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Abstract

We propose a family of local CSS stabilizer codes as possible candidates for self-correcting quantum
memories in 3D. The construction is inspired by the classical Ising model on a Sierpinski carpet fractal,
which acts as a classical self-correcting memory. Our models are naturally defined on fractal subsets of
a4D hypercubic lattice with Hausdorff dimension less than 3. Though this does not imply that these
models can be realized with local interactions in R?, we also discuss this possibility. The X and Z
sectors of the code are dual to one another, and we show that there exists a finite temperature phase
transition associated with each of these sectors, providing evidence that the system may robustly store
quantum information at finite temperature.

1. Introduction

There is significant interest from both an abstract and practical perspective as to if and how self-correcting
quantum memories might be realized. A practical self-correcting memory would allow for arbitrarily long
storage of quantum information at finite temperature without the need for constant active error-correction
techniques. The 4D toric code is a simple, exactly solvable example of a system with local interactions in four
spatial dimensions that is known to have self-correcting properties [1, 2]. In 2D, the toric code is known to be
unstable at finite temperature [3-5], and there are numerous no-go theorems that rule out broad classes of
models for self-correction [6-9]. Despite this, some attempts have been made to engineer self-correcting
behavior in 2D systems [10—12]. Many approaches towards realizing some aspects of self-correction in 3D have
also been found, notably including the Haah code [13—16] among others [ 17-23], though no local spin models in
2D or 3D are known to be fully self-correcting. There are also several no-go results restricting possible self-
correcting models in 3D [8, 24-27]. For a comprehensive review of quantum memories at finite temperature,
see [28].

We propose here a local spin model with dimension less than 3, and argue that it may act as a self-correcting
quantum memory (SCQM). Our approach is based on fractal geometries, and inspired by the classical self-
correcting behavior of an Ising model on a Sierpinski carpet graph. The Sierpinski carpets [29] are a family of
fractal subsets of R? with Hausdorff dimension between 1 and 2. We propose a family of quantum CSS codes
that can be considered as 4D toric codes on discretizations of the product of two Sierpinski carpet fractals (with
appropriate boundary conditions). Concretely, our codes are defined through the homological product
construction [30, 31] applied to two toric codes on 2D Sierpinski carpet graphs, yielding a code family with
extensive degeneracy. Though these models naturally embed in R*, their Hausdorff dimension may be chosen to
be less than 3. We call these codes fractal product codes (FPCs). We also discuss the prospect of realizing these
codes locally in R?, though we do not prove that this is possible.

Though we call them codes, FPCs should more properly be considered Hamiltonian systems given by a
(negative) sum of stabilizer generators, and we show that such systems have (at least) two phase transitions at
finite temperature, one associated with each sector (X or Z) of the CSS code. The tools we use to show this are
generalized duality transformations and correlation inequalities. Given these phase transitions, we argue that the
FPC system may act as a SCQM at sufficiently low temperatures. Though there is an extensive degeneracy, we

©2016 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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expect the phase transitions we identify to correspond to the appearance of thermal stability for one preferred
encoded qubit associated with global degrees of freedom.

The use of the Sierpinski carpet fractals is not crucial for our construction, and so we also briefly discuss the
more general family of product codes that could arise from other graphs, such as alternative fractal graphs.

1.1. The Caltech rules
A practical quantum memory could in principle take any number of forms. In order to concretely discuss a
SCQM, it is convenient to set a series of criteria which such a system should satisfy. As such, we briefly review the
so-called Caltech rules.

A modelisa D-dimensional SCQM under the Caltech rules if:

(1) (finite spins) It consists of finite dimensional spins embedded in R” with finite density

(2) (bounded local interactions) It evolves under a Hamiltonian comprised of a finite density of interactions of
bounded strength and bounded range

(3) (nontrivial codespace) It encodes at least one qubit in its degenerate ground space

(4) (perturbative stability) The logical space associated with at least one encoded qubit must be perturbatively
stable in the thermodynamic limit

(5) (efficient decoding) This encoded qubit allows for a polynomial time decoding algorithm

(6) (exponential lifetime) Under coupling to a thermal bath at some non-zero temperature in the weak-coupling
Markovian limit, the lifetime of this encoded qubit asymptotically scales exponentially in the number of
spins.

