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Abstract. Many nonlinear electronic circuits showing fast this problem is to regularize the system by adding capaci-
switching behavior exhibit jump effects which occurs when tors and inductors at appropriate nodes, in accordance with
the state space of the electronic system contains a fold. ThiFikhonov's theoremTikhonov et al, 1985. When the net-
leads to difficulties during the simulation of these systemswork ise-regularized knrig, 1975, the jump behavior can be
with standard circuit simulators. A method to overcome viewed as the limit — O of the solutions of the singularly
these problems is by regularization, where parasitic inductorperturbed systemSastry and Desogfl981). This method

and capacitors are added at the suitable locations. Howevecan regularize the system, but it gives erroneous transient so-
the transient solution will not be reliable if this regulariza- lutions by choosing wrongly located L's and C's. Another
tion is not done in accordance with Tikhonov’s Theorem. A problem is due to the widely spaced time-constants, which
geometric approach is taken to overcome these problems bgppear because the dynamics of a regularized circuit can be
explicitly computing the state space and jump points of thedivided into a slow and a fast part, leading to the so-called
circuit. Until now, work has been done in analyzing exam- “time-constant problem” of circuit simulatiorfs@ndberg and

ple circuits exhibiting this behavior for BJT transistors. In Shichman 1968. Hence, we adopt a geometric approach
this work we apply these methods to MOS circuits (Schmittand calculate the jump points and state space explicitly. This
trigger, flip flop and multivibrator) and present the numerical approach has been succesfully applied to example transistor
results. To analyze the circuits we use the EKV drain currenfcircuits involving BJTs. In this work, we apply the method to
model as equivalent circuit model for the MOS transistors. MOS circuits and calculate the state space and jump points
for Schmitt Trigger, flip flop and multivibrator and show that
the results confirm with the simulation results. To efficiently

i model the MOS circuits, the EKV drain current model has
1 Introduction been usedHnz et al, 1995.

In this work our focus lies on circuits which exhibit fast

switching behavior (Schmitt Trigger, flip flop and multivi- 2  Geometric interpretation of jump behavior

brator). It is known that the derivative of the capacitor volt-

ages and inductor currents govern the dynamics of an electhe state spacé of an electronic circuit can be interpreted
tronic circuit. Also, the differential equations of electronic as a differentiable manifold and is given by the intersection
circuits can be viewed as a flow on the state space manief the Ohmian® and the KirchhoffiarnC spaceS :=KN0O
fold, which is represented by the algebraic constraints of thaSmale 1972 Desoer and Wul972 Chua 1980. The dy-
circuit. These circuits with discontinuous changes in statespamics of an electronic circuit then is defined®ifMathis
which are called “jumps in state space”, contain a fold in 1992. This implies that we need to satisfy the following
their state space manifold. The simulation of these circuitsconditions: (1)S is a smooth manifold and (2) the dynamics
leads to a simulation failure as the circuit can adopt multiplecan be created afi. The firstis a typical or so-called generic
operating points at the same time. A method to overcomecondition (for a detailed discussion, sikathis 1992, and
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in the following we assumé to be a smooth manifold. The ages and goes to zero beldd,. It is seen, that below the
second condition requires the construction of a vector fieldthreshold voltage the current-voltage characteristic is expo-
X on the smooth manifolé. Based on fundamental physi- nential and is called as sub-threshold current and the behav-
cal laws, the relationships between currents and voltages abr is as follows
capacitors and inductors are given by means of differential v v
relations. Therefore these differential equations are formu-,; = jo— exp<"_9-°') [1—exp<_ ds)} , (4)
lated ini_ anduc coordinate planes. Now, one has to “lift" L Ut Ut
or “pull-back” the dynamics on the state spage There-
fore, the vector field ceases to exist if the pull-back or the
dynamics is degenerated, which leads to jump§.inThis
degeneracy occursd contains a fold. A detailed discussion
of degeneracy can be found Trhiessen and Mathi€011J)
andMathis(1992.

If the circuit is characterized by the following algebro-
differential equations (DAES) in a semi explicit form:

where Ut is the thermal voltagex the non-ideality factor
and Is is the saturation current. Since we are dealing with
circuits that are switching from cutoff to saturation, we need
a model that holds good for all regions of operation and does
not exhibit the jump in the current function itself, as seen in
the square law case. Hence, we use the EKV drain current
equation, which is valid in all regimes. The following equa-
tion shows the EKV current characteristic.

r=g(x.y.2) g;Rk_ﬂ[{” (1) W_ 5 2 Vgs— Vi

0= f(x,y,2) f RES R ) 1d=2u«nConUTln <l+exp< oA >> , (%)
then the set of all jump points (jump-set) is characterized byWhere;c is a variable and is adjusted according to the MOS
J=det(dy f(x,y,2)) =0wheref(x,y,z) =0. (3) under consideration. We can see that whigyis a significant

