

CRYSTALLOGRAPHIC

ISSN 2056-9890

Received 4 January 2016 Accepted 1 February 2016

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; garnet; lithium lanthanum zirconate (LLZO); symmetry reduction.

CCDC reference: 1451178

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN d ACCESS

research communications

Symmetry reduction due to gallium substitution in the garnet $Li_{6.43(2)}Ga_{0.52(3)}La_{2.67(4)}Zr_2O_{12}$

Lars Robben,^a* Elena Merzlyakova,^b Paul Heitjans^b and Thorsten M. Gesing^a

^aChemische Kristallographie fester Stoffe, Institut für Anorganische Chemie und Kristallographie, FB02, Leobener Strasse/ NW2, and MAPEX Center for Materials and Processes, Universität Bremen, Bibliotheksstrasse 1, 28359 Bremen, Germany, and ^bInstitut für Physikalische Chemie und Elektrochemie, Leibniz Universität Hannover, Callinstrasse 3-3a, D-30167 Hannover, Germany. *Correspondence e-mail: Irobben@uni-bremen.de

Single-crystal structure refinements on lithium lanthanum zirconate (LLZO; $Li_7La_3Zr_2O_{12}$) substituted with gallium were successfully carried out in the cubic symmetry space group $I\overline{4}3d$. Gallium was found on two lithium sites as well as on the lanthanum position. Due to the structural distortion of the resulting $Li_{6.43(2)}Ga_{0.52(3)}La_{2.67(4)}Zr_2O_{12}$ (Ga–LLZO) single crystals, a reduction of the LLZO cubic garnet symmetry from $Ia\overline{3}d$ to $I\overline{4}3d$ was necessary, which could hardly be analysed from X-ray powder diffraction data.

1. Chemical context

Garnets can be described with the ideal formula $A_3B_2(XO_4)_3$ in space group $Ia\overline{3}d$, with different coordination polyhedra of the respective elements with oxygen, resulting in a distorted cube for A (e.g. Ca), an octahedron for B (e.g. Al) and a tetrahedron for X (e.g. Si). The variability of the elements on the crystallographic sites (thereby keeping the high symmetry) gives rise to interesting material properties like ferrimagnetism (Geller, 1967). In recent years, garnet-type compounds containing Li have gained considerable interest as promising electrolyte materials for all-solid-state Li-ion batteries. The so-called 'Li-stuffed' garnets, which contain more Li than available on tetrahedral sites (X), meaning that excess Li occupies other sites as well, show an increase in Liion mobility. An exhaustive overview of these compounds was recently given by Thangadurai et al. (2014). The garnet-type fast lithium ion conductor Li7La3Zr2O12, abbreviated as LLZO, is such an 'Li-stuffed' garnet. Awaka et al. (2009) described the crystal structure of pure LLZO at ambient conditions in space group $I4_1/acd$. Even a small amount of Al in the structure (Al-LLZO) stabilizes the cubic garnet symmetry described in space group $Ia\overline{3}d$ by Geiger *et al.* (2011). These authors reported that Al could be found on two different tetrahedral sites using ²⁷Al MAS NMR spectroscopy but a final analysis was not possible due to the minor Al content. Rettenwander et al. (2014) reported on ⁷¹Ga MAS NMR spectroscopy measurements on gallium substituted Li₇₋ _{3x}Ga_xLa₃Zr₂O₁₂ (Ga–LLZO) indicating a fourfold coordination of the gallium atoms. The authors excluded the presence of Ga at the 24d position $(Ia\overline{3}d)$ and assumed that the local symmetry could be lower than indicated by diffraction methods. In principle, the following exchanges are possible: (i) $3 \text{ Li}^+ \leftrightarrow \text{Ga}^{3+} + 2$ voids, which is the most probable one and yields a good explanation for the higher conductivity due to the higher lithium atom jump probability to empty positions as

research communications

Bärnighausen tree (Bärnighausen, 1980) of the group-subgroup relation between cubic LLZO and the symmetry-reduced cubic Ga-LLZO.

discussed (Rettenwander *et al.*, 2014); (*ii*) $La^{3+} \leftrightarrow Ga^{3+}$, a valence-neutral exchange which should lead to a dynamical

Figure 2

Crystal structure of Li_{6.43(2)}Ga_{0.52(3)}La_{2.67(4)}Zr₂O₁₂ (Ga–LLZO) with all possible atom positions between the ZrO₆ octahedra (bottom) and the atom position specific coordination polyhedra (top). Displacement ellipsoids (top) are given at the 50% probability level.

disorder of the gallium atoms in order to lower the coordination number and shorten the Ga–O bond lengths for bondvalence balance, taking the different radii into account. The valence-neutral exchange should finally lead to higher displacement parameters of the atoms on the lanthanum position compared to that of the lighter zirconium atoms. (*iii*) $Zr^{4+} \leftrightarrow Ga^{3+} + Li^+$, which needs slightly more lithium for charge balance and could therefore be of minor probability.

