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Abstract

Finding equilibration times is a major unsolved problem in physics with few analytical results. Here
we look at equilibration times for quantum gases of bosons and fermions in the regime of negligibly
weak interactions, a setting which not only includes paradigmatic systems such as gases confined to
boxes, but also Luttinger liquids and the free superfluid Hubbard model. To do this, we focus on two
classes of measurements: (i) coarse-grained observables, such as the number of particles in a region of
space, and (ii) few-mode measurements, such as phase correlators. We show that, in this setting,
equilibration occurs quite generally despite the fact that the particles are not interacting. Furthermore,
for coarse-grained measurements the timescale is generally at most polynomial in the number of
particles N, which is much faster than previous general upper bounds, which were exponential in N.
For local measurements on lattice systems, the timescale is typically linear in the number of lattice
sites. In fact, for one-dimensional lattices, the scaling is generally linear in the length of the lattice,
which is optimal. Additionally, we look at a few specific examples, one of which consists of N fermions
initially confined on one side of a partition in a box. The partition is removed and the fermions
equilibrate extremely quickly in time O (1/N).

1. Introduction

Over the past few decades, there has been a major push to understand statistical physics by applying tools from
quantum information. One particularly pressing problem is understanding equilibration. From everyday
experience, we know it to be universal, as anything from a hot cup of tea to a spinning top will relax to a steady
state eventually. See figure 1. However, our understanding of why equilibration occurs and how long it takes
remains incomplete. Progress has been dramatically helped by recent advances in experiments [ 1, 2], where
mesoscopic quantum systems can now be controlled extremely well, providing better and better playgrounds to
probe properties of many-body systems.

In [3-5] it was proved that quantum systems will generally equilibrate with very weak assumptions on the
Hamiltonian (which ensure, for one thing, that the system is not a collection of non-interacting subsystems). But
very little is known about the timescale. This is crucial: if a system equilibrates but the timescale is the age of the
Universe, we will never actually observe it equilibrating in a lab. Unfortunately, the best general upper bounds on
the timescale [6—8] are far too large for even mesoscopic systems. This is a consequence of the generality of the
results. Indeed, models were constructed effectively saturating these timescale bounds [8, 9].

Imposing physical constraints on Hamiltonians and measurements has led to more realistic timescales in
specific cases. In fact, one of the earliest equilibration results was equilibration timescales for bosons evolving via
the Hubbard Hamiltonian in the absence of interactions [10, 11]. More recently, equilibration timescales for small
subsystems interacting with a large thermal bath were found [12]. Along different lines, equilibration timescales
were bounded by averaging over Hamiltonians, measurements or initial states [8, 13—17]. For a review, see [ 18].

Here we will look at N particle systems in the regime of negligible interactions to see when equilibration
occurs. Experimentally, such situations appear often: Luttinger liquids [19] are one example.

Welook at two classes of measurement, which are natural for macroscopic and mesoscopic systems. The
first are coarse-grained measurements. These include the number of particles in some spatial region, the

©2016 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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Figure 1. Microscopically, a cup of tea is never in equilibrium: the molecules are constantly moving around, but we cannot measure
this. What we do measure is the temperature, according to which a hot cup of tea can reach equilibrium (room temperature). This
highlights an important point about equilibration, which is that it only occurs when we account for physical restrictions on what we
can actually measure.

magnetization of fermions on alattice, or the number of particles with different values of momentum. The last
of these arose in experiments with trapped Bose gases [20], which, in the limit of strong point-like interactions,
behave like free fermions. The second type of measurements we consider are few-mode measurements. Such
measurements are crucial in many settings, and include correlation functions and phase correlators, which are
important in ultracold atom experiments.

First we will look at some examples and then we will show that equilibration of N particle systems in this
setting occurs quite generally and appears to be much faster than what general timescale bounds suggest.

2. Equilibration

Because there are recurrences for quantum systems with discrete spectra [21, 22], the naive definition of
equilibration as simply relaxation to a steady state is not sufficient. Instead, we say a system equilibrates if it
evolves towards a fixed state and stays close to it for most times. To define what it means for two states to be close,
we need a definition of distance between states. For this to be realistic, we need to consider what measurements
we can actually do. For example, if we can do any measurement we want on a quantum system, then the distance
between two states is best quantified by the trace distance, which allows us to calculate the maximum probability
of distinguishing two states by doing a measurement [5, 23].

In reality, for systems beyond a few qubits, there will be restrictions on the measurements we can do; for 105
particles, clearly we are restricted to very coarse measurements. With this in mind, a useful measure of distance is
given by the distinguishability between states p and o, which is defined to be [5]

1
Duv(p, 0) = — max »_|tr[pM;] — tr[oM]], (1)
2{M}eM

where M denotes the set of measurements we can do, and { M;} denotes a positive operator valued measure
(POVM)measurement, with the positive operators M; satisfying >, M; = 1. POVM measurements are more
general than projective measurements. This description may be necessary in situations where the measurement
is not repeatable, for example. Nevertheless, a POVM measurement is equivalent to a projective measurement
on the system together with an ancilla [23].

We denote the infinite-time average of p (t) by (p). If Dv(p (¢), {p)) is small most of the time, then for all
practical purposes p (¢) is indistinguishable from its time average (p) most of the time. In that case, equilibration
has occurred.

Another notion of equilibration is equilibration of expectation values [3]. This works as follows. Suppose we
have the observable M and we look at the quantity

ltrlp (HM] — tr[{p) M]|

B0 = M

, (@)

where || M]|is the operator norm of M. This quantity tells us how close the expectation value of M at time #is to its
time average, with the scale set by || M||.

If equilibration is to occur, we require that most of the time A, (t) is smaller than some ¢, with € chosen so
that €|| M| is smaller than our experimental resolution.

2
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There is an important caveat here. Even if expectation values equilibrate, we do not measure expectation
values; we measure POVM outcomes. In the examples we consider where equilibration of expectation values
occurs, the fluctuations in measurement results are unobservably small. This means that the measured value of
M s experimentally indistinguishable from tr[p (t) M ] with extremely high probability. Therefore, equilibration
truly occurs.

3. Gases of bosons and fermions

The key step in getting estimates of the equilibration time for N particle systems is equation (6) below, which will
allow us to equate A (¢) to the distinguishability for a single particle.

First, it will be useful to introduce some notation. Let H be a single-particle Hilbert space, and let |i) denote
an orthonormal basis. Then we can define creation operators a f, acting on a fermionic Hilbert space, that create
fermions corresponding to these states. Equivalently, we may say a;' creates a fermion in mode i. The fermionic
Hilbert space is spanned by states with varying numbers of creation operators acting on |0), the empty state. To
avoid confusion, any state vectors written as kets are in the single-particle Hilbert space H, with the exception of
|0), which represents the empty state in a fermionic (or bosonic) system.

The creation operator that creates a particle corresponding to the single-particle state [¢)) = >, ¢li) is

a’(|Y)) = 32, cia;. Suppose we have a single-particle Hamiltonian with discrete spectrum

H=YEE)(E 3)
E

where Elabels the energies. There is a corresponding fermionic Hamiltonian, given by

Hp =) E a'(IE))a(|E)). (C))
E

For any single-particle state |1)), we also have
e itat (|y))eit = af (e”]yp)) = a' (1 (1))). )

The situation for bosons is similar. The only difference is that, while fermionic creation and annihilation
operators obey the canonical anti-commutation relations, bosonic creation and annihilation operators obey the
canonical commutation relations.

This is the basic idea behind second quantization, which allows one to take a single-particle system and
upgrade it to a multi particle system [24]. Our goal here is to go in the opposite direction and to study
equilibration of many-particle systems by moving to the single-particle picture. Let us now give a useful
simplification for free bosons or fermions.

