
Abstract

This study analysed Culicoides presence-absence data from 46 sam-
pling sites in Germany, where monitoring was carried out from April
2007 until May 2008. Culicoides presence-absence data were analysed
in relation to land cover data, in order to study whether the prevalence

of biting midges is correlated to land cover data with respect to the
trapping sites. We differentiated eight scales, i.e. buffer zones with
radii of 0.5, 1, 2, 3, 4, 5, 7.5 and 10 km, around each site, and chose sev-
eral land cover variables. For each species, we built eight single-scale
models (i.e. predictor variables from one of the eight scales for each
model) based on averaged, generalised linear models and two multi-
scale models (i.e. predictor variables from all of the eight scales) based
on averaged, generalised linear models and generalised linear models
with random forest variable selection. There were no significant differ-
ences between performance indicators of models built with land cover
data from different buffer zones around the trapping sites. However,
the overall performance of multi-scale models was higher than the
alternatives. Furthermore, these models mostly achieved the best per-
formance for the different species using the index area under the
receiver operating characteristic curve. However, as also presented in
this study, the relevance of the different variables could significantly
differ between various scales, including the number of species affect-
ed and the positive or negative direction. This is an even more severe
problem if multi-scale models are concerned, in which one model can
have the same variable at different scales but with different directions,
i.e. negative and positive direction of the same variable at different
scales. However, multi-scale modelling is a promising approach to
model the distribution of Culicoides species, accounting much more
for the ecology of biting midges, which uses different resources
(breeding sites, hosts, etc.) at different scales.

Introduction

Bluetongue disease (BTD) is a reportable, non-contagious viral
infection of ruminants, which occurred in Germany for the first time
in late summer 2006 (Conraths et al., 2012). Several species of the
genus Culicoides (Diptera: Ceratopogonidae) are considered to be
potential vectors of the bluetongue virus (BTV) (Meiswinkel et al.,
2007; Dijkstra et al., 2008), while the concrete vector competence of
the different species is still unresolved. In 2006 and 2007, a massive
spread of BTD was observed in Germany and, at the end of 2007, nearly
all federal states were affected. Until spring 2008, more than 17,000
cattle, sheep, and goat died from this disease, resulting in total costs
of approximately 250 million Euros. Hence, Germany decided to start a
compulsory vaccination program in 2008. The recent epidemic of the
Schmallenberg virus in Europe again highlights the importance of
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Culicoides species as capable vectors (Beer et al., 2013), as these are also
here considered to be the main vectors (De Regge et al., 2012; Rasmussen
et al., 2012). Although there is huge lack of knowledge about the causal
connection between environmental variables and the distribution of bit-
ing midges, several studies modelled biting midge distribution and phe-
nology using different sets of environmental data (e.g. Purse et al., 2004,
2011; Calvete et al., 2008; Rigot et al., 2012; Kluiters et al., 2013). These
modelling approaches used environmental data from various scales, e.g.
all environmental data at one scale (e.g. 1 km, Kluiters et al., 2013) or at
different scales (e.g. between 1 and 8 km, Calvete et al., 2008; Purse et al.,
2011). However, as previously shown (Hamer and Hill, 2000), the selec-
tion of the spatial scales affects the outcome of the modelling, e.g.
decrease the variance explained or bias regression coefficients, which
might result in wrong conclusions and interpretations (reviewed by
Bradter et al., 2013). Therefore, a selection of the appropriate scale is
important to allow accurate species distribution modelling. Furthermore,
as generally described by Bradter et al. (2013), species distribution can
also be affected by land cover variables at multiple scales, e.g. if breeding
sites, resting sites, and hosts of Culicoides biting midges are distributed
over several scales. Land cover changes with distance to farm buildings,
where sampling of biting midges commonly takes place (e.g. Kiel et al.,
2009). The environment is generally modified most intensively around
the main buildings in order to optimise farm management. The percent-
age of other, natural land cover variables (e.g. forest) increase with
increasing scales around the trapping sites. This should, depending on
breeding and resting sites, host preferences or species-specific flight
range of Culicoides, result into different scale-specific variables, which
are useful for the prediction of biting midge distribution. Therefore, an
impact of multiple spatial scales relative to the trapping sites might be
expected. A land cover variable can be a predictor at several scales. For
example, when focusing on grassland as breeding site at the local scale,
hosts are scattered on the grassland at a medium scale, while resting sites
are on the edge of the grassland were the vegetation might be higher at
the largest scale. Moreover, different variables can be predictors at differ-
ent scales, e.g., a species breeds in the forest at a large distance, the hosts
are present in direct vicinity of the trapping sites, and the resting sites are
at a medium distance.
In this study, we investigated the performance of single- and multi-

