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Abstract. Many nonlinear electronic circuits showing fast
switching behavior exhibit jump effects which occurs when
the state space of the electronic system contains a fold. This
leads to difficulties during the simulation of these systems
with standard circuit simulators. A method to overcome
these problems is by regularization, where parasitic inductors
and capacitors are added at the suitable locations. However,
the transient solution will not be reliable if this regulariza-
tion is not done in accordance with Tikhonov’s Theorem. A
geometric approach is taken to overcome these problems by
explicitly computing the state space and jump points of the
circuit. Until now, work has been done in analyzing exam-
ple circuits exhibiting this behavior for BJT transistors. In
this work we apply these methods to MOS circuits (Schmitt
trigger, flip flop and multivibrator) and present the numerical
results. To analyze the circuits we use the EKV drain current
model as equivalent circuit model for the MOS transistors.

1 Introduction

In this work our focus lies on circuits which exhibit fast
switching behavior (Schmitt Trigger, flip flop and multivi-
brator). It is known that the derivative of the capacitor volt-
ages and inductor currents govern the dynamics of an elec-
tronic circuit. Also, the differential equations of electronic
circuits can be viewed as a flow on the state space mani-
fold, which is represented by the algebraic constraints of the
circuit. These circuits with discontinuous changes in states,
which are called “jumps in state space”, contain a fold in
their state space manifold. The simulation of these circuits
leads to a simulation failure as the circuit can adopt multiple
operating points at the same time. A method to overcome

this problem is to regularize the system by adding capaci-
tors and inductors at appropriate nodes, in accordance with
Tikhonov’s theorem (Tikhonov et al., 1985). When the net-
work isε-regularized (Ihrig, 1975), the jump behavior can be
viewed as the limitε → 0 of the solutions of the singularly
perturbed system (Sastry and Desoer, 1981). This method
can regularize the system, but it gives erroneous transient so-
lutions by choosing wrongly located L’s and C’s. Another
problem is due to the widely spaced time-constants, which
appear because the dynamics of a regularized circuit can be
divided into a slow and a fast part, leading to the so-called
“time-constant problem” of circuit simulation (Sandberg and
Shichman, 1968). Hence, we adopt a geometric approach
and calculate the jump points and state space explicitly. This
approach has been succesfully applied to example transistor
circuits involving BJTs. In this work, we apply the method to
MOS circuits and calculate the state space and jump points
for Schmitt Trigger, flip flop and multivibrator and show that
the results confirm with the simulation results. To efficiently
model the MOS circuits, the EKV drain current model has
been used (Enz et al., 1995).

2 Geometric interpretation of jump behavior

The state spaceS of an electronic circuit can be interpreted
as a differentiable manifold and is given by the intersection
of the OhmianO and the KirchhoffianK spaceS :=K∩O
(Smale, 1972; Desoer and Wu, 1972; Chua, 1980). The dy-
namics of an electronic circuit then is defined onS (Mathis,
1992). This implies that we need to satisfy the following
conditions: (1)S is a smooth manifold and (2) the dynamics
can be created onS. The first is a typical or so-called generic
condition (for a detailed discussion, seeMathis, 1992), and
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in the following we assumeS to be a smooth manifold. The
second condition requires the construction of a vector field
X on the smooth manifoldS. Based on fundamental physi-
cal laws, the relationships between currents and voltages of
capacitors and inductors are given by means of differential
relations. Therefore these differential equations are formu-
lated iniL anduC coordinate planes. Now, one has to “lift”
or “pull-back” the dynamics on the state spaceS. There-
fore, the vector field ceases to exist if the pull-back or the
dynamics is degenerated, which leads to jumps inS. This
degeneracy occurs ifS contains a fold. A detailed discussion
of degeneracy can be found inThiessen and Mathis(2011)
andMathis(1992).