2. Structural commentary

The unit cell of the obtained single crystals could be well indexed using a body-centered cubic lattice with lattice parameter a = 12.9681 (15) Å. The space group determination with XPREP (Bruker, 2014) leads at once to the highest possible space group $Ia\overline{3}d$. However, a satisfactory structure solution or refinement with published structural data (Geiger et al., 2011) in this space group type was not possible. Consequently, structure solutions by charge flipping (Bruker, 2009) were tried in all possible subgroups of $Ia\overline{3}d$ and the lowest *R*-values were obtained for the charge-flipping run in space group $I\overline{4}3d$. Subsequent refinements lead to the present structure model and clearly indicate the substitution of Ga^{3+} on the former 24c La^{3+} site as well as 24*d* Li^{+} site in the aristotype in space group $Ia\overline{3}d$. The latter site splits into two sites due to the symmetry reduction as indicated by the Bärnighausen tree (Bärnighausen, 1980) given in Fig. 1. The deviation from six symmetry-equivalent Zr - O distances in LLZO ($Ia\overline{3}d$) results in a distortion of the ZrO_6 octahedron with Zr-O distances of 3×2.095 (2) and 3×2.113 (2) Å in Ga–LLZO. Another significant reduction of the highest possible symmetry for LLZO is the distortion of the eightfold coordinate La position (Fig. 2), for which distances between 2.496 (2) and 2.595 (2) Å are found in Ga-LLZO. This distortion results from the splitting of the 96*h* position of the oxygen atom in $Ia\overline{3}d$ into two 48*e* positions in $I\overline{4}3d$ (Fig. 1). Because the two lithium positions (Li22 and Li32) occupied by gallium are in principle identical to those positions of the higher symmetry structure (but with slightly shorter bond length due to the gallium

Table	1	
Experi	mental	details.

Crystal data	
Chemical formula	Li _{6.43} Ga _{0.52} La _{2.67} Zr ₂ O ₁₂
$M_{\rm r}$	826.20
Crystal system, space group	Cubic, I43d
Temperature (K)	301
a (Å)	12.9681 (15)
$V(Å^3)$	2180.9 (8)
Z	8
Radiation type	Μο Κα
$\mu (\text{mm}^{-1})$	13.41
Crystal size (mm)	$0.25 \times 0.15 \times 0.13$
Data collection	
Diffractometer	Bruker APEXII CCD
Absorption correction	Multi-scan (SADABS; Bruker, 2014)
T + T	0.495 0.754
No of measured independent and	472450 3678 3508
observed $[I > 2\sigma(I)]$ reflections	172130, 3070, 3300
$R_{\rm c}$	0.046
$(\sin \theta/\lambda)_{\rm max}$ (Å ⁻¹)	1.340
(con contribution of the c	
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.026, 0.056, 1.46
No. of reflections	3678
No. of parameters	50
No. of restraints	3
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min}$ (e Å ⁻³)	2.08, -1.91
Absolute structure	Flack x determined using 1493 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)$ (Parsons <i>et al.</i> , 2013)
Absolute structure parameter	0.045 (9)
-	

Computer programs: APEX2 and SAINT (Bruker, 2014), TOPAS (Bruker, 2009), SHELXL2014 (Sheldrick, 2015), DIAMOND (Brandenburg, 1999) and publCIF (Westrip, 2010).

substitution, *viz.* 4×1.916 (1) Å in LLZO and 4×1.908 (2) Å in Ga–LLZO), and the Li1 and Li2 positions are not occupied by gallium, the symmetry reduction is a confirmation of gallium atoms to be found also on the lanthanum position. This is also supported by the higher displacement parameter of the La site compared to the Zr site, as explained previously.

