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Closed-Form Green’ s Functions for 
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Abstract-The closed-form Green’s functions of the vector and 
scalar potentials in the spatial domain are presented for the 
sources of horizontal electric, magnetic, and vertical electric, 
magnetic dipoles embedded in general, multilayer, planar media. 
First, the spectral domain Green’s functions in an arbitrary layer 
are derived analytically from the Green’s functions in the source 
layer by using a recursive algorithm. Then, the spatial domain 
Green’s functions are obtained by adding the contributions of the 
direct terms, surface waves, and complex images approximated 
by the Generalized Pencil of Functions Method (GPOF). In 
the derivations, the main emphasis is to put these closed-form 
representations in a suitable form for the solution of the mixed 
potential integral equation (MPIE) by the method of moments in 
a general three-dimensional geometry. The contributions of this 
paper are: 1) providing the complete set of closed-form Green’s 
functions in spectral and spatial domains for general stratified 
media; 2) using the GPOF method, which is more robust and 
less noise sensitive, in the derivation of the closed-form spatial 
domain Green’s functions; and 3) casting the closed-form Green’s 
functions in a form to provide efficient applications of the method 
of moments. 

I. INTRODUCTION 
UE to the increased use of multilayer microstrip geome- D tries in the application of microstrip antennas [1]-[6] 

and monolithic microwave integrated circuits [7]-[ 111, the lay- 
ered geometries have recently attracted widespread attention. 
Therefore, a considerable amount of interest has been focused 
on the development of a rigorous and yet computationally 
efficient computer-aided design tools for microstrip geometries 
in a layered medium. 

The rigorous analysis of layered microstrip structures re- 
quires the computation of the Green’s functions for multilayer 
media, which are traditionally represented by the Sommerfeld 
integrals in the spatial domain, and by closed-form expressions 
in the spectral domain. When these traditional expressions for 
the Green’s functions are employed in the method of moments 
(MOM), the numerical evaluation of the MOM matrix elements 
becomes very time consuming in either domain, because the 
integrals involved are oscillatory and slow decaying functions 
[ 121. To alleviate this problem, the spatial domain Green’s 
functions for the vector and scalar potentials, represented by 
the Sommerfeld integrals, are approximated by closed-form 
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Fig. 1. Sources embedded in a multilayer medium. 

expressions and used in the solution of the mixed potential 
integral equation (MPIE) by the MOM. This approach of 
approximating the spectral domain Green’s functions was first 
proposed in [13] for a horizontal electric dipole (HED) over 
a thick substrate backed by a ground plane and extended to 
a geometry with a substrate and a superstrate with arbitrary 
thicknesses [ 141, using the original and least-square Prony’s 
methods [16], respectively. It was demonstrated that the use 
of the closed-form Green’s functions in the analysis of a 
microstrip geometry via the MOM improves the computational 
efficiency significantly [ 151. 

In this paper, the closed-form Green’s functions of the vec- 
tor and scalar potentials of a Horizontal Electric Dipole (HED), 
Horizontal Magnetic Dipole (HMD), Vertical Electric Dipole 
(VED), and a Vertical Magnetic Dipole (VMD) located in an 
arbitrary layer of a planar-layered medium are presented. The 
layers are considered to have different dielectric and magnetic 
properties ( e r ,  p r )  or are made of perfect electric or magnetic 
conductors (PEC, PMC), as shown in Fig. 1. The Green’s 
functions are first obtained in the spectral domain, which can 
be represented in closed-form, in the source layer and these 
expressions are extended to an arbitrary layer using an iterative 
algorithm [8] for TE and TM components individually. Then, 
the spatial domain closed-form Green’s functions are obtained 
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explicit form to avoid the repeated use of GPOF approximation 
and to increase the computational efficiency in cases of vertical 
connections. Since the Green's functions for the vector and 
scalar potentials are not uniquely defined in stratified media 
[ 181, [ 191, the closed-form representations of an alternative 
formulation of the Green's functions are also provided, which 
might be used in cases where the vertical and horizontal 
sources are present at the same point [20]. 