If the circuit is characterized by the following algebro-
differential equations (DAEs) in a semi explicit form:

ẋ = g(x,y,z) g : Rk
→ Rn (1)

0= f (x,y,z) f : Rk
→ Rm (2)

then the set of all jump points (jump-set) is characterized by

J = det
(
∂yf (x,y,z)

)
= 0 wheref (x,y,z) = 0. (3)

(see alsoNielsen and Willson Jr.(1980), Tchizawa(1984),
Ichiraku (1979),Thiessen et al.(2012)). The vectorx ∈ Rn

corresponds to the capacitor voltages and inductor currents
andy ∈ Rm is a vector of additional voltages and currents.
Since there are circuits which exhibit a fold respectively their
input voltages, we assign an additional vectorz ∈ Rη to in-
dependent voltage or current input sources. We treat the in-
dependent input sources as norators and assumez to be an-
other variable in our system of equations. Therefore, the state
spaceS of the circuit has to be extended by the number of
independent sourcesη. Now, the dimensionk of the embed-
ding spaceE ∈ Rk can be determined byk = n+m+η and
the dimension ofS by dim(S) = l = n+η. The state space
S can be defined as a subspace of theE and is represented by
the solution set of the algebraic equations (2). The dynam-
ical beahvior of the circuit is represented by the differential
equations (1).

The jump takes place in a subspace parallel to the space
spanned byy, wherey is the vector of all coordinates which
are not fixed and do not conserve energyThiessen and Mathis
(2011), Thiessen et al.(2012). The corresponding “hit-set”
is the intersection of the “bundle” of all jump spaces at points
of the jump-set and the state spaceS.

To solve the equivalent circuits of the Schmitt Trigger, flip
flop and multivibrator, we take this approach where we nu-
merically calculate the jump points. For the determination of
S, we interpretz as variables and by specifyingl components
of y, we can calculateS Thiessen et al.(2012).

3 Modelling the MOS equivalent circuit

It is known that the MOS drain current follows a square law
and is a function of the gate-source and the drain-source volt-

ages and goes to zero belowVth. It is seen, that below the
threshold voltage the current-voltage characteristic is expo-
nential and is called as sub-threshold current and the behav-
ior is as follows

Id = IS
W

L
exp

(
κVgs

UT

)[
1−exp

(
−Vds

UT

)]
, (4)

whereUT is the thermal voltage,κ the non-ideality factor
andIS is the saturation current. Since we are dealing with
circuits that are switching from cutoff to saturation, we need
a model that holds good for all regions of operation and does
not exhibit the jump in the current function itself, as seen in
the square law case. Hence, we use the EKV drain current
equation, which is valid in all regimes. The following equa-
tion shows the EKV current characteristic.

Id = 2µnCox
W

L
U2

T ln2
(

1+exp

(
Vgs−Vt

2κUT

))
, (5)

whereκ is a variable and is adjusted according to the MOS
under consideration. We can see that whenVgs is a significant
value, the exponent dominates inside the logarithm and hence
we can approximate ln(1+ex) u ln(ex) = x. Upon using this
approximation we get

Id =
µnCox

2κ2

W

L

(
Vgs−Vt

)2
. (6)

If the gate source potential is a value comparable or less than
Vt , then we can approximate ln(1+ ex) u ex . With this ap-
proximation we get

Id = 2µnCox
W

L
U2

T exp

(
Vgs−Vt

κUT

)
. (7)

Figure1 illustrates how the EKV equation closely resembles
the square law curve as well as the sub-threshold current in
their respective regimes. The threshold voltage used for the
analysis isVth = 1.6 V. We compare the EKV model with the
actual MOS (BSS123) that is going to be used for the sub-
sequent analysis. From the parameters of the BSS123 MOS,
we calculate the constants that need to be used in the EKV
model. It gives us the following empirical drain current equa-
tion, which can be used to simulate the circuits.

f (v) = a · ln2(1+exp(b(Vgs−1.6))) , (8)

wherea = 0.0013 andb = 10.7250. Figure2 shows the drain
current versus the gate source voltage characteristic of the
EKV approximation and the BSS123 forκ = 1.8.

