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PAPER

Equilibration of quantum gases

Terry Farrelly
Institut für Theoretische Physik, Leibniz Universität, Appelstraße 2, D-30167Hannover, Germany

E-mail: farreltc@tcd.ie

Keywords: quantum statistical physics, quantum information, quantummechanics

Abstract
Finding equilibration times is amajor unsolved problem in physics with few analytical results. Here
we look at equilibration times for quantum gases of bosons and fermions in the regime of negligibly
weak interactions, a settingwhich not only includes paradigmatic systems such as gases confined to
boxes, but also Luttinger liquids and the free superfluidHubbardmodel. To do this, we focus on two
classes ofmeasurements: (i) coarse-grained observables, such as the number of particles in a region of
space, and (ii) few-modemeasurements, such as phase correlators.We show that, in this setting,
equilibration occurs quite generally despite the fact that the particles are not interacting. Furthermore,
for coarse-grainedmeasurements the timescale is generally atmost polynomial in the number of
particlesN, which ismuch faster than previous general upper bounds, whichwere exponential inN.
For localmeasurements on lattice systems, the timescale is typically linear in the number of lattice
sites. In fact, for one-dimensional lattices, the scaling is generally linear in the length of the lattice,
which is optimal. Additionally, we look at a few specific examples, one of which consists ofN fermions
initially confined on one side of a partition in a box. The partition is removed and the fermions
equilibrate extremely quickly in time ( )O N1 .

1. Introduction

Over the past few decades, there has been amajor push to understand statistical physics by applying tools from
quantum information. One particularly pressing problem is understanding equilibration. From everyday
experience, we know it to be universal, as anything froma hot cup of tea to a spinning topwill relax to a steady
state eventually. See figure 1.However, our understanding of why equilibration occurs and how long it takes
remains incomplete. Progress has been dramatically helped by recent advances in experiments [1, 2], where
mesoscopic quantum systems can nowbe controlled extremelywell, providing better and better playgrounds to
probe properties ofmany-body systems.

In [3–5] it was proved that quantum systemswill generally equilibrate with veryweak assumptions on the
Hamiltonian (which ensure, for one thing, that the system is not a collection of non-interacting subsystems). But
very little is known about the timescale. This is crucial: if a system equilibrates but the timescale is the age of the
Universe, wewill never actually observe it equilibrating in a lab. Unfortunately, the best general upper bounds on
the timescale [6–8] are far too large for evenmesoscopic systems. This is a consequence of the generality of the
results. Indeed,models were constructed effectively saturating these timescale bounds [8, 9].

Imposing physical constraints onHamiltonians andmeasurements has led tomore realistic timescales in
specific cases. In fact, one of the earliest equilibration resultswas equilibration timescales for bosons evolving via
theHubbardHamiltonian in the absence of interactions [10, 11].More recently, equilibration timescales for small
subsystems interactingwith a large thermal bathwere found [12]. Along different lines, equilibration timescales
were bounded by averaging overHamiltonians,measurements or initial states [8, 13–17]. For a review, see [18].

Here wewill look atN particle systems in the regime of negligible interactions to seewhen equilibration
occurs. Experimentally, such situations appear often: Luttinger liquids [19] are one example.

We look at two classes ofmeasurement, which are natural formacroscopic andmesoscopic systems. The
first are coarse-grainedmeasurements. These include the number of particles in some spatial region, the
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magnetization of fermions on a lattice, or the number of particles with different values ofmomentum. The last
of these arose in experiments with trapped Bose gases [20], which, in the limit of strong point-like interactions,
behave like free fermions. The second type ofmeasurements we consider are few-modemeasurements. Such
measurements are crucial inmany settings, and include correlation functions and phase correlators, which are
important in ultracold atom experiments.

First wewill look at some examples and thenwewill show that equilibration ofN particle systems in this
setting occurs quite generally and appears to bemuch faster thanwhat general timescale bounds suggest.

2. Equilibration

Because there are recurrences for quantum systemswith discrete spectra [21, 22], the naive definition of
equilibration as simply relaxation to a steady state is not sufficient. Instead, we say a system equilibrates if it
evolves towards a fixed state and stays close to it formost times. To definewhat itmeans for two states to be close,
we need a definition of distance between states. For this to be realistic, we need to consider whatmeasurements
we can actually do. For example, if we can do anymeasurement wewant on a quantum system, then the distance
between two states is best quantified by the trace distance, which allows us to calculate themaximumprobability
of distinguishing two states by doing ameasurement [5, 23].

In reality, for systems beyond a few qubits, therewill be restrictions on themeasurements we can do; for 1023

particles, clearly we are restricted to very coarsemeasurements.With this inmind, a usefulmeasure of distance is
given by the distinguishability between states ρ andσ, which is defined to be [5]

( ) ∣ [ ] [ ]∣ ( )
{ }



år s r s= -

Î
D M M,

1

2
max tr tr , 1

M i
i i

i

wheredenotes the set ofmeasurements we can do, and { }Mi denotes a positive operator valuedmeasure
(POVM)measurement, with the positive operatorsMi satisfying å = Mi i . POVMmeasurements aremore
general than projectivemeasurements. This descriptionmay be necessary in situations where themeasurement
is not repeatable, for example. Nevertheless, a POVMmeasurement is equivalent to a projectivemeasurement
on the system togetherwith an ancilla [23].

We denote the infinite-time average of ( )r t by rá ñ. If ( ( ) ) r rá ñD t , is smallmost of the time, then for all
practical purposes ( )r t is indistinguishable from its time average rá ñmost of the time. In that case, equilibration
has occurred.

Another notion of equilibration is equilibration of expectation values [3]. This works as follows. Supposewe
have the observableM andwe look at the quantity

( ) ∣ [ ( ) ] [ ]∣ ( )
 

r r
D =

- á ñ
t

t M M

M

tr tr
, 2M

where M is the operator normofM. This quantity tells us how close the expectation value ofM at time t is to its
time average, with the scale set by M .

If equilibration is to occur, we require thatmost of the time ( )D tM is smaller than some ò, with ò chosen so
that   M is smaller than our experimental resolution.

Figure 1.Microscopically, a cup of tea is never in equilibrium: themolecules are constantlymoving around, butwe cannotmeasure
this.What we domeasure is the temperature, according towhich a hot cup of tea can reach equilibrium (room temperature). This
highlights an important point about equilibration, which is that it only occurs whenwe account for physical restrictions onwhat we
can actuallymeasure.
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There is an important caveat here. Even if expectation values equilibrate, we do notmeasure expectation
values; wemeasure POVMoutcomes. In the examples we consider where equilibration of expectation values
occurs, thefluctuations inmeasurement results are unobservably small. Thismeans that themeasured value of
M is experimentally indistinguishable from [ ( ) ]r t Mtr with extremely high probability. Therefore, equilibration
truly occurs.

3.Gases of bosons and fermions

The key step in getting estimates of the equilibration time forN particle systems is equation (6) below, whichwill
allowus to equate ( )D tM to the distinguishability for a single particle.

First, it will be useful to introduce some notation. Let be a single-particleHilbert space, and let ∣ ñi denote
an orthonormal basis. Thenwe can define creation operators †ai , acting on a fermionicHilbert space, that create
fermions corresponding to these states. Equivalently, wemay say †ai creates a fermion inmode i. The fermionic
Hilbert space is spanned by states with varying numbers of creation operators acting on ∣ ñ0 , the empty state. To
avoid confusion, any state vectors written as kets are in the single-particleHilbert space, with the exception of
∣ ñ0 , which represents the empty state in a fermionic (or bosonic) system.

The creation operator that creates a particle corresponding to the single-particle state ∣ ∣yñ = å ñc ii i is

(∣ )† †yñ = åa c ai i i . Supposewe have a single-particle Hamiltonianwith discrete spectrum

∣ ∣ ( )å= ñáH E E E , 3
E

where E labels the energies. There is a corresponding fermionicHamiltonian, given by

(∣ ) (∣ ) ( )†å= ñ ñH E a E a E . 4
E

f

For any single-particle state ∣yñ, we also have

(∣ ) ( ∣ ) (∣ ( ) ) ( )† † †y y yñ = ñ = ñ- -a a a te e e . 5H t H t Hti i if f

The situation for bosons is similar. The only difference is that, while fermionic creation and annihilation
operators obey the canonical anti-commutation relations, bosonic creation and annihilation operators obey the
canonical commutation relations.

This is the basic idea behind second quantization, which allows one to take a single-particle system and
upgrade it to amulti particle system [24]. Our goal here is to go in the opposite direction and to study
equilibration ofmany-particle systems bymoving to the single-particle picture. Let us now give a useful
simplification for free bosons or fermions.

Theorem1.Take a state ( ) ( ) ( ) ( )†r r=t U t U t0 of N non-interacting bosons or fermions and ameasurement
operator counting the number of particles in some orthogonalmodes †= åM b bi i i, where (∣ )f= ñb ai i . Then, there
exist orthonormal single-particle states ∣ ( )y ña t , evolving via the corresponding single-particle Hamiltonian, such that

[ ( ) ] [ ( ) ] ( )år y=
a

a at M n t Ptr tr , 6

where an are occupation numbers adding up toN, ∣ ∣f f= å ñáP i i i and ( ) ∣ ( ) ( )∣y y y= ñáa a at t t .

This is proved for anyN particle state in appendix A.Herewewill just prove it for the simpler case of an
initial state withN bosons or fermions ∣† † ña a... 0n

n
n

1 k
k1 , where (∣ )† † y= ña aa a , and ∣y ña are some orthonormal

single-particle states. In this case, the states ∣y ña mentioned in the theorem are already given.

