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Abstract. We present transport measurements on a system of two lateral quantum dots in
a perpendicular magnetic �eld. Due to edge channel formation in an open conducting region,
the quantum dots are chirally coupled. When both quantum dots are tuned into the Kondo
regime simultaneously, we observe a change in the temperature dependence of the di�erential
conductance. This is explained by the RKKY exchange interaction between the two dots. As
a function of bias the di�erential conductance shows a splitting of the Kondo resonance which
changes in the presence of RKKY interaction.

1. Introduction

Semiconductor quantum dots (QDs) are highly tunable devices and therefore have attracted
much interest in the scienti�c community. Using the spin of the QD as a qubit in quantum
information processes is one of the proposed applications [1]. For this application it is necessary
to provide non-local manipulation and readout of the spin information of a QD. One possible
mechanism to entangle the spins of di�erent QDs beyond the nearest neighbour approach is the
Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction between magnetic moments. This indirect
non-local exchange interaction is mediated by charge carriers and locks the magnetic moments
in a new ground state. The latter is either ferromagnetic or antiferromagnetic depending on the
distance between the magnetic moments and the Fermi wave vector of the charge carriers [2].

Another entanglement mechanism of a single QD spin to a many-body electron system is the
Kondo e�ect [3, 4, 5]. At very low temperatures the spin of a QD is screened by the electrons
in the leads and forms a new singlet ground state with the binding energy Tk. In an otherwise
Coulomb-blocked situation this singlet ground state allows the electron of the highest occupied
energy level to leave the dot and to be replaced by an electron from the leads with opposite spin.
Therefore the dot becomes transparent at zero bias (the so-called zero bias anomaly) because its
spin is constantly �ipped.

In a system where the Kondo e�ect as well as the RKKY exchange interaction are present,
one expects a competition between these two mechanisms which can be observed in transport
properties [6, 7].
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2. Experimental Setup

Our sample is prepared on a GaAs/AlGaAs heterostructure containing a two dimensional electron
system 37 nm below the surface with an electron density of 3.95 × 1015 m−2. Two lateral QDs
(QD1 and QD2) are de�ned by local anodic oxidation using an AFM [8, 9]. Figure 1 (a) shows
an AFM picture of the structure. The QDs are tunnel coupled to individual drains (D1 and D2)
and to an open conducting region with a length of ∼ 600 nm. This region connects the QDs
and is used as source contact (S). The tunnel barriers and the energy levels of the QDs can be
tuned by six in-plane gates and an individual bias can be applied to each QD. The measurements
were performed in a 3He/4He dilution refrigerator with an electron temperature of about 80 mK.
Standard lock-in technique was used and the di�erential conductance Gi = dIi/dV (i = 1, 2) of
each dot was measured individually. A magnetic �eld was applied perpendicular to the sample.
More detailed information concerning the experimental setup can be found in Ref. [10].

3. Kondo chessboard and RKKY interaction

The measurement of the di�erential conductance G1 of QD1 at zero bias as a function of gate
voltage VG6 and perpendicular magnetic �eld leads to a pattern of alternating tiles of low and
high di�erential conductance (Fig. 1 (c)). This pattern originates from the formation of Landau
levels (LLs) in the QD in perpendicular magnetic �eld when two LLs are observable. In the
presented situation the �lling factor is 2 < ν < 4. Kondo transport then only involves energy
states of the lowest LL. The number of electrons in this LL0 can be controlled by varying the
number of �ux quanta on the dot which redistributes the electrons between the LLs. This is
achieved by a change in the magnetic �eld. A modulation of the total number of electrons on
the dot by sweeping the gate voltage also changes the occupation of LL0. These two mechanisms
lead to the so-called Kondo chessboard [11, 12, 13, 14], seen in Fig. 1 (c).