4 Example 1: Schmitt Trigger circuit

In this section we analyze the Schmitt Trigger circuit from a
geometric point of view. The design parameters of the cir-
cuit areRc1= 2.5 k�, Rc2= 1 k�, R1 = 10 k�, R2 = 12 k�,
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Fig. 1: Comparison of the EKV model with the square
law and sub-threshold current

following empirical drain current equation, which can
be used to simulate the circuits.

f (v) = a · ln2(1+ exp(b(Vgs−1.6))) , (8)

where a = 0.0013 and b = 10.7250. Fig.2 shows the drain
current versus the gate source voltage characteristic of
the EKV approximation and the BSS123 for κ = 1.8.

4 Example 1: Schmitt Trigger Circuit

In this section we analyze the Schmitt Trigger circuit
from a geometric point of view. The design parameters
of the circuit are Rc1 = 2.5kΩ, Rc2 = 1kΩ, R1 = 10kΩ,
R2 = 12kΩ, Re = 300Ω, Uo = 9V and VT = 1.6V. We ne-
glect the gate source capacitance during the calculation
of the jump points. These capacitances are used to over-
come the singular points and they aid in the simula-
tion of circuits with circuit simulators. In our approach,
addition of these regularization capacitances CT is not
necessary. Eq.9 gives us the state space description of
the system. Uin is the input and Ugs1 and Ugs2 are the
gate source voltages and are set as the state variables.
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Fig. 2: Comparison of the EKV model with the BSS123
MOS

f (.) is the EKV equation as described in eq.8. The out-
put voltages are then found out as a function of Ugs1,
Ugs2. The state space of the circuit is given by the in-
tersection of the solution sets of these two equations:
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Fig. 3: Schmitt Trigger Circuit

0 = Uin

(
1

Re
− k
)

+Ugs1

(
k− 1

Re

)
−Ugs2k

+ f (Ugs1)

(
1

pR1
−1
)
− f (Ugs2)− Uo

pRc1R1

0 = Uink−Ugs1k+Ugs2k− f (Ugs1)
pR1

+ Uo
pRc1R1

(9)

where the constants p and k are

p =
1

Rc1
+

1
R1

(10)

k =
1

pR2
1
− 1

R1
− 1

R2
(11)

Fig. 1. Comparison of the EKV model with the square law and
sub-threshold current.

Re = 300�, Uo = 9 V andVT = 1.6 V. We neglect the gate
source capacitance during the calculation of the jump points.
These capacitances are used to regularize the circuit and
therefore enable the simulation of the circuits with a common
circuit simulator. In our approach, addition of these regular-
ization capacitancesCT is not necessary. Equation (9) gives
us the state space description of the system.Uin is the input
andUgs1 andUgs2 are the gate source voltages and are set as
the state variables.f (.) is the EKV equation as described in
Eq. (8). The output voltages are then found out as a function
of Ugs1, Ugs2. The state space of the circuit is given by the
intersection of the solution sets of these two equations:
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following empirical drain current equation, which can
be used to simulate the circuits.

f (v) = a · ln2(1+ exp(b(Vgs−1.6))) , (8)

where a = 0.0013 and b = 10.7250. Fig.2 shows the drain
current versus the gate source voltage characteristic of
the EKV approximation and the BSS123 for κ = 1.8.
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In this section we analyze the Schmitt Trigger circuit
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R2 = 12kΩ, Re = 300Ω, Uo = 9V and VT = 1.6V. We ne-
glect the gate source capacitance during the calculation
of the jump points. These capacitances are used to over-
come the singular points and they aid in the simula-
tion of circuits with circuit simulators. In our approach,
addition of these regularization capacitances CT is not
necessary. Eq.9 gives us the state space description of
the system. Uin is the input and Ugs1 and Ugs2 are the
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following empirical drain current equation, which can
be used to simulate the circuits.

f (v) = a · ln2(1+ exp(b(Vgs−1.6))) , (8)

where a = 0.0013 and b = 10.7250. Fig.2 shows the drain
current versus the gate source voltage characteristic of
the EKV approximation and the BSS123 for κ = 1.8.