Proof.Expand

(∣ ) ( )† † †åf ñ = =
a

a aa b c a , 7i i i,

where aci, are complex numbers. Then

[ ( ) ] ∣ ∣ [ ( ) ]

∣ ∣ ( )

† †å

å

r r=

=
a

a a a

a
a a

b b c a a

n c

tr 0 tr 0

, 8

i i i

i

,
2

,
2

where an is the number of particles inmodeα. Next, we use { } ∣† y f= = á ña a ac a b,i i i, for fermions, or
[ ] ∣† y f= = á ña a ac a b,i i i, for bosons, to get

3
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[ ( ) ] ∣ ∣ ( )† år y f f y= á ñá ñ
a

a a ab b ntr 0 . 9i i i i

Therefore

[ ( ) ] ∣ ∣

[ ] ( )

å

å

r y y

y

= á ñ

=
a

a a a

a
a a

M n P

n P

tr 0

tr , 10

where ∣ ∣f f= å ñáP i i i . To incorporate the dependence on time, we use ( ) ( ) ( )†=a aa t U t a U t and

[ ( ) ] [ ( ) ( ) ( )] ( )† †r r=a b a ba a t a t a ttr 0 tr . 11

The end result is

[ ( ) ] [ ( ) ] ( )år y=
a

a at M n t Ptr tr . 12

,

Notice that linearity of the time average, together with equation (6) implies

[ ] [ ] ( )år yá ñ = á ñ
a

a aM n Ptr tr . 13

3.1. Coarse-grainedmeasurements
Wecan apply this to ( )D tM , noting that for the applications we are interested in  =M N when restricted to
theN particle subspace. This occurs, for example, whenwe aremeasuring the particle number in a region of
space. Put another way, we take the experimental accuracy of ourmeasurements to be at best N , where  is
some very small constant. For equilibration to occur, we need ( )D tM to be small compared to òmost of the time.
We get

∣ [ ( ) ] [ ]∣ ∣ [ ( ) ] [ ]∣

( ( ) ) ( )
 

r r
s s

s s

- á ñ
= - á ñ

= á ñ

t M M

M
t P P

D t

tr tr
tr tr

, , 14P

where ( ) ∣ ( ) ( )∣s y y= å ñát t t
N j j j
1 is a single-particle state. Inwords, theN particle problemhas been replaced by

a single-particle problem in terms of the distinguishability given a singlemeasurement with projectors P
and - P .

Now recall that equilibration of expectation values does not necessarily imply that equilibrationwill be
observed. For the examples we look at, the fluctuations in the observed value ofM, given by
( [ ( ) ] [ ( ) ] )r r-t M t Mtr tr2 2 1 2, are bounded above by N , which is proved in appendix B. In fact, a large class
of fermion systems have time-averaged fluctuations bounded above by N , as seen in appendix B. For large
numbers of particles, (comparable to 1023, for example) N is small compared to our experimental precision
N , and the fluctuations are not practically observable. Even for dilute gases with ( )O 104 particles, ~N 100,
so thefluctuations are of the order of 1%of the total particle number, which is still quite small.

3.2. Few-modemeasurements
Weare not just restricted to coarse-grainedmeasurements.We can also discussmeasurements involving a few
modes. These could be single-site densities or correlation functions in the setting of latticemodels. Or they could
be phase correlators [ ( ) ]†r t a atr i j , which are typically inferred from time-of-flightmeasurements [25].

Wewill return to this in section 6.2, wherewewill see that for a large class of lattice systems anymeasurement
on a small number ofmodes (small compared to the lattice size)will equilibrate. And the timescale will be
relatively fast.

4. Example I: particles in a box

Supposewe have a one-dimensional boxwith a partition at the halfway point (this can be extended to a three-
dimensional example as shown in appendix C). On the left of the partitionwe haveN fermions or bosons at zero
temperature.We open the partition at t=0, and the observable we focus on isM, which counts the particles in
the left half of the box.

4
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Using equation (14), we can replace thisN particle problemby a single-particle one, so

[ ( ) ] [ ] ( ( ) ) ( )r r
s s

- á ñ
= á ñ

t M M

N
D t

tr tr
, , 15P

which is plotted infigure 2.Here ( )s t is a state of a free particle in a box, sá ñ is its time average and P is the
projector onto the left-hand side of the box.

4.1. Fermions
First, let us look at the case where the particles are fermions. The initial state of theN fermion systemhas all
fermions in the left half of the box at temperature zero. Thismeans that the initial single-particle state ( )s 0 is an
equalmixture of the lowestN energy levels of a particle trapped in the left half of a box. This can be seen from
equation (6).

The energy eigenstates for a particle in a box are given by

∣ ∣ ( )ò
p

ñ = ñ⎜ ⎟⎛
⎝

⎞
⎠n x

L

nx

L
xd

2
sin , 16

L

0

where >n 0 is an integer and L is the length of the box. Similarly, the energy eigenstates for a particle trapped in
the left half of the box are given by

∣ ∣ ( )òy
p

ñ = ñ⎜ ⎟⎛
⎝

⎞
⎠x

L

kx

L
xd

4
sin

2
, 17k

L

0

2

where again >k 0 is an integer.
The initial state of the single-particle system is

( ) ∣ ∣ ( )ås y y= ñá
=N

0
1

, 18
k

N

k k
1

withmatrix elements ∣ ( )∣s s= á ñn m0nm . Similarly, thematrix elements of the projector onto the left half of the
box are ∣ ∣= á ñP m P nmn .

Let us look at the distinguishability to see if the system equilibrates. Infigure 2, the distinguishability as a
function of time is plotted. From the plots we can see that, as the number of fermions increases, the average
distinguishability gets smaller. Notice that particles in a box have an exact recurrence time of p n=T 2rec / since
the energy levels are n=E nn

2, where n is an integer greater than zero, and n p= mL22 2/ . This is because all
phases of densitymatrix elements in the energy basis ( )- -e E E ti n m are 1 at p n=t 2 / . As in [26], thismeans that we
need only study the systemover the interval [ ]T0, rec . In fact, with the particular initial state below, a recurrence
actually occurs atT 2rec .

Figure 2.Equilibration of a gas of particles in a box. The initial state corresponds toN fermions or bosons trapped on one side of a
partition, which is removed at t=0. Themeasurement we consider counts the number of particles on the left side of the box. Above is
a plot of the resulting single-particle distinguishability for the one-dimensional example withN=10 or 100 fermions and any
number of bosons. Time ismeasured in units of the recurrence time, though for the initial state here there is another recurrence at half
the recurrence time. In general, for fermions the equilibration time is ( )O N1 . For bosons, the systemdoes not equilibrate, as can be
seen from thefigure. These plots were generated using equation (20).
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Evaluating the distinguishability at time t, we get

( ( ) )

[( ) ] ( )

( )å

å

s s s

n s

á ñ =

= -

n

¹

- -

¹

D t P

n m t P

, e

cos , 19

P
n m

n m t
nm mn

n m
nm mn

i

2 2

2 2

wherewe used the fact that snm andPmn are symmetric under swapping n andmbecause all vectors and operators
here are real.

In appendix C,we see that the distinguishability can bewritten as

( ( ) ) [( ) ] ( ) ( )å ås s ná ñ = -
=

D t
N

n k t f n k,
2

cos 4 , 2 , 20P
n k

N

odd 1

2 2 2

where

( )
( )

( )
p

=
-

f n k
k

n k
, 2

4 4

4
, 212

2

2

2 2 2

for ¹n k2 .
For the system to equilibrate, we need it to spendmost of its time indistinguishable from its time-average

state.We see in appendix C, that the time-average distinguishability satisfies ( ( ) ) ( ( ) )s sá á ñ ñ =D t O N N, lnP
2 .

Therefore,most of the time the system state is indistinguishable from its time average, providedN is large.
We can also say something about the timescale.We see in appendix C, that the timescale for equilibration is

atmost

( )
n p

= =T
Na

mL

Na

1 2
. 22eq

2

2

Here a is a small constant thatwe choose such that the distinguishability at =t Teq is small:

( ( ) ) ( ) ( )s s
p

á ñ +
⎛
⎝⎜

⎞
⎠⎟D T

a
O

N

N
,

3

log
, 23P eq

2

which is also derived in appendix C. Interestingly, the timescale decreases with increasing particle number.

4.2. Bosons
The situation forN bosons is simpler. As they are initially at zero temperature, allN bosons are in the ground
state. The corresponding initial single-particle state ( )s 0 is just the lowest energy state for a particle trapped on
the left of the partition. This does not depend onN. By looking at the plot of the distinguishability infigure 2, it is
clear that this systemdoes not equilibrate because the distinguishability is large formost times.

So the behavior ofN bosons is very different from the fermion case. This is because of the exclusion
principle: in the fermion case, the fermions had to occupy different energy levels and so the corresponding
single-particle state was spread out overmany energy levels. This is not the case for bosons at zero temperature.

5. Example II: bosons after a quench

For our second example, supposewe haveN bosons at zero temperature in a one-dimensional harmonic trap
with frequency w0.Wewill consider what happens after two different quenches.

5.1.Quench to a squarewell potential
Suppose theHamiltonian changes suddenly so that the bosons are then confined in a deep squarewell potential,

whichwe can idealize as a box corresponding to the interval -⎡⎣ ⎤⎦,L L

2 2
. Let themeasurement operatorM count

the number of bosons in the central region of the box -⎡⎣ ⎤⎦,L L

4 4
. Applying equation (14), we see that

[ ( ) ] [ ] ( ( ) ) ( )r r
y y

- á ñ
= á ñ

t M M

N
D t

tr tr
, , 24P

where ( ) ∣ ( ) ( )∣y y y= ñát t t is a pure state of a single-particle andP is the projector onto the central region of
the box.