3. Synthesis and crystallization

The synthesis was configured to yield a compound with nominal composition Li_{6.25}Ga_{0.25}La₃Zr₂O₁₂. 2 g of a stoichiometric mixture of the pre-dried (30 h at 373 K in vacuum) educts Li₂O (with an excess of 10%_{wt} to compensate the lithium loss due to thermal treatment), La₂O₃, ZrO₂ and Ga₂O₃ was weighted into a WC milling beaker (45 ml, 100 WC milling balls of 5 mm diameter, Fritsch, Germany) under inert conditions (glovebox) and high-energy ball-milled in a planetary ball mill (Pulverisette 7 premium line, Fritsch, Germany) under argon atmosphere for 8 h at a rotational speed of 10 s^{-1} as reported previously (Düvel *et al.*, 2012) for Al-substituted LLZO. The obtained powder was pressed to a pellet using a uniaxial pressure of 0.8 GPa. A stack of three pellets was placed on a platinum ring seated on a corundum plate, covered with a corundum crucible and heated for 12 h at 1323 K in a muffle furnace before cooling to room-temperature. The middle pellet from the stack had smooth green color

and showed visible grains. The surface of the pellet was grey and brittle and consisted mainly of lanthanum zirconates due to Li loss. From this pellet single crystals were extracted using a polarization microscope. Rietveld refinement of X-ray powder diffraction data of the green product shows a mixture of 96.8 (9)%_{wt} cubic garnet-type Ga–LLZO and 3.2 (9)%_{wt} Li₂ZrO₃ with a lattice parameter of a = 12.9738 (19) Å for its garnet-type structure. Energy dispersive X-ray analysis of the single crystal gave a tentative formula of Li_{6.5 (1)}Ga_{0.5 (1)}-La_{2.8 (1)}Zr_{2.0 (1)}O₁₂, in good agreement with the refined formula Li_{6.43 (2)}Ga_{0.52 (3)}La_{2.67 (4)}Zr₂O₁₂ determined from single crystal X-ray diffraction data.

4. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. Structure refinement was carried out as a two-component (merohedral) twin. Sites showing a statistical occupancy were constrained with respect to positions and anisotropic displacement parameters. An independent refinement of the anisotropic displacement parameters of Ga and Li on the Ga2/Li22 and Ga3/Li33 sites was not possible, although the reflection-to-parameter ratio is rather high. To ensure charge neutrality during the refinement of the Ga and Li occupancies on the Ga2/Li22 and Ga3/Li33 sites, the occupancies were restrained to exchange three Li atoms against one Ga atom.

Acknowledgements

Financial support of the Deutsche Forschungsgemeinschaft (DFG) in the Heisenbergprogram (TMG: GE1981/31, GE1981/32) and the Niedersächsisches Ministerium für Wissenschaft und Kultur (MWK) (PH: 74ZN994) is gratefully acknowledged.

References

- Awaka, J., Kijima, N., Hayakawa, H. & Akimoto, J. (2009). J. Solid State Chem. 182, 2046–2052.
- Bärnighausen, H. (1980). Comm. Math. Comput. Chem. 9, 139-175.
- Brandenburg, K. (1999). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Bruker (2009). TOPAS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2014). *APEX2*, *SAINT*, *SADABS* and *XPREP*. Bruker AXS Inc., Madison, Wisconsin, USA.
- Düvel, A., Kuhn, A., Robben, L., Wilkening, M. & Heitjans, P. (2012). J. Phys. Chem. C, 116, 15192–15202.
- Geiger, C. A., Alekseev, E., Lazic, B., Fisch, M., Armbruster, T., Langner, R., Fechtelkord, M., Kim, N., Pettke, Th. & Weppner, W. (2011). *Inorg. Chem.* 50, 1089–1097.
- Geller, S. (1967). Z. Kristallogr. 125, 1-47.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.
- Rettenwander, D., Geiger, C. A., Tribus, M., Tropper, P. & Amthauer, G. (2014). *Inorg. Chem.* 53, 6264–6269.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Thangadurai, V., Narayanan, S. & Pinzaru, D. (2014). *Chem. Soc. Rev.* **43**, 4714–4727.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2016). E72, 287-289 [doi:10.1107/S2056989016001924]

Symmetry reduction due to gallium substitution in the garnet

 $Li_{6.43(2)}Ga_{0.52(3)}La_{2.67(4)}Zr_{2}O_{12}$

Lars Robben, Elena Merzlyakova, Paul Heitjans and Thorsten M. Gesing

Computing details

Data collection: *APEX2* (Bruker, 2014); cell refinement: *SAINT* (Bruker, 2014); data reduction: *SAINT* (Bruker, 2014); program(s) used to solve structure: *TOPAS* (Bruker, 2009); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015); molecular graphics: *DIAMOND* (Brandenburg, 1999); software used to prepare material for publication: *publCIF* (Westrip, 2010).