4 Example 1: Schmitt Trigger Circuit

In this section we analyze the Schmitt Trigger circuit
from a geometric point of view. The design parameters
of the circuit are Rc1 = 2.5kΩ, Rc2 = 1kΩ, R1 = 10kΩ,
R2 = 12kΩ, Re = 300Ω, Uo = 9V and VT = 1.6V. We ne-
glect the gate source capacitance during the calculation
of the jump points. These capacitances are used to over-
come the singular points and they aid in the simula-
tion of circuits with circuit simulators. In our approach,
addition of these regularization capacitances CT is not
necessary. Eq.9 gives us the state space description of
the system. Uin is the input and Ugs1 and Ugs2 are the
gate source voltages and are set as the state variables.
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f (.) is the EKV equation as described in eq.8. The out-
put voltages are then found out as a function of Ugs1,
Ugs2. The state space of the circuit is given by the in-
tersection of the solution sets of these two equations:
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Fig. 3. Schmitt Trigger Circuit.

0= Uin

(
1
Re

−k
)
+Ugs1

(
k−

1
Re

)
−Ugs2k

+f (Ugs1)
(

1
pR1

−1
)
−f (Ugs2)−

Uo
pRc1R1

0= Uink−Ugs1k+Ugs2k−
f (Ugs1)

pR1
+

Uo
pRc1R1

(9)

where the constantsp andk are

p =
1

Rc1
+

1

R1
(10)

k =
1

pR2
1

−
1

R1
−

1

R2
(11)

The system of equations is solved using Newton-Raphson
method where the range ofUgs1 is defined. To find the fold
in the state space we need to choose a proper coordinate sys-
tem. SinceUin is fixed, this state cannot jump. This implies
that we need to look at theUin −Uout2 curve for a fold. Fig-
ure4 indeed shows a fold and as expected, there are multiple
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The system of equations is solved using Newton-

Raphson method where the range of Ugs1 is defined.
To find the fold in the state space we need to choose
a proper coordinate system. Since Uin is fixed, this
state cannot jump. This implies that we need to look
at the Uin−Uout2 curve for a fold. Fig.4 indeed shows
a fold and as expected, there are multiple outputs for
the same input indicating singularity. To calculate the
point where the output transition occurs, we calculate
the jump points using the method as stated in eq.3. This
gives us

k
(

(k−1)+ f ′(Ugs1)

(
1

pR1
−1
))

−
(
k+ f ′(Ugs2)

)(
k+

f ′(Ugs1)
pR1

)
= 0

(12)

To solve this equation we assume that Ugs1 varies be-
tween two predefined values and find Ugs2. The points
intersecting with the solution set of the jump condition
and the state space, are defined as the jump points. The
jump points of the output are shown in Fig.4.
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Fig. 4: Output vs. Input - Schmitt Trigger

5 Example 2: Flip Flop Circuit

This circuit is analyzed similar to the previous case.
This circuit is analytically similar to the Schmitt Trig-
ger, hence the results should be similar to the ones ob-
tained there. The following are the design parameters
of the circuit: Uo = 9V,VT = 1.6V, Rc1 = 10Ω, Rc2 =
10Ω, Rb1 = 10kΩ, Rb2 = 10kΩ, Rx = 10kΩ, Ry = 10kΩ
and Rv = 5kΩ. The equations governing the circuit are

0 =
U0

qRb1Rc2
−
(

k− 1
qR2

b1

)
Ugs1−

f (Ugs2)

qRb1
+

Uin
Rv

0 =
U0

pRc1Rb2
+

(
1

pR2
b2
− 1

Rb2
− 1

Rx

)
Ugs2−

f (Ugs1)

pRb2

(13)
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Fig. 5: Flip Flop Circuit

where the constants k, p, q are

k =
1

Rb1
+

1
Rv

+
1

Ry
(14)

p =
1

Rc1
+

1
Rb2

(15)

q =
1

Rc2
+

1
Rb1

(16)

where Uin is the input, Uout2 is the output and Ugs1,Ugs2
are the gate source voltages of the MOS. The phase
space and the jump points are obtained by declaring
Ugs1 between two predefined values and solving for
Ugs2 for that corresponding value of Ugs1. The jump
condition here turns out to be(

1
R2

b1q
− k

)(
1

pR2
b2
− 1

Rb2
− 1

Rx

)
−

f ′(Ugs1) f ′(Ugs2)

pqRb1Rb2
= 0

(17)

The jump points of the output are shown in Fig.6.