The equilibration timescale has already been estimated for this single-particle system in [26]. First, the
infinite-time average of ( ( ) )y yá ñD t ,P is numerically shown to scale like

6
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( ( ) ) ( )y y
p
w

á á ñ ñ ~
⎛
⎝⎜

⎞
⎠⎟D t

L m
,

1 8
, 25P

0

0.79

where it was assumed that thewidth of the initial wavefunction is small compared to the length of the box,
meaning s w= m L1 2 0 . So for sufficiently narrowpotentials (or sufficiently large boxes), equilibration
occurs. Furthermore, the timescale for equilibration is shown to be [26]

( )
p w

=T
L m

2
. 26eq

0

It would be interesting to observe this experimentally. In fact, itmay be feasible to create square-well
potentials in practice: in [27] a three-dimensional cylindrical potential was created to trap a Bose–Einstein
condensate, so creating potentials with sharply definedwallsmay be possible.

5.2.Quench to aweaker harmonic trap
Recent experiments have followed the dynamics of Bose gases after a different quench to that of the previous
section. By quickly changing the strength of a harmonic trap, oscillatory behavior was observed [28]. Such
behavior occurred in both the strongly andweakly interacting regimes. For our purposes, the latter of these
regimes is relevant and corresponds to an ideal Bose gas in one-dimension. In [28] the ratio of initial trap
frequency w0 and post-quench frequencyωwas close to one: w w 1.30 . Herewe see equilibrationwhen w w0

ismuch larger than one.
For our observable, let us take the number of bosons in the spatial region [ ]-l l, . Again, using equation (14),

we can replace thisN particle problemby a single-particle one, so

[ ( ) ] [ ] ( ( ) ) ( )r r
y y

- á ñ
= á ñ

t M M

N
D t

tr tr
, , 27P

where theP is the projector onto the region [ ]-l l, . The distinguishability is

( ( ) ) ∣ [ ( )] [ ]∣ ( )y y y yá ñ = - á ñyD t P t P, tr tr . 28

Sowe need only see if [ ( )]yP ttr spendsmost of its time close to its time average.
The problem is simplified by using the propagator for a harmonic oscillator with frequencyω, given by [29]

( )
( )

(( ) ( ) )
( )

( )w
p w

w w
w

= -
+ -⎡

⎣⎢
⎤
⎦⎥K x y t

m

t

m x y t xy

t
, ,

2 i sin
exp

cos 2

2i sin
, 29

2 2

which leads to the expression

[ ( )] ( ) ( ) ( ) ( ) ( )* *ò òy y y=
-

P t y y x y K x y t K x y t ytr d d d , , , , . 30
l

l

1 2 1 1 2 2

As ( )y x is aGaussianwavefunction, the y1 and y2 integrals are straightforward, leading to

[ ( )] ( )
( )

( )

òy
p

=
a

a

-

-P t xtr
1

d e , 31
l t

l t
x 2

where

( )
( ) ( )

( )a
w

g w w
=

+
t

m

t tsin cos
, 320

2 2 2

with g w w= 0 . Next we use the approximation for the error function [30]

( )

( ) ( )

òp
=

- -
+

+
p

-

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

x t

x x
bx

bx

erf
2

d e

sgn 1 exp
1

, 33

x
t

0

2

4 2

2

2

where themaximum error for any x is around 0.00012, and b 0.147. The result is that

[ ( )] ( )
( )
( )

( )y a
a

a
- -

+

+
p

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥P t t l

t bl

t bl
tr 1 exp

1
. 342

4 2

2

Notice that there are four independent parameters thatmatter: l, which controls thewidth of the interval the
measurement looks at;ω, which is the frequency of the trap after the quench; g w w= 0 , which is the ratio of
trap strengths before and after the quench; and wm 0, which determines thewidth of the initial state. A natural
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starting point is to choose l so that the initial state is almost entirely contained in [ ]-l l, , sowe can
fix ( )w=l m42

0 .
Aswe can see from figure 3, as γ becomes bigger and bigger, [ ( )]yP ttr spendsmost of its time close to zero.

So for very large γ, equilibration occurs. In fact, we can see directly from equations (32) and (34) that, as γ tends
to infinity, [ ( )]yP ttr tends to zero. This holds for all times, except when w p=t n , with În .

In [28], oscillatory behavior was seen at g = 1.3. Here, this value of γ does not lead to any significant
departure from the initial state, as seen infigure 3. The reason for this difference is that in [28] the initial states
were at non-zero temperature. Here, we are initially at zero temperature, andwe see oscillations at higher values
of γ.

To estimate the equilibration timewhen equilibration does occur, we estimate how long it takes for
[ ( )]yP ttr to reach p 1. Using equation (34) and ( ) - -p plog 1 2 2, we get

( )
( )
( )

( )a
a

a

+

+
pt l

t b l

t b l
p

1
. 352

4 2

2
2

Since p is small, this requires ( )a t l2 to be small. Using the earlier choice ( )w=l m42
0 , we get

( )
( ) ( )

( )a
p

p
g w w

=
+

t l
t t

p
4 16

sin cos
. 362

2 2 2
2

For large γ, this is satisfied at

( )
pgw pw

=T
p p

4 4
, 37eq

0

wherewe assumed that twas small compared to w1 , and used ( ) x xsin for small x.

6. Equilibration in general

The examples we looked at were encouraging, but a pressing question is whether one can say anythingmore
general. The answer is actually yes: here wewill see general estimates for the equilibration timescale of gases with
negligible interactions. The starting point is again to replace theN particle problemby a single-particle problem.
Thenwe can use a single-particle equilibration result, which builds on previous results [6–8].

First, let us state the single-particle equilibration result.Wewill need to take account of degenerate energy
gaps. These occurwhen two different energy gaps are equal: - = -E E E Ei j k l, when ¹E Ei k and ¹E Ei j. The
degeneracy of themost degenerate gap is denoted byDG. If all gaps are different,DG = 1. For a particle in a box
there are some degenerate energy gaps, though the addition of an inhomogeneous potentialV(x)would
generally change this. The harmonic oscillator also hasmany degenerate energy gaps. Typically, however, these
are very special cases, andwe expectmostHamiltonianswould have few degenerate energy gaps.

Figure 3.Equilibration of bosons in a harmonic trap. Initially we haveN bosons in the ground state of a harmonic trapwith frequency
w0. The trap strength is then quenched toω. Themeasurement we consider counts the number of bosons in awindowofwidth

wm4 0 . Here we have plots of the corresponding single-particle quantity [ ( )]yP ttr for different values of g w w= 0 . The value
g = 1.3 corresponds to that from [28].We see oscillatory behavior for γ approximately between 4 and 10.We see that, as γ becomes
larger, [ ( )]yP ttr is smallmost of the time, and the system equilibrates. These plots were generated using equation (34).
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Theorem2. Suppose we have a single-particle systemwith a d-dimensional state space. Let A be an operator with
operator norm A , and let ( )s t be a state unitarily evolving via aHamiltonian H . Denote the infinite-time average
of ( )s t by sá ñ. Assuming that we canmake the density of states approximation, meaning we replace åE by

( )ò E n Ed , where ( )n E is the density of states, we get

∣ [ ( ) ] [ ]∣ ( )
 


s sá - á ñ ñ

+
⎡
⎣⎢

⎤
⎦⎥

t A A

A

c

d
D c

n d

T

tr tr
, 38T

G

2

2
1

eff
2

max

where ·á ñT denotes the time average over [ ]T0, , andwe have constants p=c e 21 and p=c 42 . Also,
( )=n n EmaxEmax , and the effective dimension of the state ( )s t is defined by

( [ ( ) ]) ( )å s=
d

P
1

tr 0 , 39
E

E
eff

2

where PE is the projector onto the energy eigenspace corresponding to energy E.

Equilibration of the expectation value ofAoccurs provided the right-hand side of equation (38) is sufficiently
small. As  ¥T , equilibration is guaranteed if c D d 1G1 eff . The effective dimension deff measures how
spread out over energy levels the initial state is. If deff is very largewe expect equilibration to occur.

Butwe can also estimate the timescale: the equilibration timescale can be bounded above by the smallestT
such that the right-hand side of equation (38) is small. In otherwords, when equilibration occurs, we get an
upper bound for the timescale:

( )µT
n d

d
. 40eq

max

eff

Themain task now is to use this single-particle equilibration result tofind timescales forN particle systems.

6.1. Coarse-grainedmeasurements
Let us start with coarse-grainedmeasurements.Wewill see that equilibration of coarse-grained observables
generally occursmuch quicker thanwhatwewould expect based on previous timescale bounds from [6, 8].

Bymapping anN particle problem to the single-particle picture via equation (14), wewant to bound

[ ( ) ] [ ] ( ( ) )

∣ [ ( ) ] [ ]∣

( [ ( ) ] [ ])

( )





r r
s s

s s

s s

- á ñ
= á á ñ ñ

= á - á ñ ñ

á - á ñ ñ

+
⎡
⎣⎢

⎤
⎦⎥

t M M

N
D t

t P P

t P P

c

d
D c

n d

T

tr tr
,

tr tr

tr tr

, 41

T

P T

T

T

G

2

1

eff
2

max

where the third line follows from concavity of the square root. The last line follows from the result for single-
particle equilibration from the last section, namely equation (38).