scale models to predict the distribution of Culicoides species on farms in
western Germany with land cover variables at different scales. The objec-
tives were: i) the evaluation of the spatial scales giving the best predic-
tions for the species distribution of different biting midge species; ii) the
evaluation if multi-scale models increase predictive ability; and iii) the

determination of the most important landscapes variables for the predic-
tion of Culicoides species distribution at the different scales.

Materials and Methods

Culicoides and landscape data
In this study, we analysed a dataset from 46 trapping sites (for trapping

site information see Werner, 2010; Hoffmann et al., 2009), covering a gra-
dient from northwest to southwest Germany. At every site, adult
Culicoides were sampled for 14 months (April 2007 until May 2008).
Sampling was conducted during the first seven consecutive days of each
month, using the BG-sentinel trap with black light following a standard-
ised sampling protocol (Mehlhorn et al., 2009). All traps were placed in the
immediate vicinity of the predominant residences of cattle. The main
objective of this monitoring was to document the distribution and spread
of BTV, but did not concern the distribution and abundance of the biting
midge vectors. Therefore, most Culicoides samples were sorted at the
group level only. Species identification was restricted to aliquots and
based on morphological characters (Werner, 2010). These aliquots were
restricted to a maximum of 10% of the total Culicoides sample. During the
monitoring, the total number of trapped Culicoides ranged from zero to
several thousands (Mehlhorn et al., 2009). Therefore, the number of
Culicoides with respect to species differed strongly between the study
months and trapping sites. Thus, only aggregated presence-absence data
over a time-span of 14 month were analysed in this study. Furthermore,
species with a prevalence of less than 10% or more than 90% were exclud-
ed. Biting midge data were obtained from light-trap sampling and land-
scape variables from the Authoritative Topographic-Cartographic
Information System (Amtliches Topographisch-Kartographische Informa -
tionssystem, ATKIS®). As little is known about the ecology and flight range
of Culicoides biting midges, an a priori selection of the appropriate scale
for the modelling of species distribution was not possible. Therefore, we
extracted the same landscape variables at eight different spatial scales
(radii of 0.5, 1, 2, 3, 4, 5, 7.5, 10 km), which were used separately for sin-
gle-scale models or all together for multi-scale modelling approaches for
the prediction of species distribution. In order to analyse the land cover of
each trapping site, we referred to a selection of land cover attributes pro-
vided by ATKIS®, assumed to be important for Culicoides biting midges.
ATKIS® provides linear and polygon vector data with a resolution of
1:5000 +/- 2.5 m positional accuracy. The same 14 landscape attributes
were measured for all scales (Table 1). We extracted the percentage of
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Table 1. The ATKIS® land cover variables used for Culicoides species distribution modelling.

                                                                                                                                                             Abbrevation                           Data type

Forested areas/woodland                               Deciduous forest/coniferous forest (undifferentiated)                              Deco                                              Polygon
                                                                              Deciduous forest                                                                                                     Deci                                               Polygon
                                                                              Coniferous forest                                                                                                    Coni                                               Polygon
                                                                              Other forest (unspecified)                                                                                  Othf                                               Polygon
                                                                              Forest (sum of all forest)                                                                                     Fore                                               Polygon
                                                                              Other vegetation (unspecified)                                                                          Othe                                              Polygon
Agricultural and urban                                     Arable land                                                                                                                Acre                                               Polygon
                                                                              Grassland                                                                                                                  Gras                                               Polygon
                                                                              Garden                                                                                                                       Gard                                               Polygon
                                                                              Fallow land                                                                                                                 Fall                                                Polygon
                                                                              Settlement                                                                                                                 Sett                                               Polygon
Water bodies                                                      Ditch length                                                                                                               Ditc                                                  Line
                                                                              Stream length                                                                                                           Stre                                                  Line
                                                                              Water                                                                                                                         Wate                                              Polygon
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surface per circular zone for each variable provided as polygon vector data
and the line length per circular zone for each variable provided as linear
vector data. This data collection was carried out using ArcGIS9.2 (ESRI,
Redlands, CA, USA).