-5.5 -5.0 -4.5
B (T)

-40

-30

-20

-10

0

V G
6 

(m
V

)

-5.5 -5.0 -4.5
B (T)

-40

-30

-20

-10

0

V
G

6  (m
V

)

0.1

0.3

0.5

 G
2 (

e²
/h

)

G6

211 2

G6 S

D1 D2

G2 G3

500nm
G5

G1 G4
(a) (b)

(c) (d)

1.0

1.3

1.6

 G
1 (

e²
/h

)

Figure 1. (a) AFM picture of the sample. The oxide lines in bright colour de�ne the structure.
(b) Schematic of the edge channels for perpendicular magnetic �eld with negative polarity.
(c)+(d) Di�erential conductance of QD1 (c) and QD2 (d) as function of magnetic �eld and
gate voltage.
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The di�erential conductance G2 of QD2 in Fig. 1 (d) shows a more complicated pattern: a
negative of the Kondo chessboard in QD1 is visible that is superimposed by a stripe pattern.
The reason for that is the formation of edge channels in the open central region. For the given
magnetic �eld polarity a schematic of transport through the edge channels is shown in Fig. 1 (b).
QD2 lies "downstream" and the changes of the electrostatic potential at the site of QD1, e.g. by
onset of the Kondo e�ect, can be seen in the transport properties of QD2. Thus the coupling
between the QDs is chiral and the chirality can be changed by reversing the magnetic �eld
polarity [10].

The intervals where both QDs are tuned into the Kondo region simultaneously can be easily
identi�ed in the superimposed pattern exhibited by QD2. In QD1, Kondo transport can be
observed between -4.97 T and -4.77 T, while QD2 exhibits the Kondo e�ect between -5.05 T and
-4.92 T. Therefore between -4.97 T and -4.92 T transport through both QDs is Kondo enhanced
(marked in red). A detailed temperature analysis in this region yields a strong change in the
behaviour of the Kondo temperatures compared to the case when only one QD is tuned into
the Kondo regime (see [10]). This change indicates a modulation in the ground state of the
system. Since this e�ect can be observed in both QDs for both magnetic �eld polarities, it is not
caused by any electrostatic e�ect. Instead it is attributed to the quantum mechanical interaction
mediated by the electrons in the edge states, the RKKY exchange interaction.

4. Bias dependence

To probe the in�uence of the RKKY interaction on the zero bias anomaly, a bias Vsd1 was applied
at drain 1 and the di�erential conductance G1 was measured along the dashed line in Fig. 1 (c).
The result is shown in Fig. 2 (a). The region of Kondo transport can be seen clearly and between
-4.9 T and -4.8 T a splitting can be observed in Fig. 2 (b). In traces taken along the coloured
lines in Fig. 2 (a) the detailed evolution of this splitting is revealed. For the trace of -4.83 T two
peaks at about ±0.24 mV are clearly visible. When QD2 enters the Kondo regime at -4.92 T,
this splitting decreases to ±0.12 mV and the peaks are considerably smaller. In the centre of the
overlap region at -4.96 T the peaks vanish completely.
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Figure 2. (a) Di�erential conductance G1 as function of magnetic �eld and bias voltage for
�xed gate voltage VG6 = −20mV (dashed line in Fig. 1 (c)). (b) Traces measured along the
coloured lines in (a).

This clear change in the zero bias anomaly splitting when both QDs are tuned into the Kondo
regime is another hint for the presence of the RKKY exchange interaction between the two QDs.
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When the polarity of magnetic �eld is changed and QD2 is "upstream", a similar e�ect can be
seen as function of the bias on drain 2.

Note that the observed splitting at -4.83 T is a factor of 2 larger than the expected Zeeman
splitting for bulk GaAs (|g∗| = 0.44) of about 130 µeV at 5 T.

5. Conclusion

We have shown the chiral coupling of two QDs in a perpendicular magnetic �eld. The RKKY
exchange interaction between the magnetic moments of the QD can be probed by using the
Kondo e�ect as a spectroscopic tool. By analysing the Kondo temperature a change in the
ground state of the system can be con�rmed which is present regardless of chirality. In bias
dependent measurements a splitting of the zero bias anomaly of QD1 can be observed, when
only one QD shows the Kondo e�ect. It is strongly suppressed, when both QDs exhibit Kondo
transport and the RKKY interaction is present.
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