To seewhether equilibration occurs at all, let  ¥T to get the infinite-time average. And sowemust
estimate

d

1

eff
. DefiningNE to be the operator that counts the number of particles in energy levelE, we get

( [ ])

( [ ])

( )

å

å

å

s

r

=

=

= ⎜ ⎟⎛
⎝

⎞
⎠

d
P

N
N

n

N

1
tr

1
tr

, 42

E
E

E
E

E

E

eff

2

2
2

2

where [ ]r=n NtrE E . Getting the second line used equation (6) from theorem1. Sowe see that
d

1

eff
is extremely

small if the state is spread overmany energy levels.
ConsiderN fermions or the special case ofN bosons in orthogonalmodes. Then the resulting single-particle

density operator ( )s t is an equalmixture ofN orthogonal states. In that case,  åd n n N1 n

N E Eeff d
d
2 , where

nd is the degeneracy of themost degenerate energy level. As a result

[ ( ) ] [ ] ( )
r r- á ñt M M

N

c n D

N

tr tr
. 43G1 d

So the bottom line is that for the coarsemeasurements considered here, equilibration occurs very generally
despite the fact that these are non-interacting bosons or fermions.
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Wecan also say something substantial about the equilibration timescale.
We can always restrict our attention to d energy levels of the corresponding single-particle system,which

may require an energy cutoff. And suppose d is bounded above by a polynomial inN. This depends on the state
( )s t and so ultimately on the state of each of theN bosons or fermions. For example, for the calculationswith

fermions equilibrating in appendix C,we effectively took a cutoff with ( )=d O N . In fact, for the bosonic
examples, dwas independent ofN. For lattice systems this is particularly natural if there is a constant density of
particles, then µ µd V N , whereV is the number of lattice sites.

Next, we estimate nmax, which is often polynomial in d, and henceN. For example, ~n dmax
3 for a system

whose energy levels go like µE n1n
2, similar to the energies for bound states in aCoulombpotential. Notice

that this is a systemwewould expect to have verymany small gaps. Conversely, when the energy level spacings
growwith dwewould expect better behavior. For example, when µE nn

2, one gets ~n 1max .
Putting this all together, if equilibration occurs, the timescale is typically

( ) ( )ÎT O N 44k
eq

for some positive integer k. This is far better than the bounds of [6–8], whichwere exponential inN for physical
systems.Of course, how nmax scales with d and how d scales withN depend on the system in question, but neither
of the requirements above appear unnaturally restrictive.

It is also interesting that each of [15–17] found equilibration timescales that were polynomial (or faster) in
the number of particles. In contrast to the setting considered here, these results involved averaging over
Hamiltonianswith respect to the global unitaryHaarmeasure. Because of this, it is not clear how to interpret the
implications of [15–17] for equilibration of localHamiltonian systems. Nevertheless, [15–17] do say something
about equilibration timescales of fully interactingmodels, which is very interesting.

6.2. Local equilibration
Wecan also look at equilibration of non-interacting latticemodels. This would include the free superfluid
regime of the Bose–Hubbardmodel, for example.We consider local few-modemeasurements, where fewmeans
that the number ofmodes is small compared to the number of lattice sites. This setting includes all
measurements in some small region of the lattice or correlation functions over long distances. It also includes
phase correlators, which are important in ultracold atom systems.

Wewill state the single-mode resultfirst. This relies on theHamiltonian being some formof local (not
necessarily nearest-neighbour) hoppingHamiltonian: the tight-bindingmodel is one example.

Tomake the formulas easier to read, wewill assume that themaximum energy level degeneracy nd and the
number ofmodes per site are both one. In the proofs of these results in appendix Ewe allow other values of these
quantities.

Corollary 1.Take a free latticemodel, and assumewe canmake the density of states approximation, as in theorem 2.
Let (∣ ) (∣ )† f f= ñ ñM a a , where ∣fñ is a single-particle state localized on atmost l sites (which need not be near each
other). Thenwe have

∣ [ ( ) ] [ ]∣ ( )r rá - á ñ ñ +
⎡
⎣⎢

⎤
⎦⎥t M M l c

D

d
c

n

T
tr tr , 45T

G
1 2

max

where d is the dimension of the corresponding single-particle Hilbert space, andwe have constants p=c 42 and
( )p=c e 21 . Also, ( )=n n EmaxEmax , where ( )n E is the density of states.
For bosons, we needed to assume that the initial state has at most one boson in eachmode. Otherwise, the same

result holds, but with an extra factor on the right-hand side given by themaximumnumber of bosons in a
givenmode.

This is proved in appendix E. Again, we see equilibration provided the right-hand side of equation (45) is
small.Wewill estimate the equilibration timescale below corollary 2. First, let us discuss some consequences of
this result.

A simple consequence is that phase correlators equilibrate. Phase correlators are expectation values like
[ ( ) ]† r t a atr x y , where


x and


y denote lattice sites. (Theremay be severalmodes at each lattice site, but for

simplicity of notation, we have assumed that there is just one.)Using

( ) ( )† † † † †  = - - +a a d d d d d d d d
1

2
i i , 46x y 1 1 2 2 3 3 4 4
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where

( )

( )

( )

( ) ( )

 

 

 

 

= +

= -

= +

= -

d a a

d a a

d a a

d a a

i

i , 47

x y

x y

x y

x y

1
1

2

2
1

2

3
1

2

4
1

2

we can express [ ( ) ]† r t a atr x y in terms of single-mode densities. And so via the triangle inequality, we can upper

bound the time average of ∣ [ ( ) ] [ ( ) ]∣† †   r r-t a a t a atr trx y x y using corollary 1.
Interestingly, these results apply to a vast range of initial states ( )r 0 . Thismeans that one could perform a

huge variety of quenches to a free lattice system, and the equilibration results here and timescale bounds (which
wewill discuss below) apply.

Before discussing timescales, we can build on corollary 1 further, getting the corollary below, which is proved
in appendix E.2.We only prove the fermionic result, as the bosonic result is essentially the same.

Corollary 2.Take a free latticemodel, and let M be an operator on l sites. Suppose the initial state ( )r 0 is Gaussian
and satisfies [ ( ) ]r =N0 , 0, where N is the total number operator. (This is still quite general, though it rules out BCS
states, for example.) Thenwe get

∣ [ ( ) ] [ ]∣ ( )r rá - á ñ ñ ++ ⎡
⎣⎢

⎤
⎦⎥t M M ml c

D

d
c

n

T
tr tr 2 , 48T

l G2 2
1 2

max

where d is the dimension of the corresponding single-particle Hilbert space, andwe have constants p=c 42 and
( )p=c e 21 . Also, ( )=n n EmaxEmax , where ( )n E is the density of states. Finally, m is themaximum coefficient

of M when M is expanded in an operator basis ofMajorana fermion operators.

Typicallymwill be order one, which is the case for correlation functions, for example. Therefore, as long as
the number of lattice sites that themeasurement acts on is quite small, equilibrationwill also occur for free lattice
systems.

Furthermore, we can use these results to upper bound the equilibration timescale. From corollary 1 and 2,
the upper bound for the equilibration timescale scales like µT neq max . So it remains to estimate nmax. In
appendix E.1, we show that for these latticemodels, we can effectively take µn Vmax , whereV is the number of
lattice sites. Therefore, we get

( )µT V . 49eq

In particular, for one-dimensional systems, we get µT Leq , where L is the length of the system.
The scaling with system size is quite significant. Previous bounds [6, 8]were exponential in the system

size, whereas here we get something linear. Furthermore, in the one-dimensional case, the scaling is optimal.
This can be seen from Lieb-Robinson bounds [31], which imply that the time it takes for information to
propagate appreciably from one region to another increases linearly with the distance between the regions.
So in one-dimension µT Leq is the best we can hope for. The only possibility for better scaling is if one
restricts the set of initial states under consideration. A good example of such results for special states
appeared in [10].

7.Discussion and outlook

Finding the timescale involved in equilibration is an important problem in physics, especially in light of
recent advances in experiments withmesoscopic quantum systems [1, 2]. The timescale results here required
us to restrict our attention to a subclass ofmeasurements, which are physically sensible formacroscopic or
mesoscopic systems.We focused on the regime of negligible interactions, which includes Luttinger liquids
and theHubbardmodel in the free superfluid regime. First, we found example equilibration timescale
bounds for gases of bosons and fermions.We also saw that equilibration occurs quite generally in this setting
of very weak interactions and is very fast compared to the best known general bounds on the
equilibration time.

Fromhere the outlook is promising: a natural next step is to extend these results to quasi-free systems, where
theHamiltonian is quadratic in terms of creation and annihilation operators but does not conserve particle
number. Suchmodels arise in the theory of superconductivity. Other options are to extend the results to
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interactingmodels via perturbation theory or to look at equilibration in terms of fermionic or bosonic
generating functions [32].
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AppendixA. Proof of theorem1

TheoremA1.Take a state ( ) ( ) ( ) ( )†r r=t U t U t0 of Nnon-interacting bosons or fermions and ameasurement
operator counting the number of particles in somemodes †= åM b bi i i, where (∣ )f= ñb ai i . Then there exist
orthonormal single-particle states ∣ ( )y ña t , evolving via the corresponding single-particle Hamiltonian, such that

[ ( ) ] [ ( ) ] ( )år y=
a

a at M n t Ptr tr , A1

where an are occupation numbers adding up to N , ∣ ∣f f= å ñáP i i i and ( ) ∣ ( ) ( )∣y y y= ñáa a at t t .