Statistical analyses

Selection of scales for the variables included in the multi-scale
models
Selection of variables for the multi-scale models was applied as pro-

posed by Bradter et al. (2013). This preceding reduction of variables
was selected to prevent inclusion of several variables at neighbouring
scales that are often highly correlated with each other (Figure 1).
Another advantage of such exclusion of variables is a significant reduc-
tion of computation time.
We used univariate binomial logistic regression models for presence

or absence data of each Culicoides species for each variable and all
eight scales. Due to the small sample size (n=46), we used the correct-
ed form of the Akaike information criterion (AICc), which indicates the
best compromise between model complexity and likelihood for each
model. The predictors of the different variables at the eight different
scales were selected if i) the AICc was at least two lower than the AICc
of the null model (intercept only); ii) the AICc was less than the next
smaller or larger scale; and iii) the AICc was less than the AICc at the
second smaller or larger scale (not applicable for the smallest and
largest scale). With this method, we selected all local minima of the
AICc, which had at least a difference of two compared to the null model
for each predictor and each scale. 

Single- and multi-scale models built with model-averaging
According to methods for species distribution modelling applied in

other studies (e.g. Kattwinkel et al., 2009; Gray et al., 2010), single-
scale and multi-scale generalised linear models were built in four
steps. First, highly correlated variables (Spearman’s rho≥ 0.7) were
excluded. For each highly correlated pair, the variable with the largest
mean correlation with other variables were dropped. Second, univari-
ate binomial logistic regression models were calculated for all variables
on all scales for each species. Variables with P≥0.15 were excluded
from further analysis, as they were not regarded as statistically signif-
icant. Third, multivariate binomial logistic regression models were
built with every combination of the remaining variables from the pre-
vious two steps. We considered all possible models and did not use a
stepwise model selection strategy, which are often criticised, e.g.
because the results of this methods depend on the order in which vari-
ables enter the model (Burnham and Anderson, 2002; Whittingham et
al., 2006). The large number of variables in different buffer zones per
species results in a very large number of possible models. Such a brute
force method might therefore not be the optimal approach (Burnham
and Anderson, 2002). However, we had not enough information about
the ecology of biting midges (e.g. breeding site preferences or resting
sites) for an a priori exclusion of variables or restriction to a subset of
possible models. Fourth, if several models were obtained for one
species, model averaging was conducted (Burnham and Anderson,
2002). Model averaging approaches are considered to overcome prob-
lems such as overfitting or variable selection, which are found in mod-
elling approaches aiming for a single best model (Burnham and
Anderson, 2002). The Akaike weight, using AICc for calculation, can be
interpreted as a measure of the strength of evidence for each model.
We selected a 95% confidence set of models by sequentially summing �
until 0.95 was reached. According to Burnham and Anderson (2002),

this set of models can be interpreted as having a 95% confidence that
the best approximating model is included. The final averaged models
were built by multiplication of estimated model coefficients with corre-
sponding � (see Strauss and Biedermann, 2006 for an example).
Weighted coefficients were summed for each variable including all
models per species on each buffer zone (single-scale models) or all
buffer zones (multi-scale models).

Multi-scale models with random forest variable selection
Although the modelling approach with averaging of multiple, gener-

alised linear models are considered to be relative robust against over-
fitting (Burnham and Anderson, 2002), the large number of potential
land cover variables included in the multiple models might cause such
problems. Additionally, the exclusion of highly correlated variables can
lead to the inclusion of variables at not meaningful, spatial scales.
Therefore, but for multi-scale models only, we used a second modelling
approach based on random forests for the variable selection, which was
found to be robust even if the number of response data is generally
small in comparison to the number of predictors (Strobl et al., 2007).
This variable selection method was applied as described in detail by
Bradter et al. (2013). In the random forest approach, several classifica-
tion or regression trees are built from random subsets of the dataset
(Breiman, 2001; Liaw and Wiener, 2002). The procedure uses a selec-
tion based on the unscaled permutation importance (Genuer et al.,
2010). Each predictor is permutated in turn and the prediction error,
i.e. the out of bag (OOB) error, before and after permutations is used
as a measure of variable importance (Liaw and Wiener, 2002; Strobl et
al., 2008). A training set is created by sampling 2/3 of the data set (with
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Figure 1. Correlation network of all one hundred and fourteen
predictors. The eight different scales of the fourteen variables are
grouped. All correlations with a Spearman rho≥0.7 are indicated
by a connection (red=negative correlation, green=positive corre-
lation). See Table 1 for the abbreviation of the coefficients.
Starting with acre on the 12 o’clock position and continuing
clockwise as indicated in the legend.
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replacement) for each classification tree, which is then used to predict
the remaining 1/3 of the data. The proportion of false classified classes
over trees is the OOB error (Breiman, 2001; Liaw and Wiener, 2002).
There were five steps to identify the number of predictors suitable

