~27! becomes

f ,x2
2 f ,x1 ,x11 f ,x1

2 f ,x2 ,x222 f ,x1f ,x2f ,x1 ,x250. ~28!
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Assumingf x2 Þ 0 and lettingq 5 f ,x1 / f ,x2 we find that

q,x15qq,x2. ~29!

This is a very simple equation and its general solution can be found. We shall not follow this
direction to determinef (x1 ,x2) rather than change the form of equationp(u,ux)50 atx5x0. This
equation~in principle! implies either~a! ux5h(u), which implies f5ux2h(u) at x5x0, or ~b!
u5g(ux), which impliesf5u2g(ux) atx5x0. It is now very easy to show that with the cases~a!
and ~b!, when the correspondingf ’s are inserted in~27!, we, respectively, obtain~a! h91250,
which impliesux1u21c1u1c250 at x5x0; and ~b! g912(g8)350, which impliesu5constant
~for g850! and a special case of~a! ~for g8Þ0!. Hence we found all possible boundary conditions.

Remark 3.1:On the invariant surfacep(u,w)50 the system~24! turns into the Burgers’-like
equationut5utt22(c1u1c2)ut , which is also integrable.9

IV. APPLICATIONS TO OTHER PARTIAL DIFFERENTIAL EQUATIONS

In this section we shall apply our method to obtain compatible boundary conditions of some
nonlinear partial differential equations. Let us start with the following system of equations:

ut5u212u2v, 2v t5v212uv2. ~30!

Letting v→u* andt→ i t , the above system becomes the well-known nonlinear Schro¨dinger equa-
tion, where* is the complex conjugation. It has the following recursion operator:

R5SD12u D21v 2u D21u

22v D21v 2D22v D21uD .
For the nonlinear Schro¨dinger equation,R takes the form

R5S 22u ] t
21v1 112u ] t

21v 2u ] t
21u1 22u ] t

21u

j22u1 ] t
21v1 2u1 ] t

21v 2u1 ] t
21u1 22u1 ] t

21u

2v ] t
21v1 22v ] t

21v 22v ] t
21u1 2112v ] t

21u

2v1 ] t
21v1 22v1 ] t

21v h22v1 ] t
21u1 2v1 ] t

21u

D ,
wherej5]t22uv, h5]t12uv, andn052. Suppose that it admits a boundary condition of the
following form:

uxux505p1~u,v !, vxux505p2~u,v !, ~31!

compatible with the fourth-order symmetry. It means that the constraint~31! defines an invariant
surface for this symmetry, presented as a system of four equations with four independent variables,

ut5utt22u2v t24uv1u112vu1
222u3v2,

u1,t5u1,tt22u2v1t22u1
2v126u2v2u124uv1ut14vu1ut14vu3v1 ,

~32!
vt52v tt22v2ut14vu1v122uv1

212v3u2,

v1,t52v1,tt22v2u1,t12v1
2u116v1v

2u224vu1v t14uv1v t24v3uu1 .

One can check that the system~32! is compatible with the constraintu15p1(u,v), v15p2(u,v)
only if p15cu andp25cv. Since the system~32! is of the form
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~u,u1 ,v,v1!t
T5R2~u,u1 ,v,v1! t

T , ~33!

it follows from Proposition 2.2 that the constraintsu15cu, v15cv are compatible with every
symmetry of even order. So the boundary conditionsuxux505cu, vxux505cv are compatible with
such symmetries. Analytical properties of this boundary value problem are studied previously~see
Refs. 4, 10, and 11! by means of the inverse scattering method.

Remark 4.1:On the invariant surfaceu15cu, v15cv the system~32! is reduced to a system
of two equations:

ut5utt22u2v t22c2u2v22u3v2,

vt52v tt22v2ut12c2v2u12v3u2.

The integrability of these equations is shown in Ref. 5~see p. 175!. Under a suitable change of
variables in it this system of two equations becomes the famous derivative nonlinear Schro¨dinger
equation.