Theorem 1. Takea state p(t) = U () p(0) U (t) of N non-interacting bosons or fermions and a measurement
operator counting the number of particles in some orthogonal modes M = 3. b b, where b; = a(|¢,)). Then, there
exist orthonormal single-particle states |1, (t) ), evolving via the corresponding single-particle Hamiltonian, such that

tr[p HM] = Znutr[wa (t)P], (6)
where n,, are occupation numbers addingup to N, P = Y |¢.) (¢, and 1o, (1) = |0, ()) (¥ () |-

This is proved for any N particle state in appendix A. Here we will just prove it for the simpler case of an
initial state with Nbosons or fermions a, ™ ... a,fk”k|0>, where a] = a'(|4,)), and |¢),) are some orthonormal

single-particle states. In this case, the states |t,) mentioned in the theorem are already given.
Proof. Expand
a'(l¢)) = b = > ciaal, )
«
where ¢; ., are complex numbers. Then
tr[p ()b bil = > Icia

a
= Z”alci,alza (8)
a

2tr[p(0)a, an]

where #, is the number of particles in mode av. Next, we use ¢; , = {aq, bf} = (1,|¢,) for fermions, or
Cio = [aa> b1 = (1,]¢;) for bosons, to get
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tr[p(0) b:r b;] = Z”a <¢a|¢i> <¢i|¢a> . €
Therefore

tr[p (M= > "o (Yul PlYba)

= natr[v, P, (10)
where P = 3|9, (¢,]. To incorporate the dependence on time, we use a,, (1) = U (t)a, U’ () and
tr[p(0)atas] = trlp®a(Das(®)]. an
The end result is
U’[P(t)M] = Z”u’tr[wa () Pl. (12)
O

Notice that linearity of the time average, together with equation (6) implies

tr[(p)M] = > natr[{¢a)Pl. (13)

3.1. Coarse-grained measurements

We can apply this to Ay (¢), noting that for the applications we are interested in || M|| = N when restricted to
the N particle subspace. This occurs, for example, when we are measuring the particle number in a region of
space. Put another way, we take the experimental accuracy of our measurements to be at best eN, where € is
some very small constant. For equilibration to occur, we need Ay, (¢) to be small compared to e most of the time.
We get

[tr[p()M] — tr[{p)M]|
M|

= |tr[o(H)P] — tr[ () P]]|

= Dp(c (1), (7)), (14)

where o (t) = %Z Ui (©) ) (¥ (t)|is asingle-particle state. In words, the N particle problem has been replaced by
asingle-particle problem in terms of the distinguishability given a single measurement with projectors P
andl — P.

Now recall that equilibration of expectation values does not necessarily imply that equilibration will be
observed. For the examples we look at, the fluctuations in the observed value of M, given by
(tr[p(H)M?] — tr[p(t)M]*)"/2, are bounded above by VN, which is proved in appendix B. In fact, a large class
of fermion systems have time-averaged fluctuations bounded above by /N, as seen in appendix B. For large
numbers of particles, (comparable to 10*%, for example) /N is small compared to our experimental precision
€N, and the fluctuations are not practically observable. Even for dilute gases with O (10*) particles, JN ~ 100,
so the fluctuations are of the order of 1% of the total particle number, which is still quite small.

3.2. Few-mode measurements
We are not just restricted to coarse-grained measurements. We can also discuss measurements involving a few
modes. These could be single-site densities or correlation functions in the setting of lattice models. Or they could
be phase correlators tr[p (t) a; a;], which are typically inferred from time-of-flight measurements [25].

We will return to this in section 6.2, where we will see that for a large class of lattice systems any measurement
on a small number of modes (small compared to the lattice size) will equilibrate. And the timescale will be
relatively fast.

4. Example I: particles in a box

Suppose we have a one-dimensional box with a partition at the halfway point (this can be extended to a three-
dimensional example as shown in appendix C). On the left of the partition we have N fermions or bosons at zero

temperature. We open the partition at t = 0, and the observable we focus on is M, which counts the particles in
the left half of the box.
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Figure 2. Equilibration of a gas of particles in a box. The initial state corresponds to N fermions or bosons trapped on one side of a
partition, which is removed at t = 0. The measurement we consider counts the number of particles on the left side of the box. Above is
aplot of the resulting single-particle distinguishability for the one-dimensional example with N = 10 or 100 fermions and any
number of bosons. Time is measured in units of the recurrence time, though for the initial state here there is another recurrence at half
the recurrence time. In general, for fermions the equilibration time is O (1/N). For bosons, the system does not equilibrate, as can be
seen from the figure. These plots were generated using equation (20).

Using equation (14), we can replace this N particle problem by a single-particle one, so

tr[p(H)M] — tr[(p) M]
N

= Dp(a (®), (o)), (15)

which is plotted in figure 2. Here o (t) is a state of a free particle in abox, (o) is its time average and Pis the
projector onto the left-hand side of the box.

4.1. Fermions
First, let us look at the case where the particles are fermions. The initial state of the N fermion system has all
fermions in the left half of the box at temperature zero. This means that the initial single-particle state o (0) is an
equal mixture of the lowest N energy levels of a particle trapped in the left half of a box. This can be seen from
equation (6).

The energy eigenstates for a particle in a box are given by

|n) = fode\/% sin(ﬂTnx)lx% (16)

where n > 01isan integer and L is the length of the box. Similarly, the energy eigenstates for a particle trapped in
the left half of the box are given by
Lz 4 27kx
= dx,|— sin x), 17
) = . ﬁ_(L)H (7)
where again k > 0is an integer.

The initial state of the single-particle system is

N
o (0) = = S ) (4l (18)
Nk:l

with matrix elements o;,,, = (1|0 (0) |m). Similarly, the matrix elements of the projector onto the left half of the
boxare B, = (m|P|n).

Let uslook at the distinguishability to see if the system equilibrates. In figure 2, the distinguishability as a
function of time is plotted. From the plots we can see that, as the number of fermions increases, the average
distinguishability gets smaller. Notice that particles in a box have an exact recurrence time of Tr.. = 27/v since
the energy levels are E,, = vn?, where nis an integer greater than zero, and v = 7%/2mI?. This is because all
phases of density matrix elements in the energy basis e 1E==En)! are 1 at t = 27 /1. Asin [26], this means that we
need only study the system over the interval [0, Tr..]. In fact, with the particular initial state below, a recurrence
actually occurs at Tpe./2.




IOP Publishing NewJ. Phys. 18 (2016) 073014 T Farrelly

Evaluating the distinguishability at time ¢, we get

DP (0 (t)> <U>) = Z eii(n27mz)w0nmpmn

n=m

=| > cos[(n? — m*)vt] GumPn |, (19)

n=m

where we used the fact that o,,, and P,,,,, are symmetric under swapping n and m because all vectors and operators
here are real.
In appendix C, we see that the distinguishability can be written as

N
Dp(o(t), (o)) = 2 Z zjcos[(n2 — 4k ut]f (n, 2k)? |, (20)
N | oddi=1
where
4 4k?
f(”» 2k)2 = ?m: 21
for n = 2k.

For the system to equilibrate, we need it to spend most of its time indistinguishable from its time-average
state. We see in appendix C, that the time-average distinguishability satisfies (Dp (0 (¢), (o)) = O(In(N)*/N).
Therefore, most of the time the system state is indistinguishable from its time average, provided N'is large.

We can also say something about the timescale. We see in appendix C, that the timescale for equilibration is

atmost
1 2mI?
Toq = = . 22
9" Nav  Nar? (22)
Here ais a small constant that we choose such that the distinguishability at t = T is small:
ma log(N)?
Dy(o (T, (o) < 5+ O(gT : (23)

which is also derived in appendix C. Interestingly, the timescale decreases with increasing particle number.

4.2.Bosons
The situation for Nbosons is simpler. As they are initially at zero temperature, all N bosons are in the ground
state. The corresponding initial single-particle state o (0) is just the lowest energy state for a particle trapped on
the left of the partition. This does not depend on N. Bylooking at the plot of the distinguishability in figure 2, it is
clear that this system does not equilibrate because the distinguishability is large for most times.

So the behavior of Nbosons is very different from the fermion case. This is because of the exclusion
principle: in the fermion case, the fermions had to occupy different energy levels and so the corresponding
single-particle state was spread out over many energy levels. This is not the case for bosons at zero temperature.