for the model interpretation (Genuer et al., 2010): i) all predictors were
ranked by the unscaled permutation importance (average value over 50
repetitions); ii) a regression tree was fitted to the curve of the plot of
standard deviations of the importance measures ordered by their mean
importance, with variables with a mean importance of less than the
smallest predicted value of the regression tree model discarded; iii) the
OOB errors for the models (average over 50 repetitions) were comput-
ed by starting with the most important variables and adding the other
predictors in order of their ranking; iv) the model with the smallest
OOB error, augmented with the standard deviation of the 50 repeti-
tions, was selected; and finally v) the nested model with OOB error
smaller than this with fewer predictors was selected. Parameters which
have to be specified in the random forest were used as proposed by
Genuer et al. (2010): number of trees built in the forest ntree=2000, the
number of predictors available at each node split mtry=p/2 with p denot-
ing the number of predictors, and error default values were used for the
calculation of the OOB.

Spatial autocorrelation
For all models built with model averaging, Moran eigenvector filter-

ing was applied for the full model without highly correlated and non-
significant variables (Powney et al., 2010). If significant, these eigen-
vectors were added to the model and included in the model averaging
procedure. Furthermore, as recommended by Bradter et al. (2013), we
applied Moran eigenvector filtering for all multi-scale models selected

with random forest variable selection (Dray et al., 2006; Griffith and
Peres-Neto, 2006). Spatial eigenvectors were added until residual spa-
tial autocorrelation was no longer significant at the P=0.05 level. 

Performance assessment
Nagelkerke’s R squared (R2N) was used as a measure of model cali-

bration (Hosmer and Lemeshow, 2000). Area under the receiver oper-
ating characteristic curve (AUC) was used to compare prediction per-
formance (Fielding and Bell, 1997). AUC thresholds were interpreted
as proposed by Hosmer and Lemeshow (2000): 0.7-0.8 is considered an
acceptable prediction; 0.8-0.9 is excellent and >0.9 is outstanding.
Although this index is criticised as unreliable by some authors (Lobo et
al., 2008), we predominantly referred to AUC, because it is the most
commonly used performance indicator for species distribution models.
However, as recommended by Lobo et al. (2008), we present further
accuracy indices: root mean square error (RMSE), overall correct clas-
sification rate (CCR), sensitivity (SENS), specificity (SPEC), positive
predictive value (PPV), negative predictive value (NPV), true skill sta-
tistic (TSS), and Cohen’s kappa (KAPPA) (Liu et al., 2009b, for accura-
cy indices formulae). For threshold dependent indices (e.g. CCR or
KAPPA) and prevalence prediction, requiring binary results, presence
and absence were differentiated using a threshold value set to achieve
the observed prevalence in the training data set (Freeman and Moisen,
2008).
We used bootstrapping 95% percentile confidence intervals to evalu-

ate the statistical differences between the model performances on dif-
ferent scales (Pearman et al., 2008; Liu et al., 2009a). We generated
1000 bootstrap data sets (with replacement) for each species on each
scale (single- and multi-scale models). Models were refitted with the

                   Article

Figure 2. Performance of the Culicoides species models with area under the receiver operating characteristic curve (AUC) values ≥0.7.
For each performance criterion [AUC, overall correct classification rate (CCR), Cohen’s kappa (KAPPA), negative predictive value
(NPV), positive predictive value (PPV), root mean square error (RMSE), sensitivity (SENS), specificity (SPEC), true skill statistics
(TSS)], the range and distribution of values for all models is shown. For each criterion, the left boxplot represents the single-scale
model (single) and the right boxplot the multi-scale (multi) model.
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bootstrap data set. 95% confidence intervals (upper and lower 2.5%
quartiles of the distribution) were calculated for each accuracy index.
Non-overlapping confidence intervals were interpreted as significant
differences between the scales. A threshold of 0.7 for the lower 2.5%
quantile of the AUC, i.e. AUC2.5, was used to select acceptable models.

