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Introduction
The Quality by Design (QbD) approach shows signifi-
cant benefit in classical pharmaceutical industry and is
now on the cusp to a stronger influence on biopharma-
ceutical applications. Monitoring the critical process
parameters (CPP) applying process analytical technolo-
gies (PAT) during biotechnological cell cultivations is of
high importance in order to maintain a high efficiency
and quality of a bioprocess. For parameters like glucose
concentration, total cell count (TCC) or viability a robust
online prediction is in many applications not yet possible.
This gap can be closed with the help of NIR spectroscopy
(NIRS), which provides quantitative prediction of single
analytes in real-time.
For accurate process control based on NIR spectro-

scopy, special care has to be taken while building the cali-
bration model [1,2]. In cell cultivation almost all analytes
are confounded and show large correlation coefficients.
Therefore, partial least square (PLS) models are not able
to discriminate between the signals of the different ana-
lytes. Especially, analytes like glucose or glutamine which
are strongly confounded with cell growth need to be
evaluated carefully as cell growth is the analyte causing
the largest changes in NIR spectra throughout a cultiva-
tion run. Spiking experiments are the most efficient way
in order to break correlations between critical analytes
like glucose and other nutrients or TCC. This strategy
should be followed in order to build robust calibration
models without correlations [3,4]. Another very critical
issue occurring in cell cultivation are batch-to-batch
variations. As it is recommended in good modeling prac-
tice [5], for robust models it is crucial to use several

complete batches for validation which are not part of the
calibration set rather than cross validation [6].

Materials and methods
CHO-K01 cells (Cell Culture Technology, University
of Bielefeld), were cultivated in a BIOSTAT® C plus
bioreactor (Sartorius Stedim Biotech) with a 7.5 L working
volume. In total, eight cultivation runs were performed,
each lasting six days on average. Sampling was performed
every three to six hours, and reference analytics of the
critical process parameters, such as TCC, viability (TC10
automated cell counter, Bio-Rad), glucose, lactate, gluta-
mine, etc. (YSI 2700, YSI Inc.) were determined in the
laboratory.

Results
Table 1 gives an overview of the models and the accu-
racy of predictions for several analytes investigated. An
excellent model could be obtained for total cell count
(TCC). Viability can be predicted and glucose can be
predicted as well. Correlations from glucose with other
analytes have been reduced by spiking of glucose in one
cultivation. Predictions for low concentration analytes
like glutamine seem to be also predictable at the first
glance, but are strongly related to correlations with
other parameters, such as TCC. Models based on corre-
lations are not recommended for process control since
they show a lack of sensitivity to the analyte of interest
and robustness. Whether a model is based on correla-
tions can be easily demonstrated by spiking experiments.
Glutamine, for example, was spiked in one cultivation at
the end of the batch-phase up to 1 g/L. The glutamine
model was not able to predict the spiking, which proves
the strong correlation to other analytes. Glutamine can-
not be measured directly in this concentration range
using NIRS. However, qualitative models on overall
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Table 1 NIR results for calibration models and validation by external data sets.

Analyte Range No. Cal. No. Val. Batches (Samples) Reg. maths Factors SEC SEP

TCC (·106 cell/mL) 0-16 5 (185) 3 (118) None 2 1.07 0.48

Viability (%) 10-100 5 (193) 3 (110) None 4 4.2 4.2

Glucose (g/L) 0-9 5 (198) 3 (105) None 4 1.2 0.48

Glutamine (g/L) 0-1.1 5 (189) 3 (114) SNV 2 0.16 correlation

(TCC: total cell count; No.Cal.: Number of batches (samples) of the calibration set. No.Val.: Number of batches (samples) of the validation set; SNV: standard
normal variate; SEC: standard error of calibration; SEP: standard error of prediction)

Figure 1 Batch evolution models (BEM) based on NIR spectra. (Top): Batch trajectories from three batches based on the first principal
component of NIR spectra. The golden batch trajectory is shown in green (mean value of all contributing batches) and the process limits are
shown in red (three times the standard deviation of the three contributing batches). (Middle): Compared to the BEM other batches show
deviations which can be assigned to contaminations (blue line) or low cell growth rate (black line). (Bottom): Batch trajectories from three
batches based on the third principal component of NIR spectra. Compared to the BEM other batches show deviations like contaminations (blue
and violet line) or early glucose limitation which led to an early drop of viability (black, yellow and violet line).
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nutrient consumption or metabolite accumulation yield
promising results (data not shown).
Additional benefit is generated via MSPC of NIR data.

Batch trajectories have been generated from major var-
iances of the NIR spectra. The Score values have been
used and plotted over time using SIMCA 13. Figure 1
(top) shows the BEM build for the first principal compo-
nent of the NIR spectra. Three batches contribute to this
model, which showed optimal cell growth. All batches
show almost an identical profile which indicates a high
batch-to-batch reproducibility, both in terms of process
operation and spectra acquisition. The mean trajectory
(green dashed line) is called golden batch and represent
the profile of optimal performance. Moreover, process
limits (red dashed lines) can be defined, which are calcu-
lated by three times the standard deviation of the batches
involved in the model. Other batches can be compared to
the model. As long as the trajectory of a new batch stays
within the limits, it can be assigned as statistically iden-
tical to the golden batch. A relevant process deviation
will be notified if the trajectory is outside of the limits.
Significant process deviations are shown in Figure 1
(middle). The trajectory of batch 3 (blue line) surpasses
the process limits after 30 h. The reason for this was a
bacterial contamination during the process. In batch 2
(black line) a different aeration strategy was applied which
resulted in a lower cell growth rate. In Figure 1 (bottom)
a BEM based on the third principal component is shown.
The model (dashed lines) is again generated from high
performance batches as seen in the model above.

Summary
The Ingold port adaption of a free beam NIR spectro-
meter is tailored for optimal bioprocess monitoring and
control. The device shows an excellent signal to noise
ratio dedicated to a large free aperture and therefore a
large sample volume. This can be seen particularly in
the batch trajectories which show a high reproducibility.
The robust and compact design withstands rough process
environments as well as SIP/CIP cycles.
Robust free beam NIR process analyzers are indispen-

sable tools within the PAT/QbD framework for real-
time process monitoring and control. They enable
multiparametric, non-invasive measurements of analyte
concentrations and process trajectories. Free beam NIR
spectrometers are an ideal tool to define golden batches
and process borders in the sense of QbD. Moreover,
sophisticated data analysis both quantitative and MSPC
yields directly to a far better process understanding.
Information can be provided online in easy to interpret
graphs which allow the operator to make fast and
knowledge-based decisions. This finally leads to higher
stability in process operation, better performance and
less failed batches.
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