) . ] value, the exponent dominates inside the logarithm and hence
(see alsdNielsen and Willson Jr(1980, Tchizawa(1984), we can approximate (i +¢*) = In(e*) = x. Upon using this
Ichiraku (1979, Thiessen et al(2012). The vectorx € R” approximation we get

corresponds to the capacitor voltages and inductor currents

and y € R™ is a vector of additional voltages and currents. MnCox W 2
Since there are circuits which exhibit a fold respectively their '¢ — 9,2 f( gs— Vi)” - ©)
input voltages, we assign an additional vecdarR" to in-
dependent voltage or current input sources. We treat the in
dependent input sources as norators and asguimée an-
other variable in our system of equations. Therefore, the stat
spacesS of the circuit has to be extended by the number of W
independent sources Now, the dimensiotk of the embed- I = ZM,,COX—U%exp<
ding spacef € R can be determined by=n+m +n and L

the dimension of5 by dim(S) =1 =n+n. The state space Figyre1 illustrates how the EKV equation closely resembles
S can be defined as a subspace ofdfend is represented by  the square law curve as well as the sub-threshold current in
the solution set of the algebraic equatios (The dynam-  thejr respective regimes. The threshold voltage used for the
ical beahvior of the circuit is represented by the differential analysis isVin, = 1.6 V. We compare the EKV model with the
equations ). actual MOS (BSS123) that is going to be used for the sub-
The jump takes place in a subspace parallel to the spacgequent analysis. From the parameters of the BSS123 MOS,
spanned by, wherey is the vector of all coordinates which - \ye calculate the constants that need to be used in the EKV
are not fixed and do not conserve enefgyessen and Mathis  model. It gives us the following empirical drain current equa-
(2011, Thiessen et ak2019. The corresponding “hit-set” tjon, which can be used to simulate the circuits.
is the intersection of the “bundle” of all jump spaces at points
of the jump-set and the state spate f)=a-IN*(L+expb(Vgs—1.6))) (8)
To solve the equivalent circuits of the Schmitt Trigger, flip
flop and multivibrator, we take this approach where we nu-wherea =0.0013 and> = 10.7250. Figure2 shows the drain
merically calculate the jump points. For the determination ofcurrent versus the gate source voltage characteristic of the
S, we interpret; as variables and by specifyiigomponents ~ EKV approximation and the BSS123 for=1.8.
of y, we can calculaté& Thiessen et a2012).

If the gate source potential is a value comparable or less than
V;, then we can approximate(th+ ¢*) = ¢*. With this ap-
Qroximation we get

Vgs— Vi
kUt '

@)

4 Example 1: Schmitt Trigger circuit

3 Modelling the MOS equivalent circuit
In this section we analyze the Schmitt Trigger circuit from a

It is known that the MOS drain current follows a square law geometric point of view. The design parameters of the cir-
and is a function of the gate-source and the drain-source volteuit areR¢c1 = 2.5k, Reo =1k, R1 =10k, Ro =12 kS,
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(b) Square-Law Case
Fig. 1. Comparison of the EKV model with the square law and
sub-threshold current. 0= Ui (%e _ k) + Ugsl(k _ Rie) — Ugsok
+f (Ugst) (5 —1) — f (Ugsd) — 720
Re=300%2, Up=9V and V7 = 1.6 V. We neglect the gate 9sV\ bRy 982 = pRo1R1 9)
source capacitance during the calculation of the jump points.
These capacitances are used to regularize the circuit an U
b 2 B= Uink — Ugesk + Ugedk - ffm?f]) + pRlﬁRl

therefore enable the simulation of the circuits with a common
circuit simulator. In our approach, addition of these regular-, hore the constanis andk are
ization capacitanceSt is hot necessary. Equatio8)(gives

us the state space description of the systéfp.is the input _ i i i (10)
andUgs1 andUgs are the gate source voltages and are set aé? " Rei R

the state variablesf (.) is the EKV equation as described in

Eq. @). The output voltages are then found out as a function 1 1 1

of Ugs1, Ugs2. The state space of the circuit is given by the k= p_Rf "R R (11)

intersection of the solution sets of these two equations:
The system of equations is solved using Newton-Raphson

method where the range 6fys; is defined. To find the fold

in the state space we need to choose a proper coordinate sys-
tem. Sinceli, is fixed, this state cannot jump. This implies
that we need to look at th&i, — Ugyt2 curve for a fold. Fig-

ure4 indeed shows a fold and as expected, there are multiple
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Fig. 5. Flip Flop Circuit.
Fig. 4. Output vs. Input — Schmitt Trigger.