Proof.There exists a complete set of independent annihilation operators (∣ )y= ña aa a , such that

[ ( ) ] ( )†r a b= ¹a ba atr 0 0 if . A2

To see this, take any complete set of independent annihilation operators ad . Thematrix [ ]†r =a b abd d Ctr is
Hermitian. So there exists a unitary abU , such that in terms of

( )† †å=a
b

ab ba U d . A3

[ ( ) ]†r a ba atr 0 is diagonal. So itmakes sense toworkwith the aa , which determine the states ∣ ( ) ∣y yñ = ña a0
mentioned in the statement of the theorem via (∣ )y= ña aa a . Next, expand

(∣ ) ( )† † †åf ñ = =
a

a aa b c a , A4i i i,

where aci, are complex numbers. Then

[ ( ) ] ∣ ∣ [ ( ) ]

∣ ∣ ( )

† †å

å

r r=

=
a

a a a

a
a a

b b c a a

n c

tr 0 tr 0

, A5

i i i

i

,
2

,
2

where an is the number of particles inmodeα. Next, we use { } ∣† y f= = á ña a ac a b,i i i, for fermions, or
[ ] ∣† y f= = á ña a ac a b,i i i, for bosons, to get

[ ( ) ] ∣ ∣ ( )† år y f f y= á ñá ñ
a

a a ab b ntr 0 . A6i i i i

Therefore

[ ( ) ] ∣ ∣

[ ] ( )

å

å

r y y

y

= á ñ

=
a

a a a

a
a a

M n P

n P

tr 0

tr , A7

where ∣ ∣f f= å ñáP i i i . For a state like ∣† † ña a... 0N1 , thefirstN occupation numbers an are one, sowe get

[ ( ) ] [ ] ( )år y=
a

a
=

M Ptr 0 tr . A8
N

1

To account for the dependence on time in the formula, we use (∣ ( ) ) ( ) ( ) ( )†y ñ = =a a aa t a t U t a U t and

[ ( ) ] [ ( ) ( ) ( )] ( )† †r r=a b a ba a t a t a ttr 0 tr . A9

The end result is

[ ( ) ] [ ( ) ] ( )år y=
a

a at M n t Ptr tr . A10

,
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Appendix B. Fluctuations

It will be useful to prove the following lemma.

LemmaB1. Let (∣ )† † y= ña aa a be a complete set of creation operators with { }† d=a b aba a, . And suppose we have a

state ∣† † ña a... 0N1 with corresponding density operator r. And take ameasurement operator counting the number of
particles in somemodes †= åM b bi i i, where (∣ )f= ñb ai i . Then, we have that

[ ] [ ] [ ] ( )r r r+M M Mtr tr tr B12 2

for fermions. And for bosons, we have

[ ] [ ] [ ] ( )r r r+ +M M M Ntr tr tr . B22 2

Proof. First

[ ] [ ( )( )] ( )† †år r=M b b b btr tr . B3
i j

i i j j
2

,

Each term can bewritten as

[ ( )( )] [ ] [ ] ( )† † † † †r r d r= +b b b b b b b b b btr tr tr , B4i i j j j i i j ij i i

which holds for bosons or fermions. Tomake sense of this, wewrite

( )† †å=
a

a ab c a , B5i i,

where aci, are complex numbers. It will turn out below that only termswith { } a Î ¼ =N1, , contribute.
Nowwe use the identity

∣ ( ) ∣ ( )† † † dá ñ =a b aba a a a a a0 ... ... 0 . B6N N1 1

to get

[ ] ∣ ∣ ( )† *
 

å år d= =
a b

a b ab
a

a
Î Î

b b c c ctr . B7i i i i i
,

, , ,
2

For fermions, we use the identity

∣ ( ) ∣ [ ] ( )† † † † d d d dá ñ = -a b g e ae bg ag bea a a a a a a a0 ... ... 0 B8N N1 1

to get

[ ] [ ]

[∣ ∣ ∣ ∣ ( )( )] ( )

† † * *

* *




å

å

r d d d d= -

= -
a b g e

a b g e ae bg ag be

a b
a b a a b b

Î

Î

b b b b c c c c

c c c c c c

tr

. B9

j i i j j i i j

j i j i i j

, , ,
, , , ,

,
,

2
,

2
, , , ,

Now, using { } ∣† y f= = á ña a ac b a,j j j, , we get

∣ ∣

∣ ∣ ( )

*




å

å

f f

y y

= á ñ

= ñá
a

a a

a
a a

Î

Î

c c Q

Q

,

where . B10

j i i j, ,

Then the second term in equation (B9) becomes

( )( ) ∣ ∣ ∣ ∣ ( )* *


å f f= á ñ
a b

a a b b
Î

c c c c Q , B11j i i j i j
,

, , , ,
2

which is positive. Therefore

[ ] ∣ ∣ ∣ ∣

[ ] [ ] ( )

† †

† †


 år

r r=
a b

a b
Î

b b b b c c

b b b b

tr

tr tr . B12

j i i j i j

i i j j

,
,

2
,

2

Putting everything together gives

[ ] [ ] [ ] ( )r r r+M M Mtr tr tr . B132 2
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For bosons, the result is similar, but the identity in equation (B8) is replaced by

∣ ( ) ∣ [ ]( ) ( )† † † † d d d d dá ñ = + -a b g e ae bg ag be aba a a a a a a a0 ... ... 0 1 . B14N N1 1

Because of this, following similar steps to those used to get equation (B9), we get

[ ] ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ( )† †


 år f f+ á ñ

a b
a b

Î

b b b b c c Qtr . B15j i i j j i i j
,

,
2

,
2 2

The extra term arising in our expression for [ ]rMtr 2 is

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣

[ ] ( )

å åf f f f f fá ñ = á ñá ñ

=

Q Q Q

PQPQ Ntr , B16
ij

i j
ij

i j j i
2

where ∣ ∣f f= å ñáP i i i andwe used ( ) =Q Nrank . ,

A corollary of this is that for pure states of bosons or fermions of the form ∣† † ña a... 0N1 , thefluctuations satisfy

[ ] [ ] ( ) ( )s r r= - =M M O Ntr tr , B17M
2 2 2

whereN is the number of fermions or bosons in the system. Furthermore, one can show that forN bosons in the
samemode, one also gets ( )s = O NM

2 .
To say somethingmore general about thefluctuations in fermion systems,we can also prove the following result.

TheoremB1.Given a non-interacting N fermion systemwith corresponding single-particle Hamiltonian that has
no degenerate energy levels and no degenerate energy gaps, then the time-average fluctuations satisfy

( ( )) ( )s rá ñt N , B18M

when the expectation value of M on any infinite-time average state of N particles is independent of the initial state.
Examples where this is true include the gases discussed in the examples in themain text and systems where M counts
the number of particles in a spatial region, provided theHamiltonian is such that á ñM , the time-average observable in
theHeisenberg picture, is proportional to the total number operator.

Proof.Key to this result is the following inequality

( ( )) [ ( ) ] [ ( ) ]

[ ] [ ( ) ]

[ ] [ ]
( ) ( )





s r r r

r r

r r

s r

á ñ á - ñ

= á ñ - á ñ

á ñ - á ñ

= á ñ

t t M t M

M t M

M M

tr tr

tr tr

tr tr

, B19

M

M

2 2

2 2

2 2

whereweused concavity of the square root in thefirst line and convexity of ( ) =f x x2 to get to the second last line.
So it remains to calculate

( ) [ ] [ ] ( )s r r rá ñ = á ñ - á ñM Mtr tr . B20M
2 2 2

As rá ñ is the infinite-time average of ( )r t , it follows that

( )år wá ñ = p , B21
E

E E

where pE is a normalized probability distribution and wE is a state with support only on the energy eigenspace
corresponding to energyE. HereE labels the energy of theN fermion system. SoE is a sumofN single-particle
energies. Let uswrite the creation operator that creates a fermionwith energy Ei as

†ai . Now, the support of wE is
spanned by the states

∣ ( )† † ña a... 0 , B22i iN1

with + + =E E Ei iN1
. Therefore, given two different configurationswith energyE, { } { }¼ ¹ ¼i i j j, , , ,N N1 1

∣ ( ) ∣ ( )† † †á ñ =a ba a a a a a0 ... ... 0 0 B23i i j jN N1 1

because single-particle energy levels are non-degenerate. This implies

[ ] ( ) [ ( ) ] ( )† † 
åw =a b a b
Î

a a q i P i a atr tr , B24E
i CE
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where

i is short for { }¼i i, , N1 ,CE denotes all { }¼i i, , N1 such that + + =E E Ei iN1

, ( )


q i is a normalized

probability distribution such that ( )


å =Î q i 1i CE
and ( )


P i is the projector onto ∣† † ña a... 0i iN1

. Similarly, it is a
consequence of (single-particle)non-degenerate energy gaps that

[ ] ( ) [ ( ) ] ( )† † † † 
 åw =a b g a b g
Î

a a a a q i P i a a a atr tr . B25E
i CE

Nowwe can use lemmaB1 to upper bound

[ ] ( ) [ ( ) ]

( )( [ ( ) ] [ ( ) ]) ( )

 

  





åå

åå

rá ñ =

+

Î

Î

M p q i P i M

p q i P i M P i M

tr tr

tr tr . B26

E i C
E

E i C
E

2 2

2

E

E

Next, we use [ ]w =M mtr independent of the stateω forfixed total particle numberN, whenω is a time-average
state, a special case of which is ( )


w = P i . So

[ ] [ ] ( )r rá ñ - á ñ + - =M M m m m mtr tr . B272 2 2 2

Finally, using the fact that the expectation value ofM is bounded above byN on theN particle subspace leads
to

( ) ( )s rá ñ N B28M
2

and therefore

( ( )) ( )s rá ñt N . B29M

,

AppendixC. Calculations for fermions in a box

Equation (19) gives the distinguishability at time t

( ( ) ) [( ) ] ( )ås s n sá ñ = -
¹

D t n m t P, cos . C1P
n m

nm mn
2 2

And from equation (18), we have

∣ ∣ ∣ ∣ ( )ås y y= á ñá ñá ñ
=

P
N

n m m P n
1

. C2nm mn
k

N

k k
1

Evaluating the inner products, we get

∣ ∣ ( )
∣ ( ) ( )y

á ñ =

á ñ=

m P n f m n

n f n k

,

2 , 2 , C3k

where

( ) ( )

( ) ( )

=
- ¹

=

p

-

-

+

+

p p⎧
⎨
⎪⎪

⎩
⎪⎪

⎡
⎣⎢

⎤
⎦⎥

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦
f n m

n m

n m

,
if ,

if .