5. Example II: bosons after a quench

For our second example, suppose we have Nbosons at zero temperature in a one-dimensional harmonic trap
with frequency wy. We will consider what happens after two different quenches.

5.1. Quench to a square well potential
Suppose the Hamiltonian changes suddenly so that the bosons are then confined in a deep square well potential,

which we can idealize as a box corresponding to the interval [— % , %] Let the measurement operator M count

the number of bosons in the central region of the box [— L ﬂ Applying equation (14), we see that

4)
tr[p(H)M] — tr[(p) M]
N

=Dp (1), (), 24)

where 1 () = |1 (¢)) (¢ (¢)|is a pure state of a single-particle and Pis the projector onto the central region of
the box.

The equilibration timescale has already been estimated for this single-particle system in [26]. First, the
infinite-time average of Dp (¢ (¢), (1)) is numerically shown to scale like

6
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0.79

1 | 8w

(Dp(p (1), (¥))) ~ [— —] ) (25)
L\ mwy

where it was assumed that the width of the initial wavefunction is small compared to the length of the box,

meaning o = 1/ M < L. So for sufficiently narrow potentials (or sufficiently large boxes), equilibration

occurs. Furthermore, the timescale for equilibration is shown to be [26]

L [m
Tog = — |—. (26)
s 2(4)0

It would be interesting to observe this experimentally. In fact, it may be feasible to create square-well
potentials in practice: in [27] a three-dimensional cylindrical potential was created to trap a Bose—Einstein
condensate, so creating potentials with sharply defined walls may be possible.

5.2. Quench to a weaker harmonic trap
Recent experiments have followed the dynamics of Bose gases after a different quench to that of the previous
section. By quickly changing the strength of a harmonic trap, oscillatory behavior was observed [28]. Such
behavior occurred in both the strongly and weakly interacting regimes. For our purposes, the latter of these
regimes is relevant and corresponds to an ideal Bose gas in one-dimension. In [28] the ratio of initial trap
frequency wy and post-quench frequency w was close to one: wy/w =~ 1.3. Here we see equilibration when w,/w
is much larger than one.

For our observable, let us take the number of bosons in the spatial region [ —/, /]. Again, using equation (14),
we can replace this N particle problem by a single-particle one, so

tr[p(H)M] — tr[(p) M]
N

= Dp (4 (1), (¥)), @7)

where the Pis the projector onto the region [, []. The distinguishability is
Dy (1), (¥)) = |tr[Py ()] — tr[P(¥)]]. (28)

So we need only see if tr [Py (t)] spends most of its time close to its time average.
The problem is simplified by using the propagator for a harmonic oscillator with frequency w, given by [29]

B mw ~ mw((x® + y*)cos(wt) — 2xy)
Koy, t) = \ 27i sin(wt) exp[ 2i sin(wt) ]) 29)

which leads to the expression

!
tr[Py ()] = fdy1dy2 f;ldx w*(}ﬁ)K*(xa N> HK (x, V> t)¢(y2) (30)
As 1 (x) is a Gaussian wavefunction, the y; and y, integrals are straightforward, leading to
ILJa(t) 5
wlPp ] = — [ dee, (31)
VT J-1fa®
where
muwoy
a(t) = , 32
® 7% sin?(wt) + cos?(wt) (32)
with v = wp/w. Next we use the approximation for the error function [30]
2 * 2
erf(x) = —f dt e™!
T Jo
() 1 S (33)
~ son(x — exp| —x*LT——|,
& P 1+ bx?
where the maximum error for any xis around 0.00012, and b ~ 0.147. The result is that
[Py ()] lzi + a®bF 3
tr )] ~ |1 —exp| —a(t)Pl——|. 4
0 (1) p| e (34)

Notice that there are four independent parameters that matter: [, which controls the width of the interval the
measurement looks at; w, which is the frequency of the trap after the quench; v = wy/w, which is the ratio of
trap strengths before and after the quench; and mwj, which determines the width of the initial state. A natural

7
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t/T

rec

Figure 3. Equilibration of bosons in a harmonic trap. Initially we have N'bosons in the ground state of a harmonic trap with frequency
wy. The trap strength is then quenched to w. The measurement we consider counts the number of bosons in a window of width

4/ /mw, . Here we have plots of the corresponding single-particle quantity tr [Py ()] for different values of v = wy/w. The value

7 = 1.3 corresponds to that from [28]. We see oscillatory behavior for -y approximately between 4 and 10. We see that, as ybecomes
larger, tr [Py (¢)] is small most of the time, and the system equilibrates. These plots were generated using equation (34).

starting pointis to choose I so that the initial state is almost entirely contained in [—1, ], so we can
fix > = 4/(muwy).

As we can see from figure 3, as ybecomes bigger and bigger, tr[Pi) ()] spends most of its time close to zero.
So for very large v, equilibration occurs. In fact, we can see directly from equations (32) and (34) that, as y tends
to infinity, tr[Py ()] tends to zero. This holds for all times, except when wt = nm, withn € Z.

In [28], oscillatory behavior was seen at y = 1.3. Here, this value of 7y does not lead to any significant
departure from the initial state, as seen in figure 3. The reason for this difference is that in [28] the initial states
were at non-zero temperature. Here, we are initially at zero temperature, and we see oscillations at higher values
of .

To estimate the equilibration time when equilibration does occur, we estimate how long it takes for
tr[Py (t)] toreach p < 1. Using equation (34) and log(1 — p?) =~ —p?, we get

L amb

a(t)PZ o~ 35
® 1+ a()bl? (33)
Since p is small, this requires a:(¢)1? to be small. Using the earlier choice I = 4/(muwy), we get
apd - 1o/m ~ p2., (36)
7 y?sin?(wt) + cos?(wt)
For large , this is satisfied at
Ty~ — ! (37)

i T ywp - JTwep

where we assumed that t was small compared to 1 /w, and used sin(x) ~ x for small x.

6. Equilibration in general

The examples we looked at were encouraging, but a pressing question is whether one can say anything more
general. The answer is actually yes: here we will see general estimates for the equilibration timescale of gases with
negligible interactions. The starting point is again to replace the N particle problem by a single-particle problem.
Then we can use a single-particle equilibration result, which builds on previous results [6—8].

First, let us state the single-particle equilibration result. We will need to take account of degenerate energy
gaps. These occur when two different energy gaps are equal: E; — E; = Ex — Ej, when E; = Eiand E; = E;. The
degeneracy of the most degenerate gap is denoted by Dg. If all gaps are different, D = 1. Fora particle in abox
there are some degenerate energy gaps, though the addition of an inhomogeneous potential V(x) would
generally change this. The harmonic oscillator also has many degenerate energy gaps. Typically, however, these
are very special cases, and we expect most Hamiltonians would have few degenerate energy gaps.

8
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Theorem 2. Suppose we have a single-particle system with a d-dimensional state space. Let A be an operator with
operator norm ||Al|, and let o (t) be a state unitarily evolving via a Hamiltonian H. Denote the infinite-time average
of o (t) by (o). Assuming that we can make the density of states approximation, meaning we replace Y by
f dE n(E), where n(E) is the density of states, we get

(lrlo(OA] — (o) AlP)r _ o

nmaxd
< Dg + ¢ , 38
AP deff[ creTy ] (38)

where (-)r denotes the time average over [0, T1, and we have constants ¢, = e/7 /2 and o, = 4J7. Also,
Nmax = maxg n(E), and the effective dimension of the state o (t) is defined by

L S lo P12, (39)

dee G

where Py is the projector onto the energy eigenspace corresponding to energy E.

Equilibration of the expectation value of A occurs provided the right-hand side of equation (38) is sufficiently
small. As T — 00, equilibration is guaranteed if q Dg/d g < 1. The effective dimension d.g measures how
spread out over energy levels the initial state is. If d. is very large we expect equilibration to occur.