Software used
Data visualisation and statistical analyses were conducted with R (R

Core Team, 2014) using functions from the packages ggplot2
(Wickham, 2009), plyr (Wickham, 2011), qgraph (Epskamp et al.,

2012), randomForest (Liaw and Wiener, 2002), spdep (Bivand, 2014)
and the built-in function glm for logistic regression models.

Results

Eighteen species of the 26 species in the available dataset had preva-
lence higher than 10% and lower 90%, and thus were used in this mod-
elling study. From these, 57 models for thirteen species (C. albicans, C.
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Figure 3. Area under the receiver operating characteristic curve values with 95% bootstrapped confidence intervals. Upper and lower
2.5% quantiles of the distribution for all Culicoides species with prevalence between 10 and 90% and the different models are shown.
Single-scale models at eight different scales and multi-scale models [multi-scale model built with model-averaging (mGLM) and ran-
dom forest variable selection (mRF)] are shown.
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chiopterus, C. clastrieri, C. dewulfi, C. fagineus, C. grisescens, C. lupi-
caris, C. newsteadi, C. nubeculosous, C. riethi, C. stigma, C. scoticus,
and C. vexans) fulfilled our performance criteria, i.e. at least one sin-
gle- or multi-scale model with AUC2.5 ≥0.7. Only seven of these models
provided a better model fit with spatial eigenvectors, i.e. three for C.
albicans (0.5 km, 2 km, and multi-scale models built with model-aver-
aging), one for C. lupicaris (3 km), one for C. newsteadi (0.5 km) and
two for C. riethi (1 and 2 km). This result indicates that spatial auto-

correlation has little or no influence on the presence-absence at the
other scales. R2N ranged from 0.2 to 0.5, which can be considered to be
good for logistic regression models (Hosmer and Lemeshow, 2000;
Kattwinkel et al., 2009). Moreover, according to the other accuracy
indices, the performance of these models was satisfactory and indicat-
ed a better prediction than occurrence by chance (Figure 2). Most of
the Culicoides species studied here had a relative high prevalence
resulting in a higher specificity and positive predictive value compared

                   Article

Figure 4. Percentage of Culicoides species influenced by each variable in the different models. Single-scale models on the eight different
scales and multi-scale models [multi-scale model built with model-averaging (mGLM) and random forest variable selection (mRF)] are
shown (gray=positive coefficient, black=negative coefficient). For the abbreviations of the coefficients see Table 1.

[page 124]                                                            [Geospatial Health 2016; 11:405]                                                                             

gh-2016_2.qxp_Hrev_master  31/05/16  11:44  Pagina 124

Non
 co

mmerc
ial

 us
e o

nly



to sensitivity and negative predictive value.
In general, the accuracy indices did not show statistically significant

differences, i.e. they had overlapping confidence intervals for the differ-
ent species and scales (Figure 3). Nevertheless, the mean accuracy
indices were overall slightly higher for the multi-scale models com-
pared to the single-scale ones (Figures 2 and 3).
The summary of the results with the multi- and single-scale models

tells us that nearly all of the species studied were influenced by agricul-
tural/urban and forest variables, while around 50% of the species were
also influenced by water-related variables. However, looking into more
detail, the percentage of species showing correlations with the differ-
ent land cover variables could strongly differ between the different
models and scales (Figure 4), while the weights of the different vari-
ables in the models built with model averaging did not show this
(Figure 5). For most of these species (9 out of 13), multi-scale models
showed the best performance, i.e. the highest AUC2.5 value per species.
According to the mean AUC, seven of these models were characterised
by excellent, another six by outstanding performance. These models
were exemplarily applied for three different artificial landscapes for
evaluation of the impact of the different land cover variables on the dis-
tribution of Culicoides species: i) increasing grassland-related and
decreasing forest-related variables (Figure 6); ii) increasing arable-
land type variables and decreasing forest-related ones (Figure 6); and

                                                                                                                                Article

Figure 5. Range and distribution of factor weights for Culicoides
single- and multi-scale models. Models built with model-averag-
ing separately shown for multi-scale and single-scale models. For
the abbreviations of the coefficients see Table 1.