6 Example 3: Multivibrator

In the earlier sections the systems of equations were
only algebraic ones. Here, for the multivibrator, we
get a semi explicit DAE system. The device parameters
chosen for this circuit are: Uo = 5V, VT = 1.6V, R1 =
5kΩ, R2 = 100kΩ, C = 33nF, Io = 0.26mA. The equa-
tions governing this circuit are:

0 =

U0R1−Ugs1

(
R1 +

R2

2

)
+

Ugs2R2

2
R1(R1 + R2)

+
I0R1R2−

Uc(R1 + R2)

2
R1(R1 + R2)

− f (Ugs2)

Fig. 4. Output vs. Input – Schmitt Trigger.

outputs for the same input indicating singularity. To calculate
the point where the output transition occurs, we calculate the
jump points using the method as stated in Eq. (3). This gives
us

k
(
(k−1)+f ′(Ugs1)

(
1

pR1
−1

))
−
(
k+f ′(Ugs2)

)(
k+

f ′(Ugs1)

pR1

)
= 0

(12)

To solve this equation we assume thatUgs1 varies between
two predefined values and findUgs2. The intersections of the
solution set of Eq. (12) and the state space are defined as the
jump points. The jump points of the output are shown in
Fig. 4 as the intersection of both curves.

5 Example 2: Flip Flop circuit

The flip flop circuit is analyzed similar to the previous case.
This circuit is analytically similar to the Schmitt Trigger,
hence the results should be similar to the ones obtained
there. The following are the design parameters of the circuit:
Uo = 9 V, VT = 1.6 V, Rc1= 10�, Rc2= 10�, Rb1= 10 k�,
Rb2 = 10 k�, Rx = 10 k�, Ry = 10 k� andRv = 5 k�. The
equations governing the circuit are

0=
U0

qRb1Rc2
−

(
k−

1
qR2

b1

)
Ugs1−

f (Ugs2)

qRb1
+

Uin

Rv

0=
U0

pRc1Rb2
+

(
1

pR2
b2

−
1

Rb2
−

1

Rx

)
Ugs2−

f (Ugs1)

pRb2

(13)

where the constantsk, p, q are

k =
1

Rb1
+

1

Rv

+
1

Ry

(14)

p =
1

Rc1
+

1

Rb2
(15)
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The system of equations is solved using Newton-

Raphson method where the range of Ugs1 is defined.
To find the fold in the state space we need to choose
a proper coordinate system. Since Uin is fixed, this
state cannot jump. This implies that we need to look
at the Uin−Uout2 curve for a fold. Fig.4 indeed shows
a fold and as expected, there are multiple outputs for
the same input indicating singularity. To calculate the
point where the output transition occurs, we calculate
the jump points using the method as stated in eq.3. This
gives us

k
(

(k−1)+ f ′(Ugs1)

(
1

pR1
−1
))

−
(
k+ f ′(Ugs2)

)(
k+

f ′(Ugs1)
pR1

)
= 0

(12)

To solve this equation we assume that Ugs1 varies be-
tween two predefined values and find Ugs2. The points
intersecting with the solution set of the jump condition
and the state space, are defined as the jump points. The
jump points of the output are shown in Fig.4.
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5 Example 2: Flip Flop Circuit