But we can also estimate the timescale: the equilibration timescale can be bounded above by the smallest T
such that the right-hand side of equation (38) is small. In other words, when equilibration occurs, we get an
upper bound for the timescale:

Nax d

Toq o .
defr

(40)
The main task now is to use this single-particle equilibration result to find timescales for N particle systems.

6.1. Coarse-grained measurements

Let us start with coarse-grained measurements. We will see that equilibration of coarse-grained observables

generally occurs much quicker than what we would expect based on previous timescale bounds from [6, 8].
By mapping an N particle problem to the single-particle picture via equation (14), we want to bound

< trlp(HM] — tr[{p) M]

- >T = (Dp (o (1), (0)))r
= (ltr[o(t)P] — tr[ (o) P]|)r

<o )P] — [ (o) PD)r

[} nmaxd
—| Dg + ¢ R 41
\/deff[ crRTT ] “n

N

where the third line follows from concavity of the square root. The last line follows from the result for single-
particle equilibration from the last section, namely equation (38).

To see whether equilibration occurs atall, let T — oo to get the infinite-time average. And so we must
estimate é. Defining N to be the operator that counts the number of particles in energy level E, we get

L~ S urlopay?

d eff E

1
=— (tr[pNg])?
N2 ZE: £

= Z(@)z (42)
E N '
1

where ng = tr[pNg]. Getting the second line used equation (6) from theorem 1. So we see that y
ff

is extremely
smallif the state is spread over many energy levels.

Consider N fermions or the special case of N'bosons in orthogonal modes. Then the resulting single-particle
density operator o () is an equal mixture of N orthogonal states. In that case, 1 /dg < %ZE ng < ng/N, where
nq is the degeneracy of the most degenerate energy level. As a result

tr[p(t)M]—ter)M]‘ o [anaDg 43)
N = N

So the bottom line is that for the coarse measurements considered here, equilibration occurs very generally
despite the fact that these are non-interacting bosons or fermions.
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We can also say something substantial about the equilibration timescale.

We can always restrict our attention to d energy levels of the corresponding single-particle system, which
may require an energy cutoff. And suppose d is bounded above by a polynomial in N. This depends on the state
o (t) and so ultimately on the state of each of the N'bosons or fermions. For example, for the calculations with
fermions equilibrating in appendix C, we effectively took a cutoff with d = O (N). In fact, for the bosonic
examples, d was independent of N. For lattice systems this is particularly natural if there is a constant density of
particles, then d oc V oc N, where Vis the number oflattice sites.

Next, we estimate #,,,,,, which is often polynomial in d, and hence N. For example, 1., ~ d° for a system
whose energy levels go like E,, o< 1/n?, similar to the energies for bound states in a Coulomb potential. Notice
that this is a system we would expect to have very many small gaps. Conversely, when the energy level spacings
grow with d we would expect better behavior. For example, when E,, o< 12, one gets f,x ~ 1.

Putting this all together, if equilibration occurs, the timescale is typically

T.q € ONY) (44)

for some positive integer k. This is far better than the bounds of [6—8], which were exponential in N for physical
systems. Of course, how #1,,,,, scales with d and how d scales with N depend on the system in question, but neither
of the requirements above appear unnaturally restrictive.

Itis also interesting that each of [15-17] found equilibration timescales that were polynomial (or faster) in
the number of particles. In contrast to the setting considered here, these results involved averaging over
Hamiltonians with respect to the global unitary Haar measure. Because of this, it is not clear how to interpret the
implications of [ 15—17] for equilibration of local Hamiltonian systems. Nevertheless, [ 15—17] do say something
about equilibration timescales of fully interacting models, which is very interesting.

6.2. Local equilibration
We can also look at equilibration of non-interacting lattice models. This would include the free superfluid
regime of the Bose—Hubbard model, for example. We consider local few-mode measurements, where few means
that the number of modes is small compared to the number of lattice sites. This setting includes all
measurements in some small region of the lattice or correlation functions over long distances. It also includes
phase correlators, which are important in ultracold atom systems.

We will state the single-mode result first. This relies on the Hamiltonian being some form oflocal (not
necessarily nearest-neighbour) hopping Hamiltonian: the tight-binding model is one example.

To make the formulas easier to read, we will assume that the maximum energy level degeneracy ng and the
number of modes per site are both one. In the proofs of these results in appendix E we allow other values of these
quantities.

Corollary 1. Take a free lattice model, and assume we can make the density of states approximation, as in theorem 2.
Let M = a' (|¢))a(|®)), where|p) is a single-particle state localized on at most I sites (which need not be near each
other). Then we have

(lte[p(HM] — e[ (p)M]])r < l\/q[% + cz%], (45)

where d is the dimension of the corresponding single-particle Hilbert space, and we have constants ¢; = 4</7 and
a = (e/7 /2). Also, . = maxg n(E), where n(E) is the density of states.
For bosons, we needed to assume that the initial state has at most one boson in each mode. Otherwise, the same
result holds, but with an extra factor on the right-hand side given by the maximum number of bosons in a
given mode.

This is proved in appendix E. Again, we see equilibration provided the right-hand side of equation (45) is
small. We will estimate the equilibration timescale below corollary 2. First, let us discuss some consequences of
this result.

A simple consequence is that phase correlators equilibrate. Phase correlators are expectation values like
tr(p(t)a ; ay], where X and ¥ denote lattice sites. (There may be several modes at each lattice site, but for
simplicity of notation, we have assumed that there is just one.) Using

1 . .
ajay = —(ddi — djd, — idjds + id}dy), (46)
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where

dy = %(ﬂz + ay)
dy = %(QE — ay)
ds = %(ﬂz + iay)
dy = —(az — iay), (47)

we can express tr[p (t)ala y]in terms of single-mode densities. And so via the triangle inequality, we can upper
bound the time average of [tr[p (t) a;ay] — trp (t)a; ay]|using corollary 1.

Interestingly, these results apply to a vast range of initial states p (0). This means that one could perform a
huge variety of quenches to a free lattice system, and the equilibration results here and timescale bounds (which
we will discuss below) apply.

Before discussing timescales, we can build on corollary 1 further, getting the corollary below, which is proved
in appendix E.2. We only prove the fermionic result, as the bosonic result is essentially the same.

Corollary 2. Take a free lattice model, and let M be an operator on | sites. Suppose the initial state p (0) is Gaussian
and satisfies [p(0), N] = 0, where N is the total number operator. (This is still quite general, though it rules out BCS
states, for example.) Then we get

(ltrlp(OM] — trl(p)M1])r < z’“mzz\/q [% +o ”;“], (48)

where d is the dimension of the corresponding single-particle Hilbert space, and we have constants ¢, = 4/ and
a = (ev7 /2). Also, Ny, = maxg n(E), where n(E) is the density of states. Finally, m is the maximum coefficient
of M when M is expanded in an operator basis of Majorana fermion operators.

Typically m will be order one, which is the case for correlation functions, for example. Therefore, as long as
the number of lattice sites that the measurement acts on is quite small, equilibration will also occur for free lattice
systems.

Furthermore, we can use these results to upper bound the equilibration timescale. From corollary 1 and 2,
the upper bound for the equilibration timescale scales like Toq o< 72,y . So it remains to estimate 71,,,. In
appendix E. 1, we show that for these lattice models, we can effectively take 71,,,,x o< V, where Vis the number of
lattice sites. Therefore, we get

Toq x V. (49)

In particular, for one-dimensional systems, we get T.q o< L, where L is the length of the system.

The scaling with system size is quite significant. Previous bounds [6, 8] were exponential in the system
size, whereas here we get something linear. Furthermore, in the one-dimensional case, the scaling is optimal.
This can be seen from Lieb-Robinson bounds [31], which imply that the time it takes for information to
propagate appreciably from one region to another increases linearly with the distance between the regions.
So in one-dimension Ty oc L is the best we can hope for. The only possibility for better scaling is if one
restricts the set of initial states under consideration. A good example of such results for special states
appearedin [10].