Derivation of the closed-form Green's functions are given 
in Section I1 and the numerical considerations associated 
with their evaluation are discussed. In Section 111, some 
numerical examples of the closed-form Green's functions are 
presented for two different multilayer geometries and the 
approximate Green's functions are compared with the exact 
Green's functions obtained by the numerical evaluation of the 
corresponding Sommerfeld integrals. 

11. FORMULATION 

A general planar-layered medium is shown in Fig. 1. The 
source, (HED, HMD, VED or VMD) is embedded in region i 
and the observation point can be located in an arbitrary layer. 
Each layer can have different electric and magnetic properties 
( e r ,  p r )  and thickness (dz ) .  The perfect electric or magnetic 
conducting planes and half space are also considered as layers 
for the formulation. The procedure for deriving the closed- 
form Green's functions can be summarized as the following 
steps: 

1) Derivation of the Green's functions in the spectral 
domain. 
a) Green's functions are derived in the source layer. 
b) Green's functions in the observation layer are ob- 

tained using an iterative algorithm applied to each 
TE and TM component of the Green's functions in 
the source layer. 

2 )  Derivation of the spatial domain, closed-form Green's 
functions. 
a) Spectral Domain Green's functions, after having the 

surface wave poles and the direct terms extracted, 
are approximated in terms of complex exponentials 
obtained from the GPOF method. 

b) Closed-form Green's functions are obtained ana- 
lytically using the Sommerfeld identity for each 
complex exponential. 

The derivation of the Green's functions for the vector and 
scalar potentials in the spectral domain follows the similar 
procedure given in [SI, where the Green's functions for the 
electric and magnetic fields are obtained. Thus, the derived 
Green's functions, without giving the details of the derivation, 
are given in Section 11-A with all the necessary definitions 
of the reflection coefficients and amplitudes for the sake of 
completeness and for later references. 

All of the Green's functions presented here are for the vector 
and scalar potentials that are indeed not uniquely defined in 
stratified media [ 181, [19l. Therefore, different sets of Green's 
functions for the vector and scalar potentials can be chosen 
to satisfy the same boundary conditions. The following form 

of the Green's function is commonly used and referred as the 
traditional form for the vector potentials 

- - 
GA,F = (22 + @j)Gxx + i2G,, + f$G,, + i i G z z  (1) 

and for the scalar potentials, GEbm and GZ'." [20]. Note 
that in this representation, the scalar potentials of the point 
charges associated with the horizontal and vertical dipoles are 
not identical. This results in some difficulties in the solution 
of the mixed potential integral equation for a geometry where 
both the horizontal and vertical sources (HED and VED or 
HMD and VMD) are present at the same point, as in the case 
of a microstrip etch fed by a vertical probe. To overcome this 
difficulty, an alternative formulation is proposed in [19] and 
adopted in this paper to the procedure described above. The 
alternative representations of the Green's functions are given 
in the Appendix. 

A, Green's Functions in the Spectral Domain 

To derive the spectral domain Green's function for the 
source layer (layer z), the z dependence of the fields in the 
source region is written as the sum of the direct term and 
up- and down-going waves due to the reflections from the 
boundaries at z = -h and z = di - h, respectively. The 
coefficients of the up- and down-going waves can be obtained 
in terms of the generalized reflection coefficients by applying 
the appropriate boundary conditions. The spectral domain 
Green's functions (traditional form) in the source layer are 
obtained for the sources of HED, HMD, VED, and VMD as 

(3) 

(4) 
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GF = __[e-llkz*lzl 1 + c;e--3kz,z + Dze3k..z1 (9) 

GF = ~ [ e - 3 k z ~ I Z I  + A ~ e - 3 k z * z  + B,"eJkz~Z] (10) 

simply by setting G:iF = GA,F GA z3; l k ,  = G$iF/kXl and 

The amplitudes of the up- and down-going waves in a layer 
different from the source layer are related to those in the 

m z z  €2  , w n  = ,%" 