Lithium gallium lanthanum zirconate

Crystal data	
Li _{6.43} Ga _{0.52} La _{2.67} Zr ₂ O ₁₂ $M_r = 826.20$ Cubic, $I\overline{4}3d$ a = 12.9681 (15) Å V = 2180.9 (8) Å ³ Z = 8 F(000) = 340 $D_x = 5.033$ Mg m ⁻³	Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å Cell parameters from 9913 reflections $\theta = 3.1-72.3^{\circ}$ $\mu = 13.41 \text{ mm}^{-1}$ T = 301 K Irregular, green $0.25 \times 0.15 \times 0.13 \text{ mm}$
Data collection	
Bruker APEXII CCD diffractometer φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2014) $T_{\min} = 0.495, T_{\max} = 0.754$ 472450 measured reflections	3678 independent reflections 3508 reflections with $I > 2\sigma(I)$ $R_{int} = 0.046$ $\theta_{max} = 72.3^{\circ}, \ \theta_{min} = 2.2^{\circ}$ $h = -34 \rightarrow 34$ $k = -34 \rightarrow 34$ $l = -34 \rightarrow 34$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.026$ $wR(F^2) = 0.056$ S = 1.46 3678 reflections 50 parameters 3 restraints $w = 1/[\sigma^2(F_o^2) + (0.011P)^2 + 8.6617P]$ where $P = (F_o^2 + 2F_c^2)/3$	$\begin{aligned} &(\Delta/\sigma)_{\text{max}} = 0.049 \\ &\Delta\rho_{\text{max}} = 2.08 \text{ e } \text{\AA}^{-3} \\ &\Delta\rho_{\text{min}} = -1.91 \text{ e } \text{\AA}^{-3} \\ &\text{Extinction correction: } SHELXL2014 \text{ (Sheldrick,} \\ &2015), \text{Fc}^*=\text{kFc}[1+0.001\text{xFc}^2\lambda^3/\sin(2\theta)]^{-1/4} \\ &\text{Absolute structure: Flack x determined using} \\ &1493 \text{ quotients } [(I^+)-(I^-)]/[(I^+)+(I^-)] \text{ (Parsons et al., 2013)} \\ &\text{Absolute structure parameter: } 0.045 \text{ (9)} \end{aligned}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refined as a 2-component twin.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Lal	0.62292 (2)	0.0000	0.2500	0.00746 (2)	0.889 (4)
Gal	0.62292 (2)	0.0000	0.2500	0.00746 (2)	0.111 (4)
Zr1	0.25005 (2)	0.25005 (2)	0.25005 (2)	0.00552 (4)	
01	0.19586 (18)	0.28163 (18)	0.10116 (16)	0.0118 (3)	
O2	0.46910 (17)	0.55410 (17)	0.65064 (16)	0.0114 (2)	
Li1	0.428 (3)	0.593 (2)	0.813 (2)	0.029 (5)	0.33333 (14)
Li2	0.642 (3)	0.178 (2)	0.065 (2)	0.029 (5)	0.33333 (14)
Ga2	0.3750	0.5000	0.7500	0.0061 (4)	0.0857 (12)
Li22	0.3750	0.5000	0.7500	0.0061 (4)	0.743 (4)
Ga3	0.2500	0.3750	0.0000	0.0110 (9)	0.0403 (12)
Li32	0.2500	0.3750	0.0000	0.0110 (9)	0.879 (4)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
La1	0.00912 (4)	0.00656 (5)	0.00668 (5)	0.000	0.000	-0.00141 (3)
Gal	0.00912 (4)	0.00656 (5)	0.00668 (5)	0.000	0.000	-0.00141 (3)
Zrl	0.00552 (4)	0.00552 (4)	0.00552 (4)	0.00021 (3)	0.00021 (3)	0.00021 (3)
01	0.0129 (6)	0.0138 (6)	0.0087 (5)	0.0014 (5)	-0.0007(5)	0.0006 (5)
O2	0.0131 (6)	0.0116 (6)	0.0096 (5)	0.0010 (5)	0.0000 (5)	-0.0013 (4)
Li1	0.051 (15)	0.015 (6)	0.022 (6)	-0.013 (9)	-0.013 (8)	0.006 (6)
Li2	0.051 (15)	0.015 (6)	0.022 (6)	-0.013 (9)	-0.013 (8)	0.006 (6)
Ga2	0.0078 (10)	0.0052 (6)	0.0052 (6)	0.000	0.000	0.000
Li22	0.0078 (10)	0.0052 (6)	0.0052 (6)	0.000	0.000	0.000
Ga3	0.0100 (14)	0.013 (2)	0.0100 (14)	0.000	0.000	0.000
Li32	0.0100 (14)	0.013 (2)	0.0100 (14)	0.000	0.000	0.000

Geometric parameters (Å, °)