We purposely leave the precise definition of perturbative stability vague, and will discuss it further in
section 5.2. Itis also often required that the Hamiltonian be gapped, but while this may be desirable itis nota
necessary condition for self-correcting behavior.

The 4D toric code is an example of a 4D Caltech SCQM. Other proposals in 2 or 3 dimension often make use
of long-range interactions, bosonic modes in place of spins, or do not achieve asymptotically exponential
memory lifetime. Depending on the context, such relaxations of the Caltech rules may be perfectly reasonable
strategies to produce a practical passive quantum information storage device. The rules as stated above are
largely inspired by analogy to classically self-correcting Ising models, and are by design extremely restrictive.
Alternative criteria for self-correcting memories are also discussed in [28].

Although we believe our proposal may be a candidate for a 3D Caltech SCQM, we stress that we merely
provide suggestive arguments, and do not prove, that it satisfies the majority of these constraints.

2. Fractals and dimensionality

Key to our construction will be the notion of fractal geometry. Fractal objects have spatial dimension that
interpolates between the familiar integral topological dimensions. This dimension can be quantified in several
useful ways, such as the Hausdorff dimension or the box-counting dimension. We will not give details of many
results familiar in fractal geometry, instead we refer the interested reader to a standard text such as [32].

We will consider only fractals that are particularly well-behaved, in that they are self-similar Borel sets
satisfying the open set condition. For fractals with these properties, many different fractal dimensions coincide,
and so we will simply denote the dimension of a fractal Fas dimF (for concreteness this can be taken as the
Hausdorff dimension). The dimensions of these sets also satisfy dim(F; x F,) = dimF; + dimF,, which will be
auseful identity.

2.1. Sierpinski carpets
Our construction is motivated by a particular family of fractals, the Sierpinski carpets [29]. These fractals have
dimension between 1 and 2, and are naturally defined as self-similar subsets of R?. Although more general
definitions of Sierpinski carpets are sometimes used, for our purposes it will be sufficient to define a Sierpinski
carpet by two positive integers b and ¢, with (b — ¢) even and positive (following e.g. [33] or [34]). We denote the
resulting fractals by SC(b, c).

The fractals SC(b, ¢) can be defined as the limit of a sequence SC(b, ¢, I)as] — oco. Wecall the SC(b, ¢, I)
the (b, ) Sierpinski carpets at level [, and they are constructed by dividing the unit square into b* smaller squares,
deleting the central ¢* squares, and iterating this procedure I times. An example is shown in figure 1. The
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Figure1. SC(3, 1, I) for] = 0-4.

Figure 2. §(\3(3, 1, I) for ] = 0—4, overlaid on SC(3, 1, I).

In(b? — ¢?)
In(b)

clear that achievable dimensions are dense in the interval 1 < dimSC(b, ¢) < 2 (and empty outside).

dimension of a (b, ¢) Sierpinski carpet is dimSC(b, ¢) = . For positive integral b, c,and (b — ¢), itis

2.2. Sierpinski carpet graphs
Atlevel ], a (b, ¢) Sierpinski carpet is an arrangement of (b*> — ¢?)! out of a possible b/ elementary squares.
Drawing the borders of these squares yields the Sierpinski carpet graphs, i.e. with a vertex at each corner of
occupied squares (note alternative conventions exist in the literature, see [33] or [34] for discussion). We will
denote such graphs by SC(b, ¢, I). Examples are shown in figure 2. These graphs consist of
l v (- ) 1 (02
[V (b, c, )| = (b2 - cz) + 2 — +2b' 4+ 1 vertices,and (1)

b- () 1- (-3

b — (bz _ Cz)l

It will be convenient to distinguish between ‘interior’ and ‘exterior’ plaquettes of the Sierpinski carpet
graphs. The interior plaquettes are those bounding occupied squares of the Sierpinski carpet fractal, while the
exterior plaquettes are the minimal cycles not generated by interior ones (i.e. those cycles bounding ‘deleted’
regions of the fractal, plus the outer boundary). SC(b, ¢, 1) can be shown to contain | P.(b, ¢, I)| interior
plaquettesand | B, (b, ¢, I)|independent exterior plaquettes, with

|E(b, ¢, )| = 2(192 — cz)l + 2 + 2b'  edges. )