This circuit is analyzed similar to the previous case.
This circuit is analytically similar to the Schmitt Trig-
ger, hence the results should be similar to the ones ob-
tained there. The following are the design parameters
of the circuit: Uo = 9V,VT = 1.6V, Rc1 = 10Ω, Rc2 =
10Ω, Rb1 = 10kΩ, Rb2 = 10kΩ, Rx = 10kΩ, Ry = 10kΩ
and Rv = 5kΩ. The equations governing the circuit are
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where the constants k, p, q are

k =
1

Rb1
+

1
Rv

+
1

Ry
(14)

p =
1

Rc1
+

1
Rb2

(15)

q =
1

Rc2
+

1
Rb1

(16)

where Uin is the input, Uout2 is the output and Ugs1,Ugs2
are the gate source voltages of the MOS. The phase
space and the jump points are obtained by declaring
Ugs1 between two predefined values and solving for
Ugs2 for that corresponding value of Ugs1. The jump
condition here turns out to be(

1
R2

b1q
− k

)(
1

pR2
b2
− 1

Rb2
− 1

Rx

)
−

f ′(Ugs1) f ′(Ugs2)

pqRb1Rb2
= 0

(17)

The jump points of the output are shown in Fig.6.

6 Example 3: Multivibrator

In the earlier sections the systems of equations were
only algebraic ones. Here, for the multivibrator, we
get a semi explicit DAE system. The device parameters
chosen for this circuit are: Uo = 5V, VT = 1.6V, R1 =
5kΩ, R2 = 100kΩ, C = 33nF, Io = 0.26mA. The equa-
tions governing this circuit are:

0 =

U0R1−Ugs1

(
R1 +

R2

2

)
+

Ugs2R2

2
R1(R1 + R2)

+
I0R1R2−

Uc(R1 + R2)

2
R1(R1 + R2)

− f (Ugs2)

Fig. 5. Flip Flop Circuit.

q =
1

Rc2
+

1

Rb1
. (16)

Uin is the independent input voltage,Uout2 is the output and
Ugs1, Ugs2are the gate source voltages of the MOS. The state
space and the jump points are obtained by declaringUgs1
between two predefined values and solving forUgs2 for that
corresponding value ofUgs1. The determinant criterion here
turns out to be(

1

R2
b1q

−k

)(
1

pR2
b2

−
1

Rb2
−

1
Rx

)
−

f ′(Ugs1)f
′(Ugs2)

pqRb1Rb2
= 0

(17)

The jump points of the output are shown in Fig.6 as the
intersection of both curves.

6 Example 3: multivibrator

In the earlier sections the systems of equations were only
algebraic ones. Here, for the multivibrator, we get a semi
explicit DAE system. The device parameters chosen for this
circuit are: Uo = 5 V, VT = 1.6 V, R1 = 5 k�, R2 = 100 k�,
C = 33 nF,Io = 0.26 mA. The equations governing this cir-
cuit are:

0=

U0R1−Ugs1

(
R1+

R2

2

)
+

Ugs2R2

2
R1(R1+R2)

+

I0R1R2−
Uc(R1+R2)

2
R1(R1+R2)

−f (Ugs2)

0=

U0R1+
Ugs1R2

2
−Ugs2

(
R1+

R2

2

)
R1(R1+R2)

+

Uc(R1+R2)

2
+I0R1R2

R1(R1+R2)
−f (Ugs1)
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Fig. 7: Multivibrator Circuit Diagram

0 =

U0R1 +
Ugs1R2

2
−Ugs2

(
R1 +

R2

2

)
R1(R1 + R2)

+

Uc(R1 + R2)

2
+ I0R1R2

R1(R1 + R2)
− f (Ugs1)

U̇c =−

(
Uc

2
−R2 f (Ugs1)+ R2 f (Ugs2)

)
CR2

−

(
R2Ugs1

2
−

R2Ugs2

2
+

R2Uc

2

)
CR1R2

(18)

The above equations can be written in a matrix form as 0
0

U̇c

= g(Ugs1,Ugs2,Uc) (19)