Among the nonlinear integrable equations, the Harry-Dym equation,

ut1u3u350, ~34!

is of special interest because its analytical properties are not typical. Using the symmetry approach
we find a boundary condition of the form

p~u,u1 ,u2!50, ~35!

compatible with the Harry-Dym equation. One has to notice that the transformation from the
standard set of variablesu,u1 ,u2 ,u3 ,..., to u,u1 ,u2 ,ut ,u1,t ,u2,t ,..., is not regular. For instance,
u352ut/u

3. It has a singular surface given by the equationu50. So one should examine this
surface separately. Since the Harry-Dym equation~34! as well as its higher-order symmetries
possess the reflection symmetryx→2x, u→2u, t→t the trivial boundary conditionu(t,0)50 is
consistent with the integrability.

Suppose that the boundary value problem~34! and ~35! is compatible with the ninth-order
symmetryut5u9ug1••• . It means that the constraintp(u,v,w) is consistent with following
system of equations, equivalent to the ninth symmetry:

ut5 f 1 , vt5 f 2 , wt5 f 3 , ~36!

wherev5ux , w5uxx , and (f 1 , f 2 , f 3)
T5R3(ut ,v t ,wt)

T, where

R5S uw1ut ] t
21w 2uv2ut ] t

21v u21ut ] t
21u

~1/u!] t1vw2ut /u
21v t ] t

21w 2v22v t ] t
21v uv1v t ] t

21u

w21wt ] t
21w ~1/u!] t2vw2ut /u

22wt ] t
21v uw1wt ] t

21u
D .

The explicit expressions forf 2 , f 3 are very long. Hence we give the explicit form only for the
function f 1:

f 152uttt13uttut
1

u
2
3

2
uttu1h2

3

2

ut
3

u2
1
3

2
uu1,tth

1
3

2
uu1,tht2

15

16
uh2ht2

5

16
h3ut2

3

2
u1utht , ~37!
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whereh52u2u2u1
2. Here one has two choices for the rank of Eq.~35!. It is either one or two. The

first choice does not lead to any regular invariant surface. The second gives

uxux505cu, uxxux505c2u/2. ~38!

Since the symmetry under consideration is of the formut5R3ut , whereR5u3D3uD21(1/u2)
~see Ref. 12! is the recursion operator for the Harry-Dym equation, assumingu→constÞ0 as
uxu→`,13 and taking this constant to be21 without loss of generality, we can write the following
corollary to Proposition 2.2.

Corollary: The boundary value problem~34! and~35! is compatible with every symmetry of
the formut5L(R3)ut , whereL is a scalar polynomial with constant coefficients.

Remark 4.2:On the invariant surfacev5cu, w5c2u/2 Eq. ~37! takes the form

ut52uttt13ututt /u23ut
3u2/2, ~39!

equivalent to the mKdV equation.
The Korteweg de Vries equationut5u316u1u admits a recursion operator

R5D214u12u1D
21, which may be represented in the form

R5S 4u112v ] t
21u 0 112v ] t

21

] t112w ] t
21u 22u 2w ] t

21

2w112~ut26uv !] t
21u ] t22v 22u12~ut26uv !] t

21
D .

It is not difficult to show that the system of equations (u,v,w)t5R3(u,v,w) t admits an invariant
surfaceu50, w50 on which the equation turns into the mKdV equation. It means that the
boundary conditionu(t,x50)50, uxx(t,x50)50 is compatible with all symmetries of the form
(ut ,vt ,wt)

T5H~R3!(ut ,v t ,wt)
T. Similarly, the mKdV equationut5u316u2ux is compatible

with the boundary conditionu(t,x50)50, ux(t,x50)50.

V. APPLICATIONS TO DISCRETE CHAINS

Consider an integrable nonlinear chain of the form

ut~n!5 f „u~n21!,u~n!,u~n11!…, ~40!

with unknown functionu5u(n,t) depending on integern and realt. The natural set of dynamical
variables serving the hierarchy of higher symmetries for the chain is the setu(0),u(61),
u(62),... . However, it is more convenient for our aim to use the following unusual one, consist-
ing of the variablesu(0),u(1) and all theirt-derivatives. Transformations of these sets to each
other are given by Eq.~41! itself and its differential consequences. In terms of new basic variables,
every higher-order symmetry of this chain,

ut~n!5g„u~n2m!,u~n2m21!,...,u~n1m!…, ~41!

could be presented as a system of two partial differential equations,

ut5G1~v,w,v1 ,w1 ,...,vs ,ws!, wt5G2~v,w,v1 ,w1 ,...,vs ,ws!, ~42!

wherev5u(0,t,t), w5u(1,t,t), v i5] iv/]t i , wi5] iw/]xi .
Prescribe some boundary condition of the form

u~0!5p„u~1!,u~2!,...,u~k!…, ~43!