Pi(b, ¢, | = (b2 — cz)l and 3)

!
1 — (b2 — cz)
1 - (b2 — c2) ’
noting that the outer boundary can be generated by the product of all interior and exterior plaquettes.

We will sometimes use the term ‘Sierpinski carpet’ to refer to either the fractal or graph when it is clear which
object is meant from context.

R(b, ¢, D] = @

2.3. Sierpinski carpet Ising models

It is possible to define a classical ferromagnetic Ising model on a Sierpinski carpet graph, and study the
thermodynamic properties for fixed band cas | — oco. These models have two-fold degenerate ground spaces,
and thus can be considered as classical codes. General arguments suggest [35, 36], many numerical studies
demonstrate (e.g. [33, 34]), and it can be rigorously proved [37-39], that such a family of Ising models has a
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Figure 3. Sierpinski triangle graphs at levels 1-4.
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Figure 4. A minimal cut through SC(3, 1, 3) shown in red, with frustrated bonds highlighted in orange.

phase transition at non-zero temperature. This behavior is similar to the 2D Ising model, but in contrast to the
1D Ising model which famously has no ordered phase at finite temperature. Intuitively, the existence of the phase
transition is due to the fact that the Sierpinski carpet graphs have infinite ramification order (i.e. in the limit

I — 00, an infinite number of bonds must be cut to separate the graph into two infinite pieces). General
arguments suggest that an Ising model defined on any family of fractal graphs with sufficiently large ramification
(in our context, scaling fast enough with /) will have a finite temperature phase transition, while those with finite
ramification order do not exhibit finite-temperature phase transitions. The Sierpinski triangle graphs (figure 3)
are an example of a family of fractal graphs with finite ramification, and the corresponding Ising model has only
azero-temperature phase transition [40], much like the 1D Ising model.

Another quantity of interest is the minimum energy barrier that must be overcome to transition between the
two degenerate code states by a sequence of spin flips. While this quantity is not as important as the existence of a
phase transition, we can nonetheless compute it. In order to transition between the two code states, every spin on
the lattice must be flipped. The energy barrier must then be at least proportional to the number of bonds it takes
to separate the graph into two comparably sized pieces (this can be thought of as the ramification). To calculate
the energy barrier in this way, we choose a cut that minimizes the number of crossed bonds in the limit I — oo,
and then compute the total number of bonds that would be frustrated if the spins on one side of the cut were
flipped and those on the other not. An example of such a minimal cut for odd b is a vertical line running down
the center of the graph, as shown in figure 4. It can directly be computed that the total number of bonds that such

(b _ C)l+1 _

aminimal cut crosses is [ b0 _1 + 1], providing alower bound to the energy barrier AE. Since the
— o) —

total number of spins in this Ising modelis n = |V (b, ¢, I)|, weseethat AE > O (nl"g(bw(”zfz)), ie. AEis

polynomial in 7 (as the maximum possible energy is also polynomial in #, AE cannot be superpolynomial).
Though a polynomial energy barrier is typical for models with finite temperature phase transitions such as the
2D Ising model or the 4D toric code, examples exist of systems with polynomial energy barrier but no finite
temperature phase transition, such as the welded codes [21]. It should also be noted that a polynomial energy
barrier is necessary for a stabilizer Hamiltonian to have an exponential memory lifetime [41, 42], but not
sufficient [43].
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3. Fractal product codes