C4

n m

n m

n m

n m

1 sin sin

1

2

2 2

Notice that, if both x and y are even or odd, unless x=y, then ( ) =f x y, 0. The net result of this is

( ) ( )ås =
=

P
N

f n k
1

, 2 C5nm mn
k

N

1

2

if =m k2 and n is odd and similarly if =n k2 andm is odd. All other terms are zero. Then subbing this into
equation (C1), the distinguishability ( ( ) )s sá ñD t ,P becomes

[( ) ] ( ) ( )å å n-
=N

n k t f n k
2

cos 4 , 2 . C6
n k

N

odd 1

2 2 2

Furthermore, using ( ) ( )( )p = - -rsin 2 1 r 1 2, which holds for odd r, we get

( )
( )

( )
p

=
-

f n k
k

n k
, 2

4 4

4
, C72

2

2

2 2 2

for ¹n k2 .
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Next,we canfind abound for the equilibration time. First, wemake the substitution = +n k l2 , noting that
> -l k2 since >n 0, and lmust be odd. It follows that ( )+f k l k2 , 2 2 is peaked around small values of l, sowe can

focus on termswith Îl , where  contains all odd integers from-K toK. Toquantify the resulting error,weuse

( )
( )

( )
p p

+ =
+

f k l k
k

l k l l
2 , 2

4 4

4

4
. C82

2

2

2 2 2 2

The sumof all termswith Ïl can be bounded above by

( )

( )

 




 

å å

å å

å å

p

p p

p p

p

+

+

-
-

=
+

Ï Ï

=- +

- -

= +

¥

= +

¥

= +

¥
⎜ ⎟⎛
⎝

⎞
⎠

f k l k
l

l l

l l l

K

2 , 2
4

4 4

8 1 8 1

1

1

8 1

1
. C9

l l

l k

K

l K

l K l K

odd

2

odd
2 2

2 1

2

2 2
2

2 2

2
2

2 2
2

2

So neglecting terms corresponding to Ïl results in an upper bound for ( ( ) )s sá ñD t ,P of

[( ) ]
( )

( )


åå n
p p

+
+

+
+Î =N

kl l t
k

l k l K

2
cos 4

4 4

4

16 1

1
, C10

l k

N

1

2
2

2

2 2 2

which follows from the triangle inequality and ∣ ( )∣ xcos 1. Next, as ( )+f k l k2 , 2 is awkward toworkwith,
we use

( )
∣ ∣ ( )

∣ ∣
( )

p p

p

- + =
+
+l

f k l k
l

k l

k l

k l

1
2 , 2

1 8

4

3

2

1
, C11

2 2
2

2 2

2

wherewe used the triangle inequality and the fact that ( ) ( )+ <k l k1 4 1 2 , since > -l k2 .
This allows us to upper bound ( ( ) )s sá ñD t ,P by

[( ) ] ( )


åå n
p

m+ +
Î =N

kl l t
l

2
cos 4

1
, C12

l k

N

1

2
2 2

where

[ ( ) ][ ( ) ] ( )m
p p

=
+

+
+ +

K

N K

N

16 1

1

6 ln 1 ln 1
. C13

2 2

To get this, we used the triangle inequality and the inequality ( )å < += r R1 ln 1r
R

1 .
Using the triangle inequality again, we get

( ( ) ) [( ) ]

[ ] [( ( ) ) ]
[ ]

[ ]
[ ]

( )











å å

å

å

s s
p

n m

n n
p n

m

n
p n

m

á ñ + +

=
+ +

+

+

Î =

Î

Î

D t
N l

kl l t

Nl t N l l t

N l l t

Nl t

N l l t

,
2 1

cos 4

2
sin 2 cos 2 1

sin 2

2
sin 2

sin 2
. C14

P
l k

N

l

l

2 2
1

2

2 2

2 2

In the third line we used the identity [33]

( ) [ ] [( ) ]
( )

( )å a f
a a f

a
+ =

- +

=

-

k
N N

cos
sin 2 cos 1 2

sin 2
. C15

k

N

0

1

Let us look at each term in the sum in the last line of equation (C14) separately. They have period p
nl2
, sowe need

only focus on this interval tofind the time average of ( ( ) )s sá ñD t ,P .
When nl t2 is close to 0 orπ, the [ ]nl tsin 2 in thedenominator in the last line in equation (C14) is small. So for t

such that )n Î ⎡⎣l t2 0,
Na

1
or (n p pÎ - ⎤⎦l t2 ,

Na

1
, where a is a small constantwewill choose at the end,webound
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[ ]
[ ]

( )n
p n p

Nl t

N l l t l

sin 2

sin 2

1
. C16

2 2 2 2

When n Î p⎡⎣ ⎤⎦l t2 ,
Na

1

2
, we can use the inequality ( )  px xsin 2 for all [ ]pÎx 0, 2 to get

[ ]
[ ] ∣ ∣

( )n
p n p n

Nl t

N l l t N l t

sin 2

sin 2

1

4
. C17

2 2 3

Tofind the time average of ( ( ) )s sá ñD t ,P , we use the fact that the average over
p
n

p
n

⎡⎣ ⎤⎦,
l l4 2

is the same as that

over
p
n

⎡⎣ ⎤⎦0,
l4

by symmetry. Sowe need only average each termover
p
n

⎡⎣ ⎤⎦0,
l4

. The result is

[ ]
[ ] ∣ ∣

( ) ( )

( )

( )
 ò

n
p n p p

n
p p n

p
p
p

+

= +

n

p n⎛
⎝⎜

⎞
⎠⎟

Nl t

N l l t l Na

l t

N l t

l Na

Na

N l

sin 2

sin 2

1 2 4 d

4

2 ln 2
. C18

Nal

l

2 2 2 2 1 2

4

3

3 2 2 2

Plugging this into equation (C14), we get

( ( ) ) ( ) ( )s s
p

p
má á ñ ñ + +D t

Na

Na

N
,

4

3

2 ln 2

3
, C19P

wherewe used   på å =Î =
¥l l1 2 1 3l l

2
1

2 2 . If we chooseK=N, thenwe see that

( ( ) ) ( ) ( )s sá á ñ ñ =
⎛
⎝⎜

⎞
⎠⎟D t O

N

N
,

ln
. C20P

2

So for largeN, this is extremely small and equilibration occurs. In fact, asfigure 4 shows, the time-average
distinguishability decays faster withN than the bound here.

Infigure 2we saw that ( ( ) )s sá ñD t ,P becomes small and then stays small formost times. In order tofind the
equilibration time, we can upper bound the time it takes for the distinguishability to become small. Plugging
=

n
t

Na

1

2
into the bound in equation (C17), gives the bound

( ( ) )
∣ ∣

( )


 ås s
p

m
p

má ñ + +
Î

D t
a

l

a
,

3
. C21P

l
3

Herewe choose a to be a small constant such that the distinguishability is small at =
n

t
Na

1

2
. Then the

equilibration time is bounded above by

( )
n

=T
Na

1

2
. C22eq

Figure 4.This plot shows the time-average distinguishability ( ( ) )s sá á ñ ñD t ,P as a function of particle number from 5 to 50 fermions
on a log scale. Numerically, ( ( ) ) ( )s sá á ñ ñ = -D t O N,P

1.39 , which is faster than the bound in equation (C20), whichwas
( ( ) )O N Nln 2 .
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C.1. Three-dimensions
Wecan extend this to a three-dimensional example in away similar to the extension to three-dimensions for a
particle in a box in [26]. Suppose the initial state of theN fermion system is

(∣ )∣ ( )†


 y ñ ñ
Î

a 0 , C23
j J

j

where J is the set of three-component vectors with components in { }¼ J1, , max , sowe have =N Jmax
3 . And let

∣ y ñj be the energy eigenstate for a particle in the left half of a box labelled by

j analogous to ∣y ñk in one-

dimension in equation (17). Suppose the observable we are considering is that which counts the number of
particles in the left half of the box.

Aftermapping to the single-particle picture, the distinguishability becomes

( ( ) ) ( ( ) ) ( )s s s sá ñ = á ñD t D t, , , C24P P x xx

where = Ä Ä P Px y z is the projector onto the left half of the box.Here ( )s tx is the reduced state of the
systemonx, theHilbert space corresponding to the x degrees of freedom.Wehave

( ) ∣ ∣ ( )ås y y= ñá
=J

0
1

, C25x
j

J

j j
max 1

max

where ∣y ñj is the jth energy eigenstate of a particle trapped in the left-hand side of a one-dimensional box. So the
problem is now equivalent to the one-dimensional example. Therefore, the equilibration timescale is at
most ( ) ( )= =T O J O N1 1eq max

1 3 .

AppendixD. Single-particle equilibration

Herewewill derive a useful formula that showswhen equilibration occurs. The proof is very similar to one in [8],
mainly differing by using a different weight for the time average.

LemmaD1.Take a finite dimensional system evolving via a time independentHamiltonian in the state ( )s t . For any
operator A and time >T 0

∣ [ ( ) ] [ ]∣ ( )( )
 

 å
s sá - á ñ ñ

b a

- -a b
t A A

A

c

d

tr tr
max e , D1T G G

2

2
1

eff

T2 2
16

where = pc e1 2
and = -aG E Ei j denote the non-zero energy gaps, so ¹E Ei j. Also

( [ ( ) ]) ( )å s=
d

P
1

tr 0 , D2
E

E
eff

2

where PE is the projector onto the energy eigenspace corresponding to energy E.