Figure 6. The Culicoides species occurrence in relation to vari-
ables illustrated by single-species habitat models. Black bars sig-
nify occurrence of Culicoides species. The gradient refers to the
95%-percentile of the data distribution: from low (5%-per-
centile) to high (95%-percentile) or vice versa. A) The gradient
from left to right at all scales runs from low to high values of
grassland (variable grass) and from high to low values of all for-
est variables (coni, deci, deco, fore, othf ). Water variables (ditc,
stre, and wate) are fixed to high values. All other values are fixed
to mean values. B) The gradient from left to right at all scales
runs from low to high values of arable land (variable acre), and
from high to low values of all forest variables (coni, deci, deco,
fore, and othf ). Water variables (ditc, stre, and wate) are fixed to
high values. All other values are fixed to mean values. C) The
gradient from left to right in all scales runs from low to high val-
ues of all water variables (ditc, stre, and wate). All other values
are fixed to mean values. For the abbreviations of the coefficients
see Table 1.
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iii) increasing water-related variables (Figure 6). Some of the
Culicoides species responded with a wide range under these scenarios:
e.g. C. grisescens in the scenario increasing grassland type of variables
and decreasing forest ones (Figure 6) or C. dewulfi in the scenario
with increasing water-related variables (Figure 6). In contrast, C. lupi-
caris did not occur under the three applied scenarios (Figure 6). In the
best model, the species had a negative association with the proportion
of fallow land at the 3-km scale that was not studied in the three sce-
narios. However, the other species showed a distinct response under at
least one of the scenarios, e.g. C. chiopterus, C. scoticus and C. stigma
were more restricted to the left of the gradient for the forest type of
variables (low grassland/low arable-land, and high forest variables),
while C. clastrieri were more restricted to the right end of the gradient
(Figure 6).
Under the same landscape scenarios, the presence-absence predic-

tions changed in dependence of the applied single-scale models on the
different scales (Figure 7). In addition, the landscape context could be
important. For example, the distribution of C. chiopterus is affected by
grassland, but the prevalence predictions differ depending on the scale
choosen (Figure 7).

Discussion

Species distribution modelling is the most important method to pre-
dict species distribution in general, including Culicoides biting midges.
Since the availability of digital datasets of land cover, temperature, or
potential hosts is continuously increasing, several studies have also
used this kind of data to predict the prevalence of biting midge species,
e.g. the normalised difference vegetation index (NDVI) (Purse et al.,
2004; Calvete et al., 2008; Kluiters et al., 2013) or the CORINE land
cover data (Kirkeby et al., 2009; Purse et al., 2011). These data are
available or used on different scales raising the question, which spatial
scale, or scales, should be chosen to reach the best possible predictions
for different biting midge species. At the same time, there are huge
knowledge gaps on the ecology of Culicoides species, which would allow
choosing the appropriate scale of predictors, e.g. missing information
on the flight range or resting sites. Therefore, a priori selections of
appropriate scaling of the variables used for Culicoides distribution
modelling is not possible.
Active dispersal of Culicoides is generally expected to be limited.

Kettle (1995) identifies the zone of about 500 m around the farmyard
to be the most important and a substantial reduction of the number of
adult C. molestus and C. subimmaculatus was achieved by measures
targeting breeding sites within this radius. Furthermore, Culicoides
abundance was found to decrease with increasing distance to potential
hosts or breeding sites (Kettle, 1995; Lühken and Kiel, 2012; Rigot et
al., 2012; Kirkeby et al., 2013a). Moreover, it has been proposed that the
direct surroundings of farms provide a huge number of potential breed-
ing sites (Zimmer et al., 2008, 2014; Foxi and Delrio, 2010; González et
al., 2013).
In this study, all traps were placed in immediate vicinity to the pre-