In this section we define the FPCs. Although we call them codes, they should be understood as either quantum
codes (in the sense of a subspace of a larger Hilbert space) or as local commuting Hamiltonians (such that the
frustration-free ground space is the corresponding codespace) depending on context. Since the codes we present
are (CSS) stabilizer codes, the Hamiltonian formulation simply corresponds to a negative sum of generators of
the stabilizer group. As such, the presentation of the codes will contain more information than is necessary to
specify the codespace only, as we will also be interested in the particular (typically non-minimal) choice of
generators of the stabilizer group. By setting the Hamiltonian, this choice of generators will set the energetics and
thermodynamic properties of the system. Since the code is CSS, we can also consider the X sector and the Z
sectors of the code separately as classical codes or classical Hamiltonian systems in the analogous way.

In order to define the FPCs, it will be convenient to recall the homological product of two codes.

3.1. Homological product codes
The homological (or hypercomplex) product [30, 31] is a construction for building new CSS codes from existing
ones, making use of tools from algebraic topology. We need not introduce the full generality of the homological
product here and will simply sketch it as is appropriate for our needs; we refer the interested reader to [30, 31], or
astandard reference on algebraic topology, e.g. [44].

In the homological product construction, each quantum CSS code C is represented by three vector spaces
over the binary field I, : Cy, C;, and C,, and two maps 8§ :C, — Crand 8{3 : C; — Cgysuch that 8?5‘5 = 0.The
basis vectors of C; correspond to qubits, while those of Cy (C;) correspond to X-type (Z-type) stabilizer
generators. Note that these need not be minimal generating sets of stabilizers, and in fact the choice of generators
significantly affects the construction. The maps 95 and (9%)” define the qubits on which each stabilizer
generator has support, and the constraint 3°9$ = 0 enforces that the stabilizer group is abelian.

Often, as will be the case in our construction, the basis vectors of C; correspond to geometrical objects of
dimension i, e.g. vertices, edges, and plaquettes of some cell complex for i = 0, 1, 2 respectively. The maps 8?
then specify the (i — 1)-dimensional objects that comprise the boundary of a given i-dimensional object. This
description can be understood as a generalized toric code construction, where qubits are placed on i-
dimensional objects, X-type stabilizers associated with (i — 1)-dimensional objects, and Z-type stabilizers
associated with (i + 1)-dimensional objects.

Associated with each space C; is a homology group H;(C) = ker 0¢/im 8¢ , | and cohomology group
H'(C) = ker (8?)T / im (8?,1)T (with 8 and 8§ maps from and to the zero space, respectively, such that
im 9§ = im (8g)T = 0, ker 9§ = Cy,and ker (agff = (). In thislanguage, the X-type and Z-type logical
operators correspond to elements of H; (C) and H! (C) respectively. As such, the number of encoded qubits in
suchacodeis given by k¢ = dimH,; (C) = dim (ker E)IC) — dim(im Bg) (or equivalently dimH! (C)).

The homological product of two codes C and C’ yields a new object C @ C’ with five spaces and four maps,
given by

j

(cec) = P,

j =0

(Ci ® CL;‘), (5)

8§-C®C )(Ci ® C]Li) = (afci) D¢ ;i+6a® (8;'6/9{4) (6)
forc; € C;and ¢/ € C..

We could define three different codes from the general construction, but for our purposes we take the
middle homological product code, denoted by mid(C ® C’yand defined by the three spaces (C ® C');,

(C ® C'Y, (C ® C')3,and two maps ALY, and HL=). In mid(C ® €'y, basis vectors of the space (C @ C'),
correspond to qubits, while basis vectors of the spaces (C ® C');and (C ® C'); correspond to X- or Z-type
stabilizer generators, respectively.

Properties of the homological product codes can be determined directly from those of their component
codes. In particular, it will be useful to determine the logical operators of such codes. These can be calculated
using the Kiinneth formulae

H(cw )= D HO o mH(C), %)

jok:
jtk=i

H(coc)