1 1

. S . . q=5 T5 -
outputs for the same input indicating singularity. To calculate Rc2 Ry
the point where the output transition occurs, we calculate theU
jump points using the method as stated in Bj}. This gives
us

(16)

in is the independent input voltag€yyt2 is the output and
Ugs1, Ugszare the gate source voltages of the MOS. The state
space and the jump points are obtained by declatigg
((k )+ f (Ugsl)( L 1)) between two predefined values and solvingligg. for that
pr1 corresponding value dfgs1. The determinant criterion here

(12)
f'(Ugs) turns out to be
— (k + f’(UgSZ)) (k “DRL
. _ . Do) 11
To solve this equation we assume tligk; varies between R2 q pRgz R R,
two predefined values and firigys,. The intersections of the bl F'Ugsd f'(Ugsd (17)

solution set of Eq. (12) and the state space are defined as the

jump points. The jump points of the output are shown in

Fig. 4 as the intersection of both curves. The jump points of the output are shown in Fias the
intersection of both curves.

Pq Rp1Rp2

5 Example 2: Flip Flop circuit

. o o i 6 Example 3: multivibrator
The flip flop circuit is analyzed similar to the previous case.

This circuit is analytically similar to the Schmitt Trigger, In the earlier sections the systems of equations were only
hence the results should be similar to the ones obtainedigebraic ones. Here, for the multivibrator, we get a semi
there. The following are the design parameters of the circuitiexplicit DAE system. The device parameters chosen for this
Uo=9V, VT =16V, Rc1=10Q, Re2=10%, Ry; =10k, circuit are: Up =5V, V1 =1.6V, Ry =5k, R, =100k,
Rp2=10kR2, R, =10k2, Ry =10k andR, =5k2. The  C =33nF,I,=0.26 mA. The equations governing this cir-

equations governing the circuit are cuit are:
Uo 1 ) fUgs? . Uin R> Ugs2R2
0= ——— — [ k— -1 ) Ugs1— + = _ gs
9 Ro1Rc2 ( ar%, )T TRy TR, o UoR Ug51<R1+ 2 >+ 2
_ U (L 1)y, Wes) B R1(R1+ R2)
PRc1Rp2 Pth,z Rp2 Ry 9 PRb2 IoR1R2 — M
2
13 + — f(U,
(13) iy Us?
where the constants p, g are
1 1 1 UgsiR R
=—F —+— 14 gs1t2 _ X2
Rbi R, Ry ( ) o UoR1+ 2 UgsZ Ri+ 2
B R1(R1+R2)
1 1 Uc(R1+ R
p=—t— (15) UelR1R2) | 1oRiks
Rer  Roz +—= ~ f (Ugsp
R1(R1+R?)
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space was plotted ibigs;— Ugso— Uc coordinate system. The
determinant criterion for this circuit is given as

2
R
(%)

2 _ R o )
Rl(Rl+R2)R(2R1(R1+R2) /' Wgsd) (20)

2 / _
(oriiry — ' Wes2) =0

I(Ugs+)

UGS1

[ J—

Upon solving this with Newton-Raphson method we get the
lo R, R, lo jump points as shown in Fi@. The jump points are shown in
the Ugs1— Ugs2 coordinate system as the intersection of both
curves. For verifying our results we regularized the system
of equations by adding regularization capacitances parallel
Fig. 7. Multivibrator Circuit Diagram. to Ugs1 andUgsz. The transient behavior of this regularized
circuit can be seen in Fid.0 (red line). We can see that the
fast transition occurs in th&gs; and Ugs» space, where the

\H—«

U, - .
. (?C — Raf (UgsD + Rz f(Ugsz)> capacitance potentidl; is hold mostly constant.
UC -

CR>
7 Conclusions
(RZUgsl_ R2U952+ R2U0> The simulation of electronic circuits that contain a fold in
2 2 2 (18)  their state space with common circuit simulators like SPICE
CR1R> sometimes gives errors due to time constant problems. The

) ] ) ) analysis of these circuits require regularization, which is
The above equations can be written in a matrix form as  4chieved by adding capacitors and inductors at appropriate
nodes. If the regularization is not done in accordance with

8 B (Unet Unco U 19 Tikhonov's Theorem, the transient solutions will not be re-
0 =1 (Ugs1. Ugs2. Uc) 19 jiaple. With our approach, regularization is no longer nec-
Cc

essary, as it is possible to detect whether the manifold of

The state space of the circuit is given by the intersec-the circuit's state space has a fold beforehand. The jump

tion of the surfacesS; and S,, where S is the solution poiqts, therefore help us to identify the points of tra_nsition
set of h1(Ugs1, Ugsz. Uc) = 0 and S, is the solution set of easily. We have shown numerical r.esu.lts of applying the
ha(Ugst. Ugsa Uc) = 0. Figure8 shows the intersection of geometrlg concepts to three MOS CI_rCUItS. Therefore, _the
the two surfaces. The intersection curve (in blue) is the statd1OS drain current was modelled using the EKV equation
space of the circuit. The state space has to be plotted in fpr robust results.

coordinate system, where one of the quantity does not jump

whereas the other two show jump behavior. Hence the state
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