La1—O1 ⁱ	2.496 (2)	O2—Li2 ^{xxiii}	2.09 (3)	
La1—O1 ⁱⁱ	2.496 (2)	O2—Zr1 ^{xxiv}	2.113 (2)	
La1—O2 ⁱⁱⁱ	2.520 (2)	O2—Li1	2.23 (4)	
La1—O2 ^{iv}	2.520 (2)	O2—La1 ^{xxv}	2.520 (2)	
La1—O2 ^v	2.590 (2)	O2—Li2 ^{xxvi}	2.54 (3)	
La1—O2 ^{vi}	2.590 (2)	O2—La1 ^{xxiii}	2.590 (2)	
La1—O1 ^{vii}	2.595 (2)	O2—Li2 ^{xxvii}	2.61 (4)	
La1—O1 ^{viii}	2.595 (2)	Li1—O2 ^{xxviii}	1.91 (4)	
Zr1—O1 ^{ix}	2.095 (2)	Li1—O2 ^{xxii}	2.04 (3)	

supporting information

Zr1—O1 ^x	2.095 (2)	Li1—O1 ^{xxix}	2.16 (3)
Zr1—O1	2.095 (2)	Li1—O1 ^{xxx}	2.65 (3)
Zr1—O2 ^{xi}	2.113 (2)	Li2—O1 ^{viii}	1.90 (3)
Zr1—O2 ^{xii}	2.113 (2)	Li2—O2 ^{vi}	2.09 (3)
Zr1—O2 ^{xiii}	2.113 (2)	Li2—O1 ^{xvi}	2.22 (4)
O1—Li2 ^{xiv}	1.90 (3)	Li2—O1 ^{xxxi}	2.32 (3)
O1—Ga3	1.918 (2)	Li2—O2 ^{xxxii}	2.54 (3)
O1—Li1 ^{xv}	2.16 (3)	Li2—O2 ^{xxxiii}	2.61 (4)
O1—Li2 ^{xvi}	2.22 (4)	Li2—Li2 ^{xxxiv}	2.68 (6)
O1—Li2 ^{xvii}	2.32 (3)	Ga2—O2 ^{xxi}	1.908 (2)
O1—La1 ^{xviii}	2.496 (2)	Ga2—O2 ^{xxii}	1.908 (2)
O1—La1 ^{xix}	2.595 (2)	Ga2—O2 ^{xxviii}	1.908 (2)
O1—Li1 ^{xx}	2.65 (3)	Ga3—O1 ^{xxxv}	1.918 (2)
02—Ga2	1.908 (2)	Ga3—O1 ^{xxxvi}	1.918 (2)
02—Li1 ^{xxi}	1.91 (4)	Ga3—O1 ^{xxxvii}	1.918 (2)
02—Li1 ^{xxii}	2.04 (3)		1010(1)
	2.01(3)		
01^{i} I a 1 - 01 ⁱⁱ	73 18 (10)	La1 ^{xviii} —O1—Li1 ^{xx}	79 5 (6)
01^{i} La1 01^{i}	160 55 (5)	$La1^{xix} - 01 - Li1^{xx}$	68 9 (8)
01^{ii} La1 02^{iii}	111 27 (5)	$Ga2 - O2 - Li1^{xxi}$	49.8 (10)
$O1^{i}$ Lu1 $O2^{iv}$	111.27 (5)	$Ga2 = O2 = Li1^{xxii}$	48.0 (8)
$O1^{ii}$ I al $O2^{iv}$	160 55 (5)	$I_{i1}x_{i}=02$ $I_{i1}x_{i}$	77 4 (11)
Ω^{2ii} I al Ω^{2iv}	71 21 (10)	$G_{a2} = O_{a2} = I_{a2} I_{$	66 9 (11)
O_{1}^{i} La1 O_{2}^{v}	73 18 (7)	$I_{11}xxi_{12} = 02 = 112$	18.2(10)
01^{ii} I 21^{ii} 02^{v}	95 73 (8)	$Li1^{xxii} = 02 = Li2$	85.1 (16)
Ω^{2}	123 67 (5)	$G_{2} = O_{2} = T_{1}^{xiv}$	12857(12)