6817Gürel, Gürses, and Habibullin: Boundary conditions for integrable equations

J. Math. Phys., Vol. 36, No. 12, December 1995

Downloaded 07 May 2013 to 139.179.14.46. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions



to Eq. ~40! to hold for all momentst. We shall call the boundary value problem~40!, ~43!
consistent with the symmetry~41! if the constraint~43! defines an invariant surface for the system
~42!. Note that interconnection between the hierarchies of the commuting discrete chains and
integrable partial differential equations is well known~see the survey5!. An illustrative example of
this kind of connections is related to the famous Volterra chain,

ut~n!5u~n!„u~n11!2u~n21!…. ~44!

Its next symmetry is

ut~n!5u~n!u~n11!@u~n!1u~n11!1u~n12!#2u~n!u~n21!@u~n!1u~n21!1u~n22!#,

which might be represented as~Ref. 5, p. 123!

vt1v tt5~2vw1v2! t , wt2wtt5~2vw1w2! t , ~45!

under the substitutionu(0)5v, u(1)5w, u(21)5w2v t/v, u(2)5v1wt/w, u(22)5v
2] ln u(21)/]t. Moreover, the full hierarchy of the Volterra chain is completely described by the
hierarchy of the last system. According to the definition above the boundary value problem~43!,
~44! will be consistent with a symmetry of the Volterra chain if the constraint~43! describes an
invariant surface for the same symmetry, represented as a system of partial differential equations.
Let us examine invariant surfaces of the following system of partial differential equations:

vt5v ttt1~3vH223v tH22v3! t , wt5wttt1~3wH213wtH22w2! t , ~46!

whereH5v1w, which is exactly the higher-order symmetry for the Volterra chain~44! of the
form

ut~n!5u~n!u~n11!@u~n12!u~n13!1u~n!u~n12!1u~n!u~n21!

1u2~n!12u~n11!u~n12!1u2~n12!12u~n!u~n11!1u2~n11!#

2u~n!u~n21!@u~n!u~n11!1u~n!u~n22!1u~n22!u~n23!1u2~n22!

12u~n!u~n21!1u2~n!12u~n21!u~n22!1u2~n21!#.

It is easy to check that the only invariant surface of the formv5const admissible by the system
~43! is v50. The corresponding boundary conditionu~0!50 is well studied~see Refs. 14 and 15!.

Remark 5.1:On the invariant surfacev50 the system~46! reduces to the scalar equation

wt5wttt13wttw13wt
213wtw

2,

which is nothing else but the next symmetry of the Burgers’ equation. Moreover, the constraint is
compatible with every generalized polynomial symmetry. On the invariant surface they are all
reduced to the symmetries of the Burgers’ equation. It is evident, for instance, that the system~46!
turns into the Burgers’ equation itself.

Suppose now thatv5p(w). Then one obtains thatp(w)52w. It gives rise to a boundary
conditionu(0)52u(1) compatible with the Volterra chain~see Ref. 16!.

Remark 5.2:Under the constraintv52w the system~46! turns into the modified KdV
equation,

vt5v ttt16v2v t .

It is not difficult to show that there is no any invariant surface of the formv5p(w,wt) such
that ]p/]wtÞ0 admissible with the system~46!.
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For the casev t5p(v,w,wt) calculations become very long so that here we utilized Math-
ematica 2.1~we thank George Alekseev for his help with this calculations!. Herep has a form
p5(v/w)wt12v(v1w), which produces the boundary conditionu(21)52u(0)2u(1)2u(2).
The slight difference with~43! is overcome by the simple shift of the discrete variablen.

Using Proposition 2.1, it is easy to check that the invariant surfacev t5(v/w)wt12v(v1w)
is compatible with every odd-order polynomial generalized symmetry of the system~46!. It means
that the boundary conditionu(21)52u(0)2u(1)2u(2) is compatible with the corresponding
symmetries of the Volterra chain.