VMD: 

zz  32kZ% adjacent layers by 

where Gt'F denotes the spectral domain Green's functions 
for the vector potentials in direction-i due to a unit j-directed 

element, G F , ~  represents the G ~ ~ ~ ~ ' ~  function of the 
scalar potential in the spectral domain due to a unit i-directed 
electric or magnetic current element, k,2 = $ + kz, the 
superscripts A and F represent the magnetic and the electric 

and magnetic scalar potentials, respectively. The coefficients, 
Ai:: Bi:: Ci::, DilT are functions of the generalized re- 

where A; and A;+ 
waves in layers j and j + 1, respectively, ( j  = z - m),  T is the 
transmission coefficient, and zm is the distance between the 
lower boundary of the source layer i and the lower boundary of 
layer j (see Fig. 1). Similarly, the amplitudes of the up-going 

are the amp1itudes Of the 

in layer j = + can be written as 

vector potentials, respectively, qe and qm represent electric -3 ( k z 3  - l  -kz,  ) (zm-i  +dt - h )  

AT = AT-l T3-1?3e (23) 
1 - ~ ~ ~ ~ - ~ R ~ ~ ~ + ~ e - 3 ~ z ' ~ ~ 3  ' 

.. ~~ 

Therefore, starting from the source layer, the field expressions 
for any layer can be obtained iteratively [8]. 

B. Closed-form Green's Functions in the Spatial Domaiiz 

the Sommerfeld integral [21] as 
The spatial domain Green's functions are represented by 

(12) 

(14) where G and G are the Green's functions in the spatial and 
spectral domains, respectively, Hi2) is the Hankel function of 
the second kind, and SIP is the Sommerfeld integration path. 
The Sommerfeld integral given in (24) cannot be integrated 
analytically, except for a few special cases. On the other hand, 
if the spectral domain representation of the Green's function, 
G, in the integrand can be approximated in terms of complex 
exponentials, then the analytical evaluation of the integral 
(24) becomes possible via the Sommerfeld identity. Since the 
contributions of the direct terms, e-jkz~lzl/kzz, and the surface 
waves can be calculated analytically, they are excluded from 
the expressions to be approximated, [13J, [14]. 

In approximating the spectral domain Green's functions, 
the GPOF method, which is based on solving a generalized 
eigenvalue problem, is used [17]. The spectral domain Green's 
functions, G, are uniformly sampled along an integration 
path, k, = k[-jt+ (1 -t/T,)] deformed from SIP [13] and 
approximated by complex exponentials as 

(15) 

(16) 

(17) 

(18) 

(19) 

N (20) 

where N is the number of exponentials used in the approxi- 
and R and R are the Fresnel and generalized reflection mation. Then, the Sommerfeld identity 
coefficients [81 for which the subscripts TE and TM represent e - jkr  e - j k z  121 

the polarization of the wave, and the superscripts (i,i  - 1) - = -: I,, d k , k , H ~ 2 ) ( k p p ) ~  (26) 
or ( i l i  + 1) show the layer numbers. The subscripts h and 
v used in the coefficients (]2)-(17) represent the orientation 
of the source, horizontal and vertical, respectively, while the 
superscripts e and m denote the type of the source, electric and 
magnetic, respectively. It should be noted that the horizontal 

is employed to obtain the Green's functions in the following 
form, referred as the closed-form 

N e-jk,rm 
G a,--- + direct term + surface waves (27) 

rm Green's functions for the y-oriented dipoles can be obtained m=l 
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where r, = d m  represents a complex distance. Since 
the surface wave contributions for thin-layered structures are 
small, the exclusion of the surface wave contributions is 
not critical for such geometries; meanwhile, the extraction 
of the surface wave poles could improve the approximation 
for geometries with thick layers. Note that the approximation 
of the spectral domain Green’s functions (2)-(11) must be 
performed for the terms in the square brackets, i.e., the 
terms are apart from l/kzt after extracting the direct term 
and surface wave poles, to be able to use the Sommerfeld 
identity. In addition, I C ,  and k ,  parameters in G$F and G;iF, 
respectively, are excluded in the approximation and their 
contributions are added in the spatial domain (after having 
obtained the spatial domain representations of G;iF / I C z  and 
G!;F/k,) by differentiating analytically with respect to x and 
y, respectively. 