O_2^{iv} La1 O_2^{v}	68 75 (0)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	120.37(12)
$O_2 - La_1 - O_2$	05.73 (8)	$Li1 = 02 = 2i1$ $Li1^{xxii} = 02 = 7r1^{xxiv}$	87 4 (8)
$O_1 - La_1 - O_2$	73 18 (7)	$L_{11} = 02 = 211$ $L_{12} \times \frac{1}{2} = 02 = 7r 1 \times \frac{1}{2} \times 1$	87.4 (8) 88.5 (10)
O1 - La1 - O2	73.18 (7) 68 75 (0)	$C_{12} = 02 = 211$	33.3(10)
$O_2 - La_1 - O_2$	123.67.(5)	$J_{11}xxi = 02$ J_{11}	44.9(8)
$O_2 - La_1 - O_2$	125.07(5) 166.44(0)	$L_{11} = 02 = L_{11}$	72.9(12)
$O_2 - La_1 - O_2$	100.44(9) 125.02(5)	$L_{11} = 02 = L_{11}$	83.9(12)
$O_1 = La_1 = O_1$	125.05(5)	$L_{12} = 02 - L_{11}$	89.7(13)
$O1^{O1^{$	(9)	$2\Pi^{\text{max}} = 02 = \Pi^{\text{max}}$	1/5.2(7)
O_2^{in} La1 O_1^{in}	12.12(0)	Ga2 - G2 - La1	94.13 (8)
O_2^{v} La1 O_1^{vi}	94.90 (7)	$L_{11}^{\text{max}} = 02 = L_{21}^{\text{max}}$	143.0(9)
$O2^{\text{v}}$ La1 $O1^{\text{v}}$	/3.07 (5) 109 77 (5)	$L_1 L_2 = 02 - L_2 L_2 = 1$	80.5 (11)
$O_2 = La_1 = O_1$	108.77(5)	$L_1 Z_1 x_1 x_2 = 0 Z_2 L_2 I_2 x_2 x_2$	101.0(11) 102.05(0)
$OI - LaI - OI^{\text{viii}}$	08.55 (9)	$Z F I^{AAV} = 02 = La I^{AAV}$	103.05 (9)
	125.03 (5)	$L_{11} = 02 = L_{11} = 02$	77.0 (9)
$O2^{m}$ —La1—O1 ^{viii}	94.96 (7)	$Ga2 - O2 - Li2^{XVI}$	57.6 (8)
$O2^{\text{IV}}$ La1 $O1^{\text{VIII}}$	72.72 (6)	L_{11}	76.3 (11)
U_2^{v} —Lal—Ul ^{vm}	108.77 (5)	$L_{11} = 02 - L_{12} = 02$	99.9 (14)
$U_{2^{*}}$ Lal $U_{2^{*}}$	/3.0/ (5)	$L_{12}^{\text{AAH}} = 02 = L_{12}^{\text{AAH}}$	91.0 (11)
OI^{vn} —Lal— OI^{vm}	165.12 (9)	$2r1^{xxy}$ $O2$ $L12^{xxy}$	172.6 (9)
UI^{x} ZrI UI^{x}	86.37 (10)	$L_{11} \rightarrow O_{2} \rightarrow L_{12}^{XXVI}$	14.0 (8)
Ol ^{III} —Zrl—Ol	86.37 (10)	$La1^{xxv} - O2 - L12^{xxv1}$	/9.4 (7)
Ol ^x —Zrl—Ol	86.37 (10)	Ga2—O2—La1 ^{xxm}	122.63 (10)