The well-known boundary conditionu2~0!51 for the modified Volterra chain,

ut~n!5„12u2~n!…„u~n11!2u~n21!…,

defines the invariant surfacev251 for the following systems of equations:

vt1v tt52„~12v2!w…t , wt2wtt52„~12w2!v…t , ~47!

and

vt1v ttt52„v~12v2!~3w221!23vwv t…t ,
~48!

wt1wttt52„w~12w2!~3v221!13vwwt…t ,

which are equivalent to the next symmetries of this chain:

ut~n!5„12u2~n!…~D22D1!„12u2~n!…~D22D1!u~n!

and

ut~n!5„12u2~n!…~D22D1!„12u2~n!…@~2D1
2 2D2

2 !u~n!1~D11D2!„u2~n!u~n11!

1u2~n!u~n21!12u~n21!u~n!u~n11!…#.

HereD1 , D2 are the shift operators:D1u(n)5u(n11),D2u(n)5u(n21); v5u(0),w5u(1)
and other variablesu(n) are expressed throughv,w, and theirt-derivatives by means the chain
and its differential consequences.

Remark 5.3:On the invariant surfacev251 the systems~47!, ~48! are reduced to the Burgers’
equation and its third-order symmetry.

VI. CONDITION OF WEAK COMPATIBILITY

It is easy to notice that any symmetry of Eq.~1! rewritten in terms of the nonstandard set of
the dynamical variables turns into the equation containingm21 extra variablesu1 ,u2 ,...,um21.
For instance, the fourth-order symmetry of the Burgers’ equation,

ut5u414u3u110u2u116u2u
2112u1

2u14u1u
3,

takes the following form:

ut5utt12~w1u2!ut ,

wherew5u1 . To extend it to the closed form, it is enough to add one more equation obtained
from the above equation by the differentiation with respect tox and replacingu25ut22uw. This
is the general rule for integrable equations: One has to addm21 more equations~to have a closed
system of equations!, expressing variablesui t , 1< i<m21 through dynamical ones. But on the
other hand, one may consider the single symmetry equation alone and suppose the extra variables
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are expressed interms ofu and its lower derivatives. Let us pose the question, for which choice of
such expressions does the symmetry under consideration turn into an integrable equation? As an
example let us consider the Burgers’ equation. How should we choose the dependencew5w(u),
such that the equationut5utt12(w1u2)ut would be integrable? The only choice is
w52u21c1u1c2 ~see Ref. 17!. We will call the boundary conditionsui5ui(u), x50 ~obtained
this way! for Eq. ~1! as weakly compatible with the symmetry if these constraints are chosen to
satisfy the requirement above; i.e., the equation for thenth symmetry written down in terms of the
introduced variables turns into some integrable equation after replacingui5ui(u),
uit5ut(]ui /]u),... . So in the above case of the Burgers’ equation only the condition
w(u)52u21c1u1c2 is weakly compatible with the fourth-order symmetry. As the remarks
given above indicate, the compatibility of the condition with a symmetry implies the weak com-
patibility with it, but not vice versa. However, we conjecture that if the boundary condition is
weakly compatible with at least three higher symmetries then the corresponding initial boundary
value problem will be solvable by a suitable generalization of the inverse scattering method.

The following example for the Harry-Dym equation~34! seems to be intriguing. Let us
represent the fifth-order symmetry,

ut5
52 1

2u
3~2u5u

2110u4u1u110u3u2u15u3u1
2!

in the formut5
5 1

2(hu) t , whereh52u2u2u1
2. Represent also the next two symmetries in the

similar form:

ut7
5uttu12

3
2utu1uh1 3

8ut@3~h1u1
2!224u1

2~h1u1
2!1u1

4#2uu1tt1
3
8u2tuh

andut9
5 f 1 @see Eq.~37!#. It is evident that for arbitrary functionF5F(u) the constrainth50,

u15F(u) is weakly consistent with fifth and ninth symmetries, because the former takes the
trivial form ut5

5 0 and the latter turns into the integrable equation~39!. The seventh-order sym-
metry becomesut7

5 (Sut) t , where S5F2uF8. Thus, if for instance,S5a5const or
S51/(gu1b)2, one will have the equationut7

5 (Sut) t , to be integrable~see Ref. 9, p. 129!.
SupposingS(u)5a one can easily find thatu15cu1a, u25c2u/21ac1a2/2u. It leads to the
following boundary conditionux5cu1a, uxx5ux

2/2u, at x50 for the Harry-Dym equation,
which coincides with~38! if a50. In the caseS51/(gu1b)2 to find F, one has to integrate the
ordinary differential equationF(u)2uF8(u)5S.
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