C. Closed-Form Green’s Functions for  MOM Applications 

So far, a general procedure to obtain the closed-form 
Green’s functions for the vector and scalar potentials has been 
explained, but nothing has been done yet to make these closed- 
form expressions numerically efficient when they are used 
in conjunction with the method of moments. As mentioned 
above, the terms in the square brackets in (2)-( 1 1 )  are to be 
sampled uniformly along k,i and approximated by complex 
exponentials. To do so, one needs to fix the vertical coordinate 
variable z ;  that is, the approximation technique GPOF has 
to be applied for each z value involved in the analysis. 
For cases of horizontal conductors only, this wouldn’t cause 
computational inefficiency because the conductors must be 
placed at constant z-planes, resulting in the following MOM 
matrix element: 

where T,, and B,, are testing and basis functions, respec- 
tively. Gtz and GF used in this formulation are approximated 
by GPOF for constant z’s corresponding to the planes of the 
conductors in the geometry. However, in geometries with both 
vertical and horizontal conductors with z and x-directed cur- 
rent components, respectively, typical MOM matrix elements 
can have the terms of 

where G&, Gtz ,  GF and GP need to be approximated at 
every observation point z andor source point z’ values (as- 
suming the origin is at the bottom of the source layer for the 
application of the MOM, the coordinates used in the derivation 
of the Green’s functions here can be transformed by z t z - 
z’, h t z’) in the integration due to the testing and expansion 
processes along a vertical conductor. This would defeat the 
purpose of using the closed-form Green’s functions in a MOM 
application. To circumvent the problem associated with the 
testing process, which corresponds to integration along z ,  the 

HED, HMD 

d25 
d4 

Fig. 2.  Geometry of a 4-layer structure. Layer-0: PEC, Layer-3: half space, 
= 1, h = d l  for 

HED and HMD, h = d2 /2  for VED, z = 0.0 cm. 
= 10, dl = 0.075 cm, er2 = 2 , d 2  = 0.15 cm, 

GPOF method can be applied to the compkx coefficients of 
e*jkztz in all the Green’s functions except G;iF. Hence, the 
z-dependence in the closed-form Green’s functions becomes 
explicit and the testing procedure along the z-direction can 
be performed analytically for some testing functions like 
uniform and roof-top functions, which further improves the 
computational efficiency of using the closed-form Green’s 
functions in conjunction with the method of moments. Another 
technique, proposed here, to overcome the above mentioned 
difficulties is to interchange the order of integration (29), 
provided that the basis and testing functions are so chosen 
that the involved integrals are uniformly convergent [ 121, 
and carrying out integration over z analytically for spectral 
domain representation of the Green’s function multiplied with 
the testing function. Next, the approximation method, GPOF, 
is applied to the resulting spectral domain function. For the 
inner product terms involving both the z and z’ integrations, 
these integrals can be performed analytically by using the 
procedure described above and subsequently applying the 
GPOF algorithm. Note that the spectral representations of the 
Green’s functions are exponential functions of z and z’, and 
this permits us to carry out z and z’ integrations analytically. 

111. NUMERICAL RESULTS AND DISCUSSIONS 

The closed-form Green’s functions presented in Section I1 
can be used for planar-layered geometries having an arbitrary 
number of layers with arbitrary layer parameters and general 
sources. In this section, a multilayer geometry is investigated 
for different types of sources and the Green’s functions ob- 
tained using the closed-forms (approximate) are compared 
with the exact Green’s functions, calculated by evaluating the 
corresponding Sommerfeld integrals numerically. 