7. Discussion and outlook

Finding the timescale involved in equilibration is an important problem in physics, especially in light of
recent advances in experiments with mesoscopic quantum systems [1, 2]. The timescale results here required
us to restrict our attention to a subclass of measurements, which are physically sensible for macroscopic or
mesoscopic systems. We focused on the regime of negligible interactions, which includes Luttinger liquids
and the Hubbard model in the free superfluid regime. First, we found example equilibration timescale
bounds for gases of bosons and fermions. We also saw that equilibration occurs quite generally in this setting
of very weak interactions and is very fast compared to the best known general bounds on the
equilibration time.

From here the outlook is promising: a natural next step is to extend these results to quasi-free systems, where
the Hamiltonian is quadratic in terms of creation and annihilation operators but does not conserve particle
number. Such models arise in the theory of superconductivity. Other options are to extend the results to
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interacting models via perturbation theory or to look at equilibration in terms of fermionic or bosonic
generating functions [32].
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Appendix A. Proof of theorem 1

Theorem Al. Takeastate p(t) = U (t) p(0) U (¢) of N non-interacting bosons or fermions and a measurement
operator counting the number of particles in some modes M = ¥, b b, where b; = a(|¢;) ). Then there exist
orthonormal single-particle states |1, (t) ), evolving via the corresponding single-particle Hamiltonian, such that

tr[ﬂ(t)M] = Znatr[wa (t)P], (AD)

where n,, are occupation numbers addingup to N, P = 3_,|¢,) (¢, and 1, (t) = |1ha (1)) (¢a (1) .
Proof. There exists a complete set of independent annihilation operators a, = a (|1}, ), such that
tr[p(0)a ag] = 0 if o = 3. (A2)

To see this, take any complete set of independent annihilation operators d,,. The matrix tr[p d,| dgl = Cupis
Hermitian. So there exists a unitary U, 3, such that in terms of

al =Y Uspd}. (A3)
Io]

tr[p (0) a(‘; aglis diagonal. So it makes sense to work with the a,,, which determine the states |/, (0)) = [1),)
mentioned in the statement of the theorem via a,, = a (|}, ). Next, expand

a'(lg)) = b = > ciqal, (A4)
where ¢; ,, are complex numbers. Then
tr[p(0)b] bil = > lci olPtr[p(0)a] a,]
= Znalci,alz > (A5)

where #,, is the number of particles in mode cv. Next, we use ¢; , = {a,, bf} = (1| ¢,) for fermions, or
Cia = [aa> b1 = (1,]¢;) for bosons, to get

tr[p(0) b,‘T bi] = Zna <7/}nc|¢z> <¢z|7/}nc> . (A6)

Therefore

tr[p(O)M] = o (Yol Pltha)

- Znn{ tr [wop]: (A7)
where P = 3".|¢.) (¢,]. For astatelike a; ... a;|0), the first N occupation numbers 1, are one, so we get
N
wrlpOM] = 3 tr[¢h P, (A8)
a=1
To account for the dependence on time in the formula, we use a (|t (t))) = a,(t) = U (t)a, U'(t) and
tr[p(0)alas] = trlp(Hal (H)ag(1)]. (A9)
The end result is
trlp(OM] = Y natr[a (D P]. (A10)
O
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Appendix B. Fluctuations
It will be useful to prove the following lemma.

LemmaBl1. Leta] = a'(|1),)) bea complete set of creation operators with { a,, a;; } = 8up- And suppose we havea

state a; ... aj;|0) with corresponding density operator p. And take a measurement operator counting the number of
particles in some modes M = 3, b b;, where b; = a(|¢,)). Then, we have that

tr[pM?] < tr[pM]* + tr[pM] (B
for fermions. And for bosons, we have
tr[pM?] < tr[pM]* + tr[pM] + N. (B2)
Proof. First
tr[pM?] = > trlp (b 0i) (b] by)]. (B3)
ij
Each term can be written as
trp (b b) (b b)] = trlp b b bibj] + Strlp b} bil, (B4)

which holds for bosons or fermions. To make sense of this, we write
b = > Cia al, (B5)
(e}

where ¢; , are complex numbers. It will turn out below that only terms with « € {1,...,N} = V contribute.
Now we use the identity

(Olay ... a(alag)a; ... al|0) = up. (B6)
to get
tr[ﬂ bini] = Z Ci,(xcfﬁéaﬂ = Zlci,a|2~ (B7)
o,BeV acV
For fermions, we use the identity
<O|aN | (a; a;’;av as)alf a]if|0> = [6a£65'y - (Sa'y 6@5] (BS)
to get
tr[,ObJT bibibjl= > cj,ac,-,gcfvc;'fg[éagégh/ — 00y 03]
o, f,7,e€V
= 2 lalleisl — (Gl Cipcip)]. (B9)
a,BeV

Now, using ¢j , = {b]T, a,} = (1/Ja|¢j>,we get
ZC]‘,QC;L = <¢1|Q|¢]>’

aey

where Q = 3 |¢0) (Y0l (B10)

acV

Then the second term in equation (B9) becomes

Y. (Gacl) Cincls) = 1{61Qle) I, (B11)

a,BeV

which is positive. Therefore

trp bij,Tbibj] < > leialleg sl

a,BeV
= tr[p b/ b;]tr[p b]T b;l. (B12)
Putting everything together gives
tr[pM?] < tr[pM]* + tr[pM]. (B13)
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For bosons, the result is similar, but the identity in equation (B8) is replaced by
(Olay ... a1 (a, aﬁ%aw a)a; ...aj|0) = [8,c 88y + 8y 03] (1 — bap). (B14)
Because of this, following similar steps to those used to get equation (B9), we get

trp b;b:bibj] < D lejalPleisl? + [{¢,1Qle;) I (B15)

a,BeV

The extra term arising in our expression for tr[pM?] is

Z| <¢,|Q|¢]> = Z<¢;|Q|¢]> <¢j|Q|¢i>
i

]

= tr[PQPQ] < N, (B16)

where P = 3 /|#,) (¢,] and we used rank(Q) = N. O
A corollary of this is that for pure states of bosons or fermions of the form g ... a;|0), the fluctuations satisfy

oy = tr[pM?] — tr[pM} = O(N), (B17)

where Nis the number of fermions or bosons in the system. Furthermore, one can show that for Nbosons in the
same mode, one also gets o3, = O(N).
To say something more general about the fluctuations in fermion systems, we can also prove the following result.

Theorem B1. Given a non-interacting N fermion system with corresponding single-particle Hamiltonian that has
no degenerate energy levels and no degenerate energy gaps, then the time-average fluctuations satisfy

(om(p(1))) < VN, (B18)

when the expectation value of M on any infinite-time average state of N particles is independent of the initial state.
Examples where this is true include the gases discussed in the examples in the main text and systems where M counts
the number of particles in a spatial region, provided the Hamiltonian is such that (M), the time-average observable in
the Heisenberg picture, is proportional to the total number operator.

Proof. Key to this result is the following inequality
(om(p (1)) < {(tr[p()M?] — tr[p(t) M)
= Jul(p)M?] — (tr[p()MP)

(

<Ju{p) M — t[(p) MT
=om((p))s (B19)

[
[

where we used concavity of the square root in the first line and convexity of f (x) = x? to get to the second last line.
So it remains to calculate

o ((p)) = tl{p)M?] — tr[(p) MF. (B20)
As (p) is the infinite-time average of p (t), it follows that
(p) = P wes (B21)
E

where pris a normalized probability distribution and wy, is a state with support only on the energy eigenspace
corresponding to energy E. Here Elabels the energy of the N fermion system. So E is a sum of N single-particle
energies. Let us write the creation operator that creates a fermion with energy E; as a.”. Now, the support of wg is
spanned by the states

al..aj0), (B22)
with E; + --- + E;, = E. Therefore, given two different configurations with energy E, {1, ...,in} = {j},...» jy}

(Olaiy - aj, (aga‘g)a;l ...a]TN|0> =0 (B23)

because single-particle energy levels are non-degenerate. This implies

trlwg alasl = > q(Htr[P(i)aag), (B24)