$O1^{ix}$ Zr1 $O2^{xi}$	93.51 (9)	Li1 ^{xxi} —O2—La1 ^{xxiii}	95.8 (10)
$O1^{x}$ — $Zr1$ — $O2^{xi}$	179.59 (11)	Li1 ^{xxii} —O2—La1 ^{xxiii}	170.6 (8)
$O1$ — $Zr1$ — $O2^{xi}$	94.02 (9)	Li2 ^{xxiii} —O2—La1 ^{xxiii}	90.4 (8)
$O1^{ix}$ Zr1 $O2^{xii}$	94.02 (9)	Zr1 ^{xxiv} —O2—La1 ^{xxiii}	100.77 (8)
$O1^{x}$ — $Zr1$ — $O2^{xii}$	93.51 (9)	Li1—O2—La1 ^{xxiii}	85.8 (7)
O1—Zr1—O2 ^{xii}	179.59 (11)	La1 ^{xxv} —O2—La1 ^{xxiii}	101.98 (8)
$O2^{xi}$ Zr1 $O2^{xii}$	86.10 (9)	Li2 ^{xxvi} —O2—La1 ^{xxiii}	71.8 (9)
O1 ^{ix} —Zr1—O2 ^{xiii}	179.59 (11)	Ga2—O2—Li2 ^{xxvii}	56.1 (7)
O1 ^x —Zr1—O2 ^{xiii}	94.02 (9)	Li1 ^{xxi} —O2—Li2 ^{xxvii}	83.4 (14)
O1—Zr1—O2 ^{xiii}	93.51 (9)	Li1 ^{xxii} —O2—Li2 ^{xxvii}	8.2 (9)
O2 ^{xi} —Zr1—O2 ^{xiiii}	86.10 (9)	Li2 ^{xxiii} —O2—Li2 ^{xxvii}	89.2 (9)
O2 ^{xii} —Zr1—O2 ^{xiii}	86.10 (9)	Zr1 ^{xxiv} —O2—Li2 ^{xxvii}	80.4 (7)
Li2 ^{xiv} —O1—Ga3	55.1 (12)	Li1—O2—Li2 ^{xxvii}	93.0 (11)
Li2 ^{xiv} —O1—Zr1	100.2 (12)	La1 ^{xxv} —O2—Li2 ^{xxvii}	78.2 (6)
Ga3—O1—Zr1	129.12 (12)	Li2 ^{xxvi} —O2—Li2 ^{xxvii}	107.0 (12)
Li2 ^{xiv} —O1—Li1 ^{xv}	17.3 (11)	La1 ^{xxiii} —O2—Li2 ^{xxvii}	178.8 (7)
Ga3—O1—Li1 ^{xv}	71.3 (8)	O2 ^{xxviii} —Li1—O2 ^{xxii}	108.5 (14)
Zr1—O1—Li1 ^{xv}	84.8 (8)	O2 ^{xxviii} —Li1—O1 ^{xxix}	98.6 (18)
Li2 ^{xiv} —O1—Li2 ^{xvi}	80.8 (13)	O2 ^{xxii} —Li1—O1 ^{xxix}	93.9 (12)
Ga3—O1—Li2 ^{xvi}	50.0 (9)	O2 ^{xxviii} —Li1—O2	101.2 (12)
Zr1—O1—Li2 ^{xvi}	85.8 (9)	O2 ^{xxii} —Li1—O2	86.8 (14)
Li1 ^{xv} —O1—Li2 ^{xvi}	87.3 (14)	O1 ^{xxix} —Li1—O2	158.9 (18)
Li2 ^{xiv} —O1—Li2 ^{xvii}	78.1 (15)	O2 ^{xxviii} —Li1—O1 ^{xxx}	144.7 (15)
Ga3—O1—Li2 ^{xvii}	48.2 (10)	O2 ^{xxii} —Li1—O1 ^{xxx}	106.5 (15)
Zr1—O1—Li2 ^{xvii}	177.3 (10)	O1 ^{xxix} —Li1—O1 ^{xxx}	83.1 (9)
Li1 ^{xv} —O1—Li2 ^{xvii}	93.8 (10)	O2—Li1—O1 ^{xxx}	76.4 (12)
Li2 ^{xvi} —O1—Li2 ^{xvii}	91.8 (16)	$O1^{viii}$ — $Li2$ — $O2^{vi}$	101.0 (12)
Li2 ^{xiv} —O1—La1 ^{xviii}	147.5 (13)	O1 ^{viii} —Li2—O1 ^{xvi}	102.1 (17)
Ga3—O1—La1 ^{xviii}	92.55 (8)	O2 ^{vi} —Li2—O1 ^{xvi}	91.1 (12)
Zr1—O1—La1 ^{xviii}	103.48 (9)	O1 ^{viii} —Li2—O1 ^{xxxi}	98.5 (14)
Li1 ^{xv} —O1—La1 ^{xviii}	163.4 (9)	O2 ^{vi} —Li2—O1 ^{xxxi}	160.3 (14)
Li2 ^{xvi} —O1—La1 ^{xviii}	79.1 (7)	O1 ^{xvi} —Li2—O1 ^{xxxi}	82.0 (13)
Li2 ^{xvii} —O1—La1 ^{xviii}	77.3 (7)	O1 ^{viii} —Li2—O2 ^{xxxii}	151.8 (19)
Li2 ^{xiv} —O1—La1 ^{xix}	94.7 (9)	O2 ^{vi} —Li2—O2 ^{xxxii}	86.9 (13)
Ga3—O1—La1 ^{xix}	123.13 (10)	O1 ^{xvi} —Li2—O2 ^{xxxii}	104.8 (10)
Zr1—O1—La1 ^{xix}	100.26 (9)	O1 ^{viii} —Li2—O2 ^{xxxiii}	84.1 (12)
Li1 ^{xv} —O1—La1 ^{xix}	89.9 (10)	O2 ^{vi} —Li2—O2 ^{xxxiii}	85.2 (14)
Li2 ^{xvi} —O1—La1 ^{xix}	173.1 (9)	O1 ^{xvi} —Li2—O2 ^{xxxiii}	173.3 (16)
Li2 ^{xvii} —O1—La1 ^{xix}	82.1 (10)	O1 ^{xxxi} —Li2—O2 ^{xxxiii}	99.7 (11)
La1 ^{xviii} —O1—La1 ^{xix}	102.50 (8)	O2 ^{xxxii} —Li2—O2 ^{xxxiii}	69.5 (10)
Li2 ^{xiv} —O1—Li1 ^{xx}	81.4 (12)	O2 ^{xxi} —Ga2—O2 ^{xxii}	114.14 (7)
Ga3—O1—Li1 ^{xx}	60.5 (8)	O2 ^{xxi} —Ga2—O2 ^{xxviii}	100.49 (13)
Zr1—O1—Li1 ^{xx}	169.2 (8)	O2 ^{xxii} —Ga2—O2 ^{xxviii}	114.14 (7)
Li1 ^{xv} —O1—Li1 ^{xx}	95.1 (9)	O1—Ga3—O1 ^{xxxv}	113.48 (7)