Proof. First, wewill take ( )s t to be pure, extending the result tomixed states at the end. Because
( ) ∣ ( ) ( )∣s y y= ñát t t is pure, we can choose an eigenbasis ofH, where ∣ ( )y ñt only overlaps with a single

eigenstate ∣ ñn for each energy level. Thismeans that degenerate energy levels will not cause any problems. The
state at time t is

∣ ( ) ∣ ( )åy ñ = ñ-t c ne , D3
n

n
E ti n

where ∣ ( )y= á ñc n 0n . The time-average state is ∣ ∣ ∣ ∣sá ñ = å ñác n nn n
2 , and the effective dimension is given

by ∣ ∣ [ ]s= å = á ñd c1 trn neff
4 2 .

Using the notation ∣ ∣= á ñA i A jij , we have

∣ [ ( ) ] [ ]∣ ( ) ( )( )*ås sá - á ñ ñ =
¹

- -t A A c A ctr tr e , D4T
i j

j ji i
E E t

T

2 i

2

i j

( )( ) ( )[( ) ( )]* * *å á ñ
¹
¹

- - -c A c c A c e . D5
i j

k l

j ji i l lk k
E E E E t

T
i k l i j

Tomake our expressionsmore concise, we denote non-zero energy gaps by = -bG E Ei j, with ( )b = i j, ,
where ¹i j.We also define the vector

18

New J. Phys. 18 (2016) 073014 TFarrelly



( )( ) *= =bv v c A c D6i j j ji i,

and theHermitianmatrix

( )( )= á ñab
-a bM e . D7G G t

T
i

Equation (D4) becomes

∣ [ ( ) ] [ ]∣

∣ ∣

∣ ∣ ∣ ∣ ∣ ∣

∣ ∣ ∣ ∣ ∣ ∣

[ ] ( )†

 

 

 

 

*





å

å

å

å

s s

s s

á - á ñ ñ =

=

= á ñ á ñ

a b
a ab b

a
a

¹

t A A v M v

M v

M c c A

M c c A

M A A

tr tr

tr . D8

T

i j
i j ji

i j
i j ji

2

,

2

2 2 2

,

2 2 2

As [ ]†A Btr defines an inner product for operators, wemay use theCauchy–Schwartz inequality.We can also use
the inequality [ ] [ ] PQ P Qtr tr , which holds forP andQ positive operators. Thenwe get

∣ [ ( ) ] [ ]∣ [ ] [ ]
[ ]

( )

† † 
  
  




s s s s

s

á - á ñ ñ á ñ á ñ

á ñ

=

t A A M A A AA

M A

M A

d

tr tr tr tr

tr

. D9

T
2 2 2

2 2

2

eff

Next, we can use the inequality formatrix norms [34]

∣∣∣ ∣∣∣ ∣∣∣ ∣∣∣
∣ ∣ ( )

 

å=
b a

ab

¥M M M

Mmax , D10

1

where ∣∣∣ ∣∣∣M 1 and ∣∣∣ ∣∣∣¥M are the column and rowmatrix norms respectively. The second line holds becauseM
is hermitian, implying ∣ ∣ ∣ ∣   =¥M M1 .

Our next task is to dealwith ( )= á ñab
-a bM e G G t

T
i . This canbe simplifiedby replacing theoriginal time average

over the interval [ ]T0, by a differentlyweighted average [8, 35]. Thisworks because the quantitywe are averaging
(see equation (D4)) is positive, and because thenewweight f(t) satisfies ( ) f t T1 on the interval [ ]T0, .

Wewill choose theweight to be aGaussian. Then for any positive g(t), we have

( ) ( )

( ) ( )

( )

( )





ò ò

ò

- -

-¥

¥
- -

T
t g t

e

T
t g t

e

T
t g t

1
d d e

d e . D11

T T
t T T

t T T

0 0

4 2

4 2

2 2

2 2

Here, ( )=e exp 1 .
Employing this weighted averaging, thematrix elements ofM are

( )( ) ( )ò=ab
-¥

¥
- - -a bM

e

T
td e e . D12t T T G G t4 2 i2 2

Sowe get

∣ ∣ ( )( )=ab
- -a bM c e , D13G G T

1
162 2

where p=c e 21 . From equation (D10), we get

( )( )   å
b a

- -a bM c max e . D14G G T
1

162 2

Finally, we arrive at

∣ [ ( ) ] [ ]∣ ( )( )
 

 å
s sá - á ñ ñ

b a

- -a b
t A A

A

c

d

tr tr
max e . D15T G G

2

2
1

eff

T2 2
16

Thefinal step of the proof is to extend the result tomixed states by doing a purification [23], as in [5]. Denote
the system’sHilbert space byS. Thenwe can define a pure state ∣ ( )y ñ0 on ÄS A, with

( ) ( ) =dim dimS A , with the property that the reduced state on thefirst system is [∣ ( ) ( )∣] ( )y y sñá =tr 0 0 0A .
We recover the original evolution ( )s t of thefirst systemby evolving ∣ ( )y ñt under the jointHamiltonian

Ä H . Crucially, the expectation value of any operatorA on the state ( )s t is the same as the expectation value of
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Ä A on the purified state on the joint system. Also,   = Ä A A . Finally, the effective dimension of the
purified system is equal to the effective dimension of the original system,which can be seen from from

[ ( )] [ ∣ ( ) ( )∣]s y y= Ä ñáP Ptr 0 tr 0 0E E . ,

Our remaining task is to simplify things in terms of the density of states. In the sumoverα, we can separate
out the time dependent term, which has ¹a bG G , and evaluate the sumbymaking the density of states

approximation.Wemake the replacement ( )òå = E n EdE , where n(E) is the density of states, so that

( ) ( )

( )

( )

( )

( ) ( )

( )
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ò ò
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a b
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max d d e

max d d e
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4
, D16
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2 2
16

2 2
16

min

max
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max 2 2
16

min

max

min

max 2 2
16

min

max

where ( )=n n EmaxEmax and d is the dimension of the particleʼs state space.We also used ( )ò =E n E dd to get
the last line.

We defineDG to be themaximumnumber of gaps aG of the same size. In otherwords

( )å=
b

=a b
a

D max 1. D17G

G G

Sofinally we get

∣ [ ( ) ] [ ]∣ ( )
 


s s pá - á ñ ñ

+
⎡
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⎤
⎦⎥

t A A

A

c

d
D n

d

T

tr tr 4
. D18T

G

2

2
1

eff
max

It is good to point out that the density of states approximationmisses degenerate energy gaps because they are
measure zero.

Appendix E. Free latticemodels

Wewant to seewhen equilibration occurs for free latticemodels, and also estimate the timescale. A key step is to
prove equilibrationwith respect to single-modemeasurements. A consequence is corollary 2, which implies
equilibration occurs for anymeasurement onK localmodes, providedK is relatively small, and the initial state is
Gaussian and commutes with the total number operator.

Consider the observable (∣ ) (∣ )† f f= ñ ñM a a , which counts the number of particles in the state ∣fñ. By
applying equation (6), we have

[ ( ) ] [ ( )∣ ∣] ( )år y f f= ñá
=

t M n ttr tr . E1
j

N

j j
1

The trick now is to switch to theHeisenberg picture. Then

[ ( ) ] [ ∣ ( ) ( )∣] ( )år y f f= - ñá -
=

t M n t ttr tr . E2
j

N

j j
1

Because of this, we can think of ∣ ( ) ( )∣ ( )f f s- ñá - = -t t t as the state of a particle.
For any fermionic state, or a bosonic statewith atmost one boson inN orthogonalmodes, we have

( )å yP =
=

n . E3
j

N

j j
1

Sowe can think of this as ameasurement (POVM) operator. For a systemof bosonswithmore than one boson in
eachmode, the result can be extended simply by factoring out themaximumnumber of bosons in amode, but
wewill not include this in the following formulas. Thenwe have

∣ [ ( ) ] [ ]∣ ∣ [ ( )] [ ]∣
( ( ) ) ( )

r r s s
s s

- á ñ = P - - Pá ñ
= - á ñP

t M M t

D t

tr tr tr tr

, . E4
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Applying equation (38) in theorem 2,we get

( ( ) ) ( )s sá - á ñ ñ +P
⎡
⎣⎢

⎤
⎦⎥D t

c

d
D c

n d

T
, . E5T G

1

eff
2

max

Thefirst task is to estimate d1 eff . Because themeasurement operator (∣ ( ) ) (∣ ( ) )† f f= ñ ñM a a0 0 is local, the
state ∣ ( ) ( )∣f fñá0 0 is localized. But for free latticemodels, the energy eigenstates are spread out over thewhole
lattice: they often have the form ∣ ( ) ∣

 
f ñ ñp p , where ∣


ñp is themomentum state withmomentum


p , and ∣ ( )


f ñp is

the state of the extra degree of freedom (spin or particle type, for example). In that case, given an energy
eigenstate ∣ ñE we get ∣ ∣ ( ) ∣ fá ñE l V0 2 , where the factor of l appears because ∣ ( )f ñ0 is spread over atmost l
lattice sites. This implies

( [ ( ) ]) ( )å s=
d

P
n l d

V

1
tr 0 , E6

E
E

eff

2 d
2 2

2

where d is the dimension of theHilbert space and nd is themaximumdegeneracy of the energy levels.We also
have that =d sV , where s is the number of orthogonal states at each site. For a spin 1/2 particle, wewould have
s=2. Plugging this into equation (E5), we get

( ( ) ) ( )s sá - á ñ ñ +P
⎡
⎣⎢

⎤
⎦⎥D t l

c

d
D c

n d

T
, , E7T G

3
2

max

where =c c n s3 1 d
2 2.

The last task is to estimate ( )=n n EmaxEmax .

E.1.Density of states for latticemodels
For latticemodels, estimating ( )n EmaxE causes problems because n(E) often diverges. Fortunately, we can
truncate to a slightly smaller energy range, such that ( )n EmaxE is bounded, and the error caused by the
truncation is small.