The state space of the circuit is given by the intersec-
tion of the surfaces S1 and S2, where S1 is the solution

set of g1(Ugs1,Ugs2,Uc) = 0 and S2 is the solution set
of g2(Ugs1,Ugs2,Uc) = 0. Fig.8 shows the intersection
of the two surfaces. The intersection curve (in blue)
is the state space of the circuit. The state space has
to be plotted in a coordinate system, where one of the
quantity does not jump whereas the other two show
jump behavior. Hence the state space was plotted in
Ugs1−Ugs2−Uc coordinate system. The jump criterion
for this circuit is given as(

R1 +
R2

2

)2

R1(R1 + R2)
−
(

R2
2R1(R1 + R2)

− f ′(Ugs1)

)
·

·
(

R2
2R1(R1 + R2)

− f ′(Ugs2)

)
= 0

(20)

Upon solving this with Newton-Raphson method we

Fig. 8: State space of multivibrator circuit

get the jump points as shown in Fig.9. The jump points
are shown in the Ugs1−Ugs2 coordinate system as jump
occurs only for these two voltages. Fig.10, on the other
hand shows the jump behaviour in the Ugs1−Ugs2−Uc
coordinate system. We can see that jump occurs in
the direction where the capacitance potential Uc is con-
served. This happens as the capacitance potential can-
not jump instantaneously.

7 Conclusion

Analysis of electronic circuits that contain a fold in
their state space with common circuit simulators like
SPICE sometimes gives errors due to time constant
problems. The analysis of these circuits require regu-
larization, which is achieved by adding capacitors and
inductors at appropriate nodes. If the regularization is
not done in accordance with Tikhonov’s theorem, the
transient solutions will not be reliable. With our ap-
proach regularization is no longer necessary as it is pos-

Fig. 6. Output vs. Input – Flip Flop.
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The above equations can be written in a matrix form as 0
0

U̇c

= g(Ugs1,Ugs2,Uc) (19)

The state space of the circuit is given by the intersec-
tion of the surfaces S1 and S2, where S1 is the solution

set of g1(Ugs1,Ugs2,Uc) = 0 and S2 is the solution set
of g2(Ugs1,Ugs2,Uc) = 0. Fig.8 shows the intersection
of the two surfaces. The intersection curve (in blue)
is the state space of the circuit. The state space has
to be plotted in a coordinate system, where one of the
quantity does not jump whereas the other two show
jump behavior. Hence the state space was plotted in
Ugs1−Ugs2−Uc coordinate system. The jump criterion
for this circuit is given as(
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Upon solving this with Newton-Raphson method we
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get the jump points as shown in Fig.9. The jump points
are shown in the Ugs1−Ugs2 coordinate system as jump
occurs only for these two voltages. Fig.10, on the other
hand shows the jump behaviour in the Ugs1−Ugs2−Uc
coordinate system. We can see that jump occurs in
the direction where the capacitance potential Uc is con-
served. This happens as the capacitance potential can-
not jump instantaneously.

7 Conclusion

Analysis of electronic circuits that contain a fold in
their state space with common circuit simulators like
SPICE sometimes gives errors due to time constant
problems. The analysis of these circuits require regu-
larization, which is achieved by adding capacitors and
inductors at appropriate nodes. If the regularization is
not done in accordance with Tikhonov’s theorem, the
transient solutions will not be reliable. With our ap-
proach regularization is no longer necessary as it is pos-

Fig. 7. Multivibrator Circuit Diagram.