?ECE
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where i is short for {i,...,in}, Cgdenotesall {7, ...,iy} suchthat E; + --- + E;, = E, q (?) isanormalized
probability distribution such that 3 ;. g (i) = land P (7 )is the projector onto aiT aiTN |0). Similarly, itisa
consequence of (single-particle) non-degenerate energy gaps that
trlwg alala,a.] = >4 () te[P(i)a] a;g a,a.]. (B25)
‘ ?E Cg
Now we can use lemma B1 to upper bound
[ {(p) M= 3" pp q(Dtr[P ()M
EieC
<D pe g P@OMP + w[P(MD). (B26)

EieCy

Next, we use tr[wM] = m independent of the state w for fixed total particle number N, when wis a time-average
state, a special case of whichis w = P (i ). So

tr[{(p)M?] — tr[{p)M]* < m*> + m — m? = m. (B27)

Finally, using the fact that the expectation value of M is bounded above by N on the N particle subspace leads
to

om({p))* <N (B28)

and therefore
(om(p()) < VN. (B29)
O

Appendix C. Calculations for fermions in a box

Equation (19) gives the distinguishability at time ¢

Dp(a (1), (o)) = | Y cos[(n* — m*)vt] G Bun |. (C1)

n=m

And from equation (18), we have
N

S % S (nltby) (alm) (mlPln). (€2)

k=1
Evaluating the inner products, we get
(m|P|n) = f (m, n)
(nlti) = N2f (n, 2K), (C3)

where

n—m n+m

1 |:sin[(n - m)%] sin[(n+ m);]:| £
— — 1L n m,

f(n,m)y=4" (C4)
1 .
7 if n =m.
Notice that, if both x and y are even or odd, unless x = y, then f (x, y) = 0. The net result of this is
N
OumBpn = i Zf(n) Zk)z (C5)
N3
if m = 2k and nis odd and similarlyif n = 2k and m is odd. All other terms are zero. Then subbing this into
equation (C1), the distinguishability Dp (o (¢), (o)) becomes
) N
= | 3> cos[(n? — 4kH)vtlf (n, 2k)* |. (C6)
N n oddk=1
Furthermore, using sin(rm/2) = (—1)"~D/2, which holds for odd r, we get
2
IO — (©7)

72 (n? — k)2

for n = 2k.
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Next, we can find a bound for the equilibration time. First, we make the substitution n = 2k + I, noting that
I > —2ksincen > 0,and Imustbe odd. It follows that f (2k + I, 2k)? is peaked around small values of ], so we can
focusontermswith / € S, where S contains all odd integers from — K to K. To quantify the resulting error, we use

2
4 4k <4

2k + L2k = ————— < —. C8
f ) w2 12 (4k + 1)? w22 €8
The sum of all terms with I ¢ S can be bounded above by
YoofQk+1L2k2< Y
odd 1¢S odd 1gST l
—K-2 00
4 4
< Y =5+ —
[y RT o . K+277212
8 X1 1
e
Tkl T\ -] !
8 1
= — . C9
2 K+ 1 (9
So neglecting terms corresponding to ! ¢ S results in an upper bound for Dp (o (¢), (o)) of
2 4k? 16 1
cos[(4kl + P vt] ——— — , C10
N l;%zl . s w2 2(4k + 1) K+ 1 (C10)

which follows from the triangle inequality and |cos(x)| < 1.Next, as f (2k + [, 2k) is awkward to work with,
we use

. 1

T
3 1

\2_71'2m,

8k + 1

2k + 1, 2k)?
- fek+ ) (4k + 1)

‘ 2[2
(C11)

where we used the triangle inequality and the fact that 1 /(4k + 1) < 1/(2k),since ] > —2k.
This allows us to upper bound Dp (o (t), (o)) by

ZZ cos[(4kl + 1% Vt]

le Sk=1

+ s (C12)

2
N
where

16 1 6 [In(N) + 1][In(K) + 1]
= — 0 —_— . 1
a K+ 1 + 2 N (C13)

To get this, we used the triangle inequality and the inequality >* | 1/r < In(R) + 1.
Using the triangle inequality again, we get

2 1

Dp(o (), (7)) < 3 =5

Zcos[(élkl + Pyvt]
NleS

sin[2NIvt]cos[ (N + 1) + ) Ivt]
N2 sin[21vt]
sin [2NIvt]
N2 sin[21vt]

:22

leS

<2y

leS

(C14)

In the third line we used the identity [33]

sin[Na/2]cos[(N — D)a/2 + @]
sin(a/2) '

N-—1
> cos(ak + ¢) = (C15)

Let uslook at each term in the sum in the last line of equation (C14) separately. They have period %, so we need
only focus on this interval to find the time average of Dp (o (¢), (o).

When 2iut is close to 0 or , the sin[2/vt] in the denominator in the last line in equation (C14) is small. So for ¢
such that 2lvt € [0, Nia) or2lut € (7T — i, 7r], where a is a small constant we will choose at the end, we bound
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10!

— Linear fit with N1
¢ e« Average distinguishability

(Dpla(t),(o)))

10!
Fermion Number
Figure 4. This plot shows the time-average distinguishability (Dp (¢ (¢), (o)) ) as a function of particle number from 5 to 50 fermions

onalogscale. Numerically, (Dp (o (¢), (o)) = O(N~'%), which s faster than the bound in equation (C20), which was
O(n(N)?/N).

1

< —. (C16)

sin [2NIvt]
= o2

N2 sin[21vt]

When 2lvt € [ﬁ, g], we can use the inequality sin(x) > 2x/ forall x € [0, /2] to get

sin [Zvat] < 1 . (C17)
Nm22 sin[2lvt] Nr|lP4vt
To find the time average of Dp (0 (¢), (o)), we use the fact that the average over [i, %] is the same as that
over [0, i] by symmetry. So we need only average each term over [0, i] Theresultis
sin[2Nivt] < 12 n 41_1/ fvr/(4lu) dr
Nr22sin[2lvt] ||~ w2 7Na 7w \J1/@Na) Nr|lP4vt
2 In(7Na/2)
= C18
7312 Na N72? (©18)
Plugging this into equation (C14), we get
4 2In(wNa/2)
Dp(o(t), (0))) < + + i C19
{Dp(a (1), 7)) < — N 1 (C19)
whereweused >, g 1/1> < 25772, 1/1> = w%/3. If we choose K = N, then we see that
In(N)?
(Dp(a (1), (o)) = o( 3\1) ) (C20)

So for large N, this is extremely small and equilibration occurs. In fact, as figure 4 shows, the time-average
distinguishability decays faster with N than the bound here.

In figure 2 we saw that Dp (o (#), (o)) becomes small and then stays small for most times. In order to find the
equilibration time, we can upper bound the time it takes for the distinguishability to become small. Plugging
t= ﬁ into the bound in equation (C17), gives the bound

Ta

Dr(o(t), (o) < S——+ < 2 4 1 (c21)
Here we choose a to be a small constant such that the distinguishability is small at t = ﬁ Then the
equilibration time is bounded above by

1

Teg = .
2Nav

€q

(C22)
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C.1. Three-dimensions
We can extend this to a three-dimensional example in a way similar to the extension to three-dimensions for a
particle in abox in [26]. Suppose the initial state of the N fermion system is

[T a"dy;i)lo), (C23)

jel

where J is the set of three-component vectors with components in {1, ..., Jyax }, sowe have N = J2 . Andlet
[)7) be the energy eigenstate for a particle in the left half of a box labelled by f analogous to |¢) in one-
dimension in equation (17). Suppose the observable we are considering is that which counts the number of
particles in the left half of the box.

After mapping to the single-particle picture, the distinguishability becomes

Dp(o(t), (o)) = Dp(ox(t), {0x)), (C24)

where P = P, ® 1, ® 1, is the projector onto the left half of the box. Here oy (t) is the reduced state of the
system on H,, the Hilbert space corresponding to the x degrees of freedom. We have

]max
5 (0) = =SS (i, (C25)
max j=1

where |¢);) is the jth energy eigenstate of a particle trapped in the left-hand side of a one-dimensional box. So the
problem is now equivalent to the one-dimensional example. Therefore, the equilibration timescale is at
most g = O(1/Jmar) = O(1/N'73).