Let us take a nearest-neighbour hoppingmodel on a line as an example. The corresponding single-particle
Hamiltonian is

(∣ ∣ ∣ ∣) ( )å= ñá + + + ñá
=

H i i i i
1

2
1 1 , E8

i

L

1

wherewe are assuming translational invariance, so the site at +L 1 is identifiedwith site 1. Switching to
momentum space diagonalizes this, andwe get the dispersion relation ( ) ( )=E p pcos , where p=p k L2 , with

{ }Î ¼k L1, , . (Inmaking the density of states approximation, we assume that L is large butfinite.)The density
of states is

( )
∣ ( ( ))∣

( )

p p

p

= =

=
-

n E
L p

E

L

E
L

E

d

d

1

sin arccos
1

1
. E9

2

At = E 1 this is infinite.However, we can truncate the state, neglecting all termswith
[ ( )) ( ( ) ]ÈÎ - -E p p1, cos cos , 10 0 , wherewe choose afixed p= >p k L2 00 0 to be small. This leads to a

constant error in approximation of the state as there is a constant fraction of energy eigenstates with energy in
this range. Defining P0 to be the projector onto the subspace corresponding to the omitted energy range, we get

( ∣ ( )∣ ) ∣( )∣
∣ ∣

( )

 



f f f f
f f

ñ - - ñ = - á - ñ
= á ñ

 P P

P

N
l

L

1

, E10

0 2
2

0

0

0

wherewe used ∣ ∣ ( ) ∣ fá ñE l V0 2 from the previous section to get the last line. AndN0 is the number of states
with energy in the excluded set. Next, we can use that p= =N k p L4 20 0 0 to get

( ∣ ( )∣ ) ( )  f f
p

ñ - - ñ P
p l2

. E110 2
2 0

So the error in approximating ∣fñby a state restricted to the smaller energy range can bemade small by choosing
p0 to be small. Furthermore, we have that

( )
∣ ( )∣

( )
p

=n E
L

p
max

1

sin
. E12

E 0

Crucially, p0 isfixed and does not depend on the number of sites.
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The same ideas apply to other dispersion relations (for example, those arising from translationally invariant
Hamiltonians, possibly in higher spatial dimensions). See figure 5. The basic idea is to exclude regionswhere the
density of states diverges, which corresponds to points where the dispersion relation isflat. The key point is that
the density of states is afixed function, and the fraction of energy eigenstates corresponding to regionswhere it is
large remains constant. (Notice that the trivial Hamiltonian =H constant has a completelyflat dispersion
relation, so that this trick will not work in that case.)But generally for free latticemodels we expect

( ) µn E VmaxE , whereV is the number of lattice sites.

E.2. From single-mode tomulti-modemeasurements
It is possible to relateKmodemeasurements to single-modemeasurements if the state is Gaussian.Wewill only
prove this here for fermionic Gaussian states, as the bosonic analogue is similar.

Corollary E1. Suppose ( )r r= 0 is Gaussian and satisfies [ ]r =N, 0, where N is the total number operator. (This
is still quite general, but it rules out BCS states.) Let M be ameasurement operator acting on K modes on l sites, where
themodes are local, but not necessarily near each other. Thenwe have

∣ [ ( )] [ ]∣ ( )r rá - á ñ ñ ++ ⎡
⎣⎢

⎤
⎦⎥M t M mlK c

D

d
c

n

T
tr tr 2 , E13T

K G2
3 2

max

with ∣ ∣= ¼m mmax r r, , K1 2
, where ¼mr r, , K1 2

are the coefficients ofMwhen expanded in a fermionic operator basis on
the K modes. See equation (E14). And p=c 42 and =c c n s3 1 d

2 2, where p=c e 21 .

Proof.Define ac , with { }a Î ¼ K1, , 2 , to be K2 Majorana operators generating the algebra for theKmodes
thatM acts on.We can choose these ac tomake the covariancematrix simple, as wewill see below.Wewill work
in theHeisenberg picture here, but suppress the time dependence and just write ac instead of ( )ac t .We can
expandM in terms of theseMajorana operators:

( )å=
¼ =

¼M m c c... . E14
r r

r r
r

K
r

, , 0,1
, , 1 2

K

K
K

1 2

1 2
1 2

Using the triangle inequality, we get

∣ [ ( )] [ ]∣ ∣ ∣∣ [ ] [ ]∣ ( ) år r r r- á ñ - á ñ
¼ =

¼M t M m c c c ctr tr tr ... tr ... . E15
r r

r r
r

K
r r

K
r

, , 0,1
, , 1 2 1 2

K

K
K K

1 2

1 2
1 2 1 2

Wechoose the ac such that the covariancematrix, defined by

[ [ ]] ( )rG = c c
i

2
tr , , E16ij i j

Figure 5. For a given dispersion relation of a latticemodel, we need to truncate the state to avoid points where the density of states
diverges. These points correspond to turning points in the dispersion relation. The picture shows an exaggerated version of the regions
wewould exclude for a one-dimensional example, which are the red sections on the p-axis. The number of states in amomentum
windowoffixedwidth scales linearly with L for one-dimensional systems.More generally, the number of states in such a region scales
linearly withV, the number of sites.
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is in block diagonal form [36]

⨁ ( )l
l

G =
-=

⎛
⎝⎜

⎞
⎠⎟

0
0

, E17
n

K
n

n1

with [ [ ]]l r= -c ctr ,n
i

n n2 2 1 2 . LetR be the bit string ( )¼r r, , K1 2 , and define = åw r2 i i. Because the state is
Gaussian, we have [36]

[ ] ( ) ( )r = Gc ctr ... i pf , E18r
K

r w R
1 2

K1 2

where pf is the Pfaffian, and GR is a submatrix ofΓ restricted to the rows and columns labeled by i corresponding
to ri= 1. The Pfaffian is zero if any row or column is zero, so ( )G =pf 0R , unless the stringR only contains
consecutive pairs of ones and zeros, such as ( )¼1, 1, 0, 0, 1, 1, .

The Pfaffian has two useful properties. Thefirst is that l
l

l
-

=⎜ ⎟
⎛
⎝

⎞
⎠pf 0

0
, and the second is that

( ) ( ) ( )Å Å =A A A Apf pf ... pfn n1 1 . For any stringR giving a non zero Pfaffian, we get

[ ] ( )r l=
=

c ctr ... i . E19r
K

r w

n

K

n
r

1 2
1

K n1 2 2

And so

∣ [ ] [ ]∣

∣ ∣ ∣ ∣ ( )







 

   

å å

r r l l

l l l l

l l l l

- á ñ - á ñ

- á ñ + - á ñ

- á ñ + á - á ñ ñ

= =

= = = =

= =

c c c ctr ... tr ...

, E20

r
K

r r
K

r

n

K

n
r

n

K

n
r

n

K

n
r

n

K

n
r

n

K

n
r

n

K

n
r

n

K

n
r

n
r

n

K

n
r

n
r

1 2 1 2
1 1

1 1 1 1

1 1

K K n n

n n n n

n n n n

1 2 1 2

where the third line follows from the triangle inequality and ∣ ( ) ∣ ∣ ( )∣á ñ á ñf t f t . The last line follows from the
triangle inequality, and repeated applications of ∣ ∣ ∣ ∣ ∣ ∣- á ñá ñ - á ñ + - á ñxy x y x x y y , which uses ∣ ∣x ,
∣ ∣ y 1. Sowe need to focus on

∣ ∣ [ [ ]] [ [ ] ] ( )l l r r- á ñ = - á ñc c c c
i

2
tr ,

i

2
tr , , E21n n j i ji

where = -i n2 1and =j n2 .
For each pair ci and cj, we can always define creation operators

†di and
†dj , with

( )
( )

†

†

= -

= +

c d d

c d d

i

. E22

i i i

j j j

Weare not assuming that these creation operators correspond to orthogonalmodes. Using [ ]r =d dtr 0i j ,
which follows because [ ]r =N, 0, we have

[ [ ]] [ ( )]

[ ( )] ( )

† †

† †

r r

r k

= -

= + -

c c d d d d

d d d d

i

2
tr , tr

tr , E23

i j i j i j

i j j i

where { }†k = d d,i j is a constant.We can rewrite this as

[ [ ]] [ ] [ ] ( )† †r r r k= - -c c b b b b
i

2
tr , tr tr , E24i j i i j j

where ( )= +b d di i j
1

2
and ( )= -b d dj i j

1

2
. This allows us to apply corollary 1 to get

[ [ ]] [ [ ] ] ( )r r- á ñ +
⎡
⎣⎢

⎤
⎦⎥c c c c l c

D

d
c

n

T

i

2
tr ,

i

2
tr , 2 , E25i j i j

T

G
3 2

max

where l is the number of sites themeasurement acts on. Putting this all together, we get

∣ [ ( )] [ ]∣ ( )r r- á ñ ¢ +
⎡
⎣⎢

⎤
⎦⎥M t M m lK c

D

d
c

n

T
tr tr 4 , E26G

3 2
max

where

∣ ∣ ( )å¢ =
¼ =

¼m m , E27
r r r

r r r r r
, , , 0,1

, , , , ,

K

K

2 4 2

2 2 4 4 2
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where the sumonly counts terms labelled by consecutive pairs of ones and zeros. Then, for simplicity, we can use
¢m m2K , where ∣ ∣= ¼m mmax r r, , K1 2

, since there are 2K terms that contribute. Itmay also simplify things to
use K ls. This gives

∣ [ ( )] [ ]∣ ( )r r- á ñ ++ ⎡
⎣⎢

⎤
⎦⎥M t M msl c

D

d
c

n

T
tr tr 2 . E28ls G2 2

3 2
max

,
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