supporting information

Li2 ^{xvi} —O1—Li1 ^{xx}	105.0 (14)	O1—Ga3—O1 ^{xxxvi}	101.73 (14)
Li2 ^{xvii} —O1—Li1 ^{xx}	13.3 (11)	O1 ^{xxxv} —Ga3—O1 ^{xxxvi}	113.48 (7)

Symmetry codes: (i) -y+3/4, x-1/4, -z+1/4; (ii) -y+3/4, -x+1/4, z+1/4; (iii) -x+5/4, -z+3/4, y-1/4; (iv) -x+5/4, z-3/4, -y+3/4; (v) -z+5/4, y-3/4, -x+3/4; (vi) -z+5/4, -y+3/4; (vii) -z+5/4, -y+1/4, x+1/4; (viii) -z+3/4, y-1/4, -x+1/4; (ix) y, z, x; (x) z, x, y; (xi) z-1/4, y-1/4, x-1/4; (xii) y-1/4, x-1/4, z-1/4; (xiii) x-1/4, z-1/4; (xii) -z+1/4, y+1/4, x+1/4; (xiv) -z+1/4, y+1/4, -x+3/4; (xv) x-1/4, -z+5/4, -y+3/4; (xvi) -x+1, -y+1/2, z; (xvii) x-1/2, -y+1/2, -z; (xviii) -y+1/4, -x+3/4; (xx) y-1/2, z-1/2; (xxi) -x+3/4, z-1/4, -y+5/4; (xxi) x, -y+1, -z+3/2; (xxiii) z+1/4, -y+3/4, -x+5/4; (xxi) -z+1/2, x-y+1; (xxvii) -z+1/2, -x+1, y+1/2; (xxviii) -x+3/4, -z+5/4, y+1/4; (xxi) x+1/4, -y+3/4; (xxv) -x+5/4; (xxi) -z+1/2, x-y+1; (xxvii) -z+1/2, -x+1, y+1/2; (xxviii) -x+3/4, -z+5/4, y+1/4; (xxi) x+1/4, -y+5/4; (xxxi) z+1/2, x+1/2, x+1/2; (xxii) x+1/2, -y+1/2, -z; (xxiii) y, -z+1, -x+1/2; (xxiii) -y+1, z-1/2, -x+1/2; (xxiv) z+3/4, -y+1/4, -x+3/4; (xxv) z+1/4, -y+3/4, -x+1/4; (xxvi) -x+1/2, y, -z; (xxvii) -z+1/4, -y+3/4, -x+1/2; (xxvii) z+3/4, -y+1/4, -x+3/4; (xxv) z+1/4, -y+3/4, -x+1/4; (xxvi) -x+1/2, y, -z; (xxvii) -z+1/4, -y+3/4, -x+1/2; (xxvii) z+3/4, -y+1/4, -x+3/4; (xxvi) z+1/4, -y+3/4, -x+1/4; (xxvi) -x+1/2, y, -z; (xxvii) -z+1/4, -y+3/4, -x+1/2; (xxvii) z+3/4, -y+1/4, -x+3/4; (xxvi) z+1/4, -y+3/4, -x+1/4; (xxvi) -x+1/2, y, -z; (xxvii) -z+1/4, -y+3/4, -x+1/4; (xxvi) -x+1/4, -y+3/4, -x+1/4; (xxvi) -x+1/4, -y+3/4, -x+1/4; (xxvi) -x+1/2, y, -z; (xxvii) -z+1/4, -y+3/4, -x+1/4.