dominant residences of the cattle directly on the farms, thus, it might
be expected that Culicoides species are captured near their breeding
sites and land cover information at the smaller scales around the light-
traps should have the highest predictive performance. However, in the
majority of cases, the model performance did not differ significantly
between the models based on variables from different buffer zones.
This matches the study by Kirkeby et al. (2013a), where the covariate
distance to the breeding site also did not explain differences in
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Figure 7. Occurrence of Culicoides chiopterus illustrated by dif-
ferent habitat models at different scales (A) and illustrated by
different single-scale models at different scales and multi-scale
models (B). Occurrence of Culicoides chiopterus is signified by
black bars. The gradient refers to the 95%-percentile of the data
distribution: from low (5%-percentile) to high (95%-percentile)
or vice versa. The multi-scale model shown in B was built with
model-averaging (mGLM) and random forest variable selection
(mRF). A) For each scale, the gradient from left to right runs
from low to high values of grassland (variable gras), and from
low to high values of water variables (ditc, stre, and wate) in the
same scale are fixed to high values. Furthermore, the gradient
over all scales runs from high to low values for all forest variables
(coni, deci, deco, fore, and othf ). All other values are fixed to
mean values. B) The gradient from left to right runs from low to
high values of grassland (variable gras), and from high to low
values of all forest variables (coni, deci, deco, fore, othf ). Water
variables (ditc, stre, and water) are fixed to high values. All other
values are fixed to mean values. For the abbreviations of the coef-
ficients see Table 1.
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Culicoides trapping. One explanation for this result might be that the
dispersal of Culicoides is much higher in general than generally
expected. Indeed, the small number of data available from mark-
release-recapture studies, indicate dispersal distances between two
and six km (reviewed by Kirkeby et al., 2013b). Another explanation for
the lack of higher performance of models at smaller scales could be the
underlying data for Culicoides. They represent aggregated presence-
absence data from a sampling conducted over several months.
Therefore, the probability to trap rare Culicoides species might have
been high. Furthermore, at this point, it must also be taken into con-
sideration that the analysed dataset was relative small (N=46), which
might result in reduced predictive accuracy (Stockwell and Peterson,
2002). It would perhaps be more appropriate to interpret the modelling
results as descriptive rather than predictive (Williams and Hero, 2001;
Stockwell and Peterson, 2002).
A comprehensive interpretation of our modelling results is ham-

pered by different circumstances. According to our data, the same vari-
ables, e.g. the forest-related ones, had a significant correlation with
each other at different scales or with other variables. At the same time,
highly correlated variables should not be included in the same statisti-
cal regression models, because then small changes in the model or data
can result in strong changes of the coefficient estimates (reviewed by
Dormann et al., 2013). Therefore, as conducted in this study, it might
be recommended to conduct a threshold-based pre-selection to exclude
highly correlated variables. However, a preliminary exclusion of vari-
ables can result in problems regarding the interpretation of final mod-
els and omitted variables have to be considered in the conclusions to be
drawn (Dormann et al., 2013). Furthermore, as presented in this study,
several species were influenced by different land cover variables at dif-
ferent scales or the same variables have a different algebraic sign (pos-
itive or negative) at different scales, e.g. a negative correlation with for-
est variables in the model at the local scale and a positive correlation
with forest variables in the model at a larger scale. This causes prob-
lems for the interpretation, which even increases in multi-scale models
where one final model can include the same variable at different scales
with different algebraic signs, e.g. a negative and positive correlation
with the forest variable at different scales in the same model.
Our analysis was restricted to Culicoides presence-absence data

from 46 sampling sites, as part of a wide-meshed monthly monitoring
over 14 months in Germany and not primarily focused on entomological
data, but virus detection in biting midges. However, additional data on
species abundance or data covering longer time periods with shorter
sampling intervals do not exist at present. Nevertheless, the available
data give a first impression on land cover variables explaining the dis-
tribution of the German Culicoides fauna. Moreover, the German land
cover data ATKIS® were successfully used to develop species distribu-
tion models for thirteen Culicoides species, including C. chiopterus, C.
dewulfi, and C. scoticus as potential vectors of the BTV (Meiswinkel et
al., 2007; Dijkstra et al., 2008) and Schmallenberg virus (Meiswinkel et
al., 2007; Dijkstra et al., 2008; De Regge et al., 2012; Rasmussen et al.,
2012). Furthermore, our study showed that multi-scale modelling is a
promising approach to model the distribution of Culicoides species.
Although multi-scale models did often not show significant differences
compared to single-scale models, the overall performance of these mod-
els was higher. Furthermore, multi-scale models principally fulfilled the
best performance for the different species using the AUC values. A
multi-scale approach offers the opportunity to include a diverse set of
variables at different scales. This is especially important for
haematophagous insects, e.g. when breeding sites, resting sites or host
density have to be taken into account for modelling generally distrib-
uted across several scales.

Conclusions

Although several studies have increased our knowledge on the
breeding sites and their colonisation by different Culicoides species
(Foxi and Delrio, 2010; González et al., 2013; Harrup et al., 2013;
Zimmer et al., 2014), the causal connections with environmental
parameters mostly remain unknown. Therefore, besides the evaluation
of different modelling techniques and the implementation of further
environmental parameters, there is an urgent need for experimental
studies on these relationships.
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