The geometry investigated in this paper consists of a sub- 
strate and a superstrate with three different dipoles (HED, 
HMD, and VED) and modeled as a 4-layer structure with 
the following parameters-layer-0: PEC, layer-3: half-space, 
E , ~  = 10, E,, = 2, = 1 ,  dl  = 0.075 cm, dL = 
0.15 cm, as shown in Fig. 2. The horizontal dipoles (HED 
and HMD) are located at the air-dielectric interface ( h  = 
&) and the vertical dipole is located in the middle of the 
top layer (h = &/2). In all three cases, the observation 
points are chosen at the source plane ( z  = z’ = 0.0 cm), 
which is the worst case as far as the convergence of the 
Green’s functions are concemed. Figs. 3-9 show the mag- 
nitude of G&, $ G& dx, G$ , Gcz, GF , Gtz  and GZm with 
respect to the distance k,p, which are obtained using both 
the closed-form representations and numerically evaluating the 
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Fig. 3. Magnitude of the Green’s function for the vector potential, G,A, 
for an HED. Layer-0: PEC, Layer-3: half space, trl = 10, d l  = 0.075 cm, 
fr2 = 2,dz  = 0.15 cm, erg = I ,h = dz, t = 0.0 cm, f = 1 GHz. 
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Fig. 4. Magnitude of the Green’s function for the vector potential, 
G& dx ,  for an HED. Layer-0: PEC, Layer-3: half space, 

trl = 10,di = 0.075 cm, tr2 = 2,d2 = 0.15 cm, = I , h  = d2, z = 
0.0 cm, f = 1 GHz. 

corresponding Sommerfeld integrals at a frequency of 1 GHz. 
In Fig. 4 I j Gtx dzl is given, instead of lGtxl, because the 
approximation is performed on G f z / k x .  Fig. 10 shows the 
approximate and the exact Green’s functions, Gfz, calculated 
using the alternative form. 

In approximating the spectral domain Green’s functions 
using the GPOF, the choice of the number of samples used to 
represent a Green’s function in the spectral domain, the max- 
imum sampled value of k,, and the number of exponentials 
used to approximate the spectral domain Green’s functions 
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log10 ( IC0 P )  
Fig. 5. Magnitude of the Green’s function for the scalar potential, G p ,  for 
an HED. Layer-0: PEC, Layer-3: half space, e r l  = 10,dl = 0.075 cm, 
t , , = 2 , d ~ = 0 . 1 5 c m , ~ , , = 1 , h = d ~ , ~ = O . O c m , f = I G H z .  
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Fig. 6.  Magnitude of the Green’s function for the vector potential, GFr, 
for an HMD. Layer-0: PEC, Layer-3: half space, crl = 10, d l  = 0.075 cm, 
e p 2  = 2 , d z  = 0.15 cm, erg  = I , h  = dz, z = 0.0 cm, f = 1 GHz 

depend on the parameters of the multilayer geometry, the type 
and the orientation of the dipole, and the Green’s function 
to be approximated. For example, it is observed that fewer 
sampling points, a fewer number of exponentials, and a smaller 
value of To are required for G!x than those required for 
GF . This is because the vector potential contributes to the 
far field in the spatial domain; the major contributions in the 
spectral domain come from the region close to the origin. On 
the other hand, the scalar potential, which contributes to the 
near field dominantly, extends to larger values of k,  in the 
spectral domain. As one of the contributions of this paper, the 
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Fig. 8. Magnitude of the Green’s function for the vector potential, GP,, 
for a VED, traditional representation. Layer-0: PEC, Layer-3: half space, 
erl  = 10, d l  = 0.075 cm, tT2 = 2,d2 = 0.15 cm, era = 1, h = d2/2,  z = 
0.0 cm, f = 1 GHz. 