Appendix D. Single-particle equilibration

Here we will derive a useful formula that shows when equilibration occurs. The proofis very similar to one in [8],
mainly differing by using a different weight for the time average.

Lemma D1. Take a finite dimensional system evolving via a time independent Hamiltonian in the state o (t). For any
operator A and time T > 0

— 2 72
(ltrlo (1) A] t2r[<a>A]| T < O max e GGl D1
Al deit 5 g
where ¢, = e? and G, = E; — E; denote the non-zero energy gaps, so E; = E,. Also
1
=) (tr[o(0)Pg])?, (D2)
dett

where Py is the projector onto the energy eigenspace corresponding to energy E.

Proof. First, we will take o (t) to be pure, extending the result to mixed states at the end. Because

o () = |¢(@)) (¥ (¢)]is pure, we can choose an eigenbasis of H, where |1 (¢)) only overlaps with a single
eigenstate |n) for each energy level. This means that degenerate energy levels will not cause any problems. The
state at time ¢ is

[ () =D cne™ ' |n), (D3)

where ¢, = (n]t)(0)). The time-average state is (o) = Y_|c,|*|n) (|, and the effective dimension is given
by1/desr = 3, lc,l* = tr[(0)*].
Using the notation A;; = (i|A| j), we have

2
(trlo(OA] — t[(0)AIP)r = (| S (FAeneiEb (D4)
i=j T
< (A5 (F Apc (el B E-E= By, (D5)
i=j
k=1

To make our expressions more concise, we denote non-zero energy gaps by Gs = E; — Ej, with 6 = @, j),
where i = j. We also define the vector
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Vg = Vij) = CAjC; (D6)

and the Hermitian matrix

Meg = (el(Ga= 0ty (D7)
Equation (D4) becomes
(lrlo () A] — tr[ (o) AlP)r = 2v§M(zﬁVﬂ
a,f3
<M Il
(o3
= IMI> leilleil* 1Azl

i=j
<IMID leil?leiP 1A
ij
= [IM][tr[A (o) A" ()]. (D8)
As tr[A' B] defines an inner product for operators, we may use the Cauchy—Schwartz inequality. We can also use
the inequality tr[PQ] < ||P||tr[Q], which holds for Pand Q positive operators. Then we get

(Itrfo () A] — tr[(a) AlP)r < || M| tr[ATA (0)?1tr[AAT (0)?]
< [MI[[[AIPte[{o)?]

M||||A|?
_ IIM]lAf® (D9)
deft
Next, we can use the inequality for matrix norms [34]
M| < VMl 1M1
= max ) J|Masl, (D10)
’ «

where |||M]||; and ||| M]||,. are the column and row matrix norms respectively. The second line holds because M
is hermitian, implying ||| M,||| = |||Mil||-

Our next task is to deal with M5 = (e!(G=~G9?)1. This can be simplified by replacing the original time average
over the interval [0, T']by a differently weighted average [8, 35]. This works because the quantity we are averaging
(see equation (D4)) is positive, and because the new weight f(¥) satisfies f (t) > 1/T ontheinterval [0, T].

We will choose the weight to be a Gaussian. Then for any positive g(t), we have

ldet (t)<£det (£)e—40=T/22/T?
T Jo § “1Jdo §

g%f dt g (£)e*e=1/2/1, (D11)

Here, e = exp(1).
Employing this weighted averaging, the matrix elements of M are

e e T/22/T2 i
M, = Ff dt e 40-T/2%/T? i(GaGo)t (D12)
—00

So we get
Mol = q e~ (CamGI T/, (D13)
where ¢ = e/ /2. From equation (D10), we get
M| < a max S e~ (Ga= G T /16, (D14)

«
Finally, we arrive at

<|U‘[O’(t)A] - tr[<0>A] |2>T < q —(G, ,G,)ZLZ
< — o™ Y8) 75, D15
AT d 2 (019

(e}

The final step of the proofis to extend the result to mixed states by doing a purification [23], as in [5]. Denote
the system’s Hilbert space by Hs. Then we can define a pure state |/ (0) ) on Hg @ H,, with
dim(Hs) = dim(H,), with the property that the reduced state on the first system is try [|1 (0)) (10 (0)|] = o (0).
We recover the original evolution o () of the first system by evolving |t (¢) ) under the joint Hamiltonian
H ® 1. Crucially, the expectation value of any operator A on the state o () is the same as the expectation value of
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A ® Il on the purified state on the joint system. Also, ||A|| = ||A ® 1||. Finally, the effective dimension of the
purified system is equal to the effective dimension of the original system, which can be seen from from

tr[Ppo (0)] = tr[Pr @ 14 (0)) (1 (0)]]. O

Our remaining task is to simplify things in terms of the density of states. In the sum over «, we can separate
out the time dependent term, which has G, = Gjg, and evaluate the sum by making the density of states
approximation. We make the replacement >, = f dE n(E), where n(E) is the density of states, so that

max e (G” Gl = max > Ze_(E_E,_Gj)Z%
I a I’} I E
G,=Gs
E'=E
E—E'=Gg

. Ernax g1 i Emax —(E—E'— G2
= max fEm dE n(E)fEm dE n(E)e C
22

Enax E max _(E—E'—G;
< Mimax rr}gax fE dE' n(E) j;s dE e E-E -G

min min

< o [ E () 2T
= Mmax @ > (D 16)

where n,,, = maxg n(E) and dis the dimension of the particle’s state space. We also used f dE n(E) = dtoget
thelast line.
We define D¢ to be the maximum number of gaps G, of the same size. In other words

Dg=max » 1l (D17)
GamGy
So finally we get
_ 2
(ltrlor () A] tzr LAl i[DG + nmax—4ﬁd]. (D18)
A dest T

Itis good to point out that the density of states approximation misses degenerate energy gaps because they are
measure zero.

Appendix E. Free lattice models

We want to see when equilibration occurs for free lattice models, and also estimate the timescale. A key step is to
prove equilibration with respect to single-mode measurements. A consequence is corollary 2, which implies
equilibration occurs for any measurement on K local modes, provided K is relatively small, and the initial state is
Gaussian and commutes with the total number operator.

Consider the observable M = a'(|¢))a(|¢)), which counts the number of particles in the state | ). By
applying equation (6), we have

N
tr[p()M] = Y njtr[; (1) |6) (¢l]. (ED)
=1

The trick now is to switch to the Heisenberg picture. Then

N
trlp (M1 = ) njtr[ihlo (1) (d(=D)]1. (E2)

j=1
Because of this, we can think of | (— 1) ) (¢ (—t)| = o (—1) as the state of a particle.
For any fermionic state, or a bosonic state with at most one boson in N orthogonal modes, we have

N
II= anl/Jj < I (E3)
j=1

So we can think of this as a measurement (POVM) operator. For a system of bosons with more than one boson in
each mode, the result can be extended simply by factoring out the maximum number of bosons in a mode, but
we will not include this in the following formulas. Then we have

ltelp(OM] — el (p) M1| = |tr[lo (—1)] — tr[IT{o)]]
= Dr(o(~1), (o). (E4)
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Applying equation (38) in theorem 2, we get

a
des

The first task is to estimate 1,/d.¢. Because the measurement operator M = a’ (|¢(0)))a (¢ (0))) islocal, the
state | (0)) (¢ (0) | is localized. But for free lattice models, the energy eigenstates are spread out over the whole
lattice: they often have the form |¢ (p) ) |p), where | p) is the momentum state with momentum p, and |4 (p)) is
the state of the extra degree of freedom (spin or particle type, for example). In that case, given an energy
eigenstate |E) we get | (E|¢ (0)) |* < I/V, where the factor of | appears because | (0) ) is spread over at most /
lattice sites. This implies

(Du(o(=1), (o)))r < \/ (E5)

nmaxd
D¢ + ¢ .
Do+ a2t

1 i1%d
— =Nl (O)Pp])? < TE, (E6)
deff E \%4
where d is the dimension of the Hilbert space and n4 is the maximum degeneracy of the energy levels. We also
have that d = sV, where sis the number of orthogonal states at each site. For a spin 1/2 particle, we would have
s = 2. Plugging this into equation (E5), we get

Nmax d
max , E 7
—r ] (E7)

(Du(o(—1), (o)) < lJ%[DG to

where ¢; = qnds?.