U̇c = −

(
Uc

2
−R2f (Ugs1)+R2f (Ugs2)

)
CR2

−

(
R2Ugs1

2
−

R2Ugs2

2
+

R2Uc

2

)
CR1R2

(18)

The above equations can be written in a matrix form as 0
0
U̇c

= h(Ugs1,Ugs2,Uc) (19)

The state space of the circuit is given by the intersec-
tion of the surfacesS1 and S2, where S1 is the solution
set of h1(Ugs1,Ugs2,Uc) = 0 andS2 is the solution set of
h2(Ugs1,Ugs2,Uc) = 0. Figure8 shows the intersection of
the two surfaces. The intersection curve (in blue) is the state
space of the circuit. The state space has to be plotted in a
coordinate system, where one of the quantity does not jump
whereas the other two show jump behavior. Hence the state
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The above equations can be written in a matrix form as 0
0

U̇c

= g(Ugs1,Ugs2,Uc) (19)

The state space of the circuit is given by the intersec-
tion of the surfaces S1 and S2, where S1 is the solution

set of g1(Ugs1,Ugs2,Uc) = 0 and S2 is the solution set
of g2(Ugs1,Ugs2,Uc) = 0. Fig.8 shows the intersection
of the two surfaces. The intersection curve (in blue)
is the state space of the circuit. The state space has
to be plotted in a coordinate system, where one of the
quantity does not jump whereas the other two show
jump behavior. Hence the state space was plotted in
Ugs1−Ugs2−Uc coordinate system. The jump criterion
for this circuit is given as(
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Upon solving this with Newton-Raphson method we
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get the jump points as shown in Fig.9. The jump points
are shown in the Ugs1−Ugs2 coordinate system as jump
occurs only for these two voltages. Fig.10, on the other
hand shows the jump behaviour in the Ugs1−Ugs2−Uc
coordinate system. We can see that jump occurs in
the direction where the capacitance potential Uc is con-
served. This happens as the capacitance potential can-
not jump instantaneously.

7 Conclusion

Analysis of electronic circuits that contain a fold in
their state space with common circuit simulators like
SPICE sometimes gives errors due to time constant
problems. The analysis of these circuits require regu-
larization, which is achieved by adding capacitors and
inductors at appropriate nodes. If the regularization is
not done in accordance with Tikhonov’s theorem, the
transient solutions will not be reliable. With our ap-
proach regularization is no longer necessary as it is pos-

Fig. 8. State space as intersection ofS1 andS2.

space was plotted inUgs1−Ugs2−Uc coordinate system. The
determinant criterion for this circuit is given as(

R1+
R2

2

)2

R1(R1+R2)
−

(
R2

2R1(R1+R2)
−f ′(Ugs1)

)
·

·

(
R2

2R1(R1+R2)
−f ′(Ugs2)

)
= 0

(20)

Upon solving this with Newton-Raphson method we get the
jump points as shown in Fig.9. The jump points are shown in
theUgs1−Ugs2 coordinate system as the intersection of both
curves. For verifying our results we regularized the system
of equations by adding regularization capacitances parallel
to Ugs1 andUgs2. The transient behavior of this regularized
circuit can be seen in Fig.10 (red line). We can see that the
fast transition occurs in theUgs1 andUgs2 space, where the
capacitance potentialUc is hold mostly constant.

7 Conclusions

The simulation of electronic circuits that contain a fold in
their state space with common circuit simulators like SPICE
sometimes gives errors due to time constant problems. The
analysis of these circuits require regularization, which is
achieved by adding capacitors and inductors at appropriate
nodes. If the regularization is not done in accordance with
Tikhonov’s Theorem, the transient solutions will not be re-
liable. With our approach, regularization is no longer nec-
essary, as it is possible to detect whether the manifold of
the circuit’s state space has a fold beforehand. The jump
points, therefore help us to identify the points of transition
easily. We have shown numerical results of applying the
geometric concepts to three MOS circuits. Therefore, the
MOS drain current was modelled using the EKV equation
for robust results.
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sible to detect whether the manifold of the circuit’s state
space has a fold beforehand. The jump points, there-
fore help us to identify the points of transition easily.
We have shown numerical results of applying the geo-
metric concepts to three MOS circuits. The MOS drain
current is modeled using the EKV equation for robust
results.
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sible to detect whether the manifold of the circuit’s state
space has a fold beforehand. The jump points, there-
fore help us to identify the points of transition easily.
We have shown numerical results of applying the geo-
metric concepts to three MOS circuits. The MOS drain
current is modeled using the EKV equation for robust
results.
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