approximation of the spectral domain Green’s functions by 
complex exponentials is performed by using the GPOF [17]. 
This technique is more robust and less noise sensitive [22] 
than the original and the least-square Prony’s methods. The 
robustness of the technique comes from the fact that it utilizes 
the singular value decomposition technique as an intermediate 
step to extract the complex exponentials, through which the 
number of exponentials used in the approximation can be 
chosen as the number of the most significant singular values 
either automatically or interactively. Consequently, the number 

14.0 
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12.0 
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10.0 

0 Exact 

9.0 
-3.0 -2.0 -1.0 0.0 1 .o 

1 O Q l O  (ko P )  
Fig. 9. Magnitude of the Green’s function for the scalar potential, GZe, 
for a VED, traditional representation. Layer-0: PEC, Layer-3: half space, 
erl  = 10,dl = 0.075 cm, eV2 = 2, dZ = 0.15 cm, era = 1, h = dz12,z = 
0.0 cm, f = 1 GHz. 

-12.0 1 
-3.0 -2.0 -1.0 0.0 1 .o 

log10 (kop) 
Fig. 10. Magnitude of the Green’s function for the vector potential, G!*, 
for a VED, altemative representation. Layer-0: PEC, Layer-3: half space, 
eT1 = 10, d l  = 0.075 cm, er2 = 2 ,  d2 = 0.15 cm, era = 1, h = d2/2,  z = 
0.0 cm, f = 1 GHz. 

of exponentials chosen for each Green’s function in the 
examples given in this paper is different. For example, in the 
approximation of G t !  of Fig. 3, the number of exponentials, 
the number of samples, and the maximum sampled value To 
are chosen as 4 (including the direct term), 201, and 100, 
respectively, while the same parameters are chosen as 10 
(including the direct term with no surface wave extraction), 
401, and 100 for Gg of Fig. 5. It should be noted that the 
numbers given above are strongly dependent on the parameters 
of the geometry and the source. 
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IV. CONCLUSION 

In this work, a complete set of closed-form, spatial domain 
Green’s functions are provided in stratified media for general 
sources. The closed-form Green’s functions are obtained using 
the GPOF method, which is more robust and less noise 
sensitive than the original Prony’s and the least-square Prony’s 
methods. In addition, the Green’s functions are cast into a form 
to increase the numerical efficiency in the MOM applications. 
Numerical examples of the closed-form Green’s functions are 
given for a multilayer medium. The approximate Green’s 
functions are compared with the exact ones and very good 
agreement is observed. 

APPENDIX 
ALTERNATIVE FORM OF GREEN’S FUNCTION 

Since the vector and scalar potentials are not uniquely de- 
fined in stratified media, different sets of Green’s functions for 
the vector and scalar potentials are possible giving rise to many 
different MPIE formulations [18], [ 191. Among these Green’s 
functions, three useful choices referred as formulations A, B, 
and C, are given in [20]. In this paper, the formulation C is 
chosen as the altemative form of the Green’s function and 
given here as 

and Gqe.m as the Green’s function for the scalar potential 
for both horizontal and vertical dipoles, Fig. 1. Note that the 
difficulties encountered in the traditional formulation due to 
the difference between the scalar potentials of HED (HMD) 
and VED (VMD) are alleviated in this formulation. In the 
above form of the Green’s function, the terms associated with 
the horizontal dipoles (G:gF, Gf;“, G;;“, G;;“, GF.“, and 
GF,m)  remain the same as in the traditional form (2)-(7); 
two new entries, G:iF and Gf;“, are introduced and G:iF 
is modified for the vertical dipoles. For an 2-oriented HED 
and a z-oriented VED, the Green’s function components used 
with the alternative form are adopted to the formulation given 
in Section 11-A as 

where G&, Gkz are the alternative Green’s function compo- 
nents in the source layer and A;,u, B;l,v, ‘E, DZ are given in 
the (1 2)-( 17). 
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