The last task is to estimate 71, = maxg n(E).

E.1. Density of states for lattice models
For lattice models, estimating maxgn (E) causes problems because n(E) often diverges. Fortunately, we can
truncate to a slightly smaller energy range, such that maxg#n (E) is bounded, and the error caused by the
truncation is small.

Let us take a nearest-neighbour hopping model on aline as an example. The corresponding single-particle
Hamiltonian is

L
H = 2320+ 11+ 1+ 1), )
i=1

where we are assuming translational invariance, so the site at L + 1is identified with site 1. Switching to
momentum space diagonalizes this, and we get the dispersion relation E (p) = cos(p), where p = 27k/L, with
k € {1,...,L}. In making the density of states approximation, we assume that L is large but finite.) The density
of states is

g kd L1
7w dE 7 | sin (arccos(E))|
L 1

Sy — (E9)
Tl — E?
At E = £1thisis infinite. However, we can truncate the state, neglecting all terms with
E € [—1, —cos(p,)) U (cos(p,), 1], where we choose a fixed p, = 2mko/L > 0 tobe small. Thisleadstoa
constant error in approximation of the state as there is a constant fraction of energy eigenstates with energy in
this range. Defining P, to be the projector onto the subspace corresponding to the omitted energy range, we get

(llg) — @ = Pyl [2)* =1 — (ol — Po)|¢)

= (APol¢)
I
< No—, E10
07 (E10)
where we used | (E|¢ (0)) > < I/V from the previous section to get the last line. And Ny, is the number of states
with energy in the excluded set. Next, we can use that Ny = 4k, = 2p, L/ to get

2p.1
(ll6) — @ — P)|e)]l)* < % (E11)

So the error in approximating | ) by a state restricted to the smaller energy range can be made small by choosing
Do to be small. Furthermore, we have that

L r
m | sin(py)|

Crucially, py is fixed and does not depend on the number of sites.

max n(E) = (E12)
E
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L9 _J

Figure 5. For a given dispersion relation of a lattice model, we need to truncate the state to avoid points where the density of states
diverges. These points correspond to turning points in the dispersion relation. The picture shows an exaggerated version of the regions
we would exclude for a one-dimensional example, which are the red sections on the p-axis. The number of states in a momentum
window of fixed width scales linearly with L for one-dimensional systems. More generally, the number of states in such a region scales
linearly with V, the number of sites.

The same ideas apply to other dispersion relations (for example, those arising from translationally invariant
Hamiltonians, possibly in higher spatial dimensions). See figure 5. The basic idea is to exclude regions where the
density of states diverges, which corresponds to points where the dispersion relation is flat. The key point is that
the density of states is a fixed function, and the fraction of energy eigenstates corresponding to regions where it is
large remains constant. (Notice that the trivial Hamiltonian H = constant has a completely flat dispersion
relation, so that this trick will not work in that case.) But generally for free lattice models we expect

maxg 1 (E) o< V,where Vis the number of lattice sites.

E.2. From single-mode to multi-mode measurements
Itis possible to relate K mode measurements to single-mode measurements if the state is Gaussian. We will only
prove this here for fermionic Gaussian states, as the bosonic analogue is similar.

Corollary E1. Suppose p = p(0) is Gaussian and satisfies [p, N1 = 0, where N is the total number operator. (This
is still quite general, but it rules out BCS states.) Let M be a measurement operator acting on K modes on I sites, where
the modes are local, but not necessarily near each other. Then we have

D x
<MMMUH—HMMDMT<ﬁ”mm%45f+q%?} (E13)
withm = max|m, .| wherem, . arethecoefficients of M when expanded in a fermionic operator basis on

the K modes. See equation (E14). And ¢, = 4T and cs = qnis®, whereq = e /2.

Proof. Define ¢, with a € {1, ...,2K}, to be 2K Majorana operators generating the algebra for the K modes
that M acts on. We can choose these ¢, to make the covariance matrix simple, as we will see below. We will work
in the Heisenberg picture here, but suppress the time dependence and just write c,, instead of ¢, (¢). We can
expand M in terms of these Majorana operators:

M= Z My, ..ok Clﬁ Czrzlé< (El4)
ST rxk=0,1
Using the triangle inequality, we get
lr[pM ()] — t[p (M) < Y Imy, nlltelpel e c] — trlp (el c36)11. (E15)
1y ... 12g=0,1

We choose the ¢, such that the covariance matrix, defined by

Ty = Jtlple gll, (E16)
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is in block diagonal form [36]
K(o A
I'= "1, El
o’ 7) @

with A\, = %tr[p [&n—1> @all. Let Rbe the bit string (n, ..., 2 ), and define 2w = Y, r;. Because the state is
Gaussian, we have [36]

trlpc... 3] = i"pf(I'R), (E18)

where pf is the Pfaffian, and I'* is a submatrix of I restricted to the rows and columns labeled by i corresponding
tor;= 1. The Pfaffian is zero if any row or column is zero, so pf(I'*) = 0, unless the string R only contains
consecutive pairs of ones and zeros, suchas (1, 1, 0, 0, 1, 1, ...).

The Pfaffian has two useful properties. The first is that pf ((i \ ())‘) = ), and the second is that
pf(A; @ -+ ® A,) = pf(4)) ... pf(A,). Forany string R giving a non zero Pfaffian, we get

K
trlpe]... ¥l =1 [ Ap. (E19)
n=1
And so
K K
[trlpe) ... c3¥] — telp (] . cSONU| TT A — (I] A
n=1 n=1
K K K K
< I A =T1 i+ (| I M =TT %
n=1 n=1 n=1 n=1
K K
SOOI = T+ Do UN = (s (E20)
n=1 n=1

where the third line follows from the triangle inequality and | {f () )| < {|f (¢)|). The last line follows from the
triangle inequality, and repeated applications of |xy — (x) (y)| < |x — (x)| 4+ |y — (¥)|, which uses |x|,
|yl < 1.Soweneed to focus on

A = Q)| = %tr[p[ci, ¢l — %tr[p<[ci, |, (E21)

wherei = 2n — land j = 2n.
For each pair ¢;and ¢;, we can always define creation operators d; and d ]-T, with

ci=i(d; — d)
¢j=d;+d]. (E22)

We are not assuming that these creation operators correspond to orthogonal modes. Using tr[pd;d;] = 0,
which follows because [p, N] = 0, we have

%tr[p Lcir 1= trlp(d] d; — did})]
=tr[p(d;d; + d;di)] — K, (E23)
where k = {d;, d;} is a constant. We can rewrite this as

Strlples ol = wlpb/bil — trlpb] b — s, (E24)

where b; = %(di + dj)and b; = % (d; — d;). This allows us to apply corollary I to get

DG nmax]
<2 gl — +¢ ) E25
>T \/3[01 2 (E25)

where /is the number of sites the measurement acts on. Putting this all together, we get

<‘ %tr[p [cir 11 — %tr[pﬂci» ¢il)1

|tr[pM ()] — trlp (M)]] < 4m’u<\/c3[% +o ”‘;] (E26)

where

m/ — Z |mr2,r2,r4,r4, ..4,rz,<|) (E27)

5145 ..., 2k=0,1
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where the sum only counts terms labelled by consecutive pairs of ones and zeros. Then, for simplicity, we can use
m' < m2K,where m = max|m,_ . | since thereare 2X terms that contribute. It may also simplify things to
use K < Is. This gives

.y hK

[tr[pM (£)] — tr[p (M)]] < 215+2m512Jc3 [% + 0 ”‘j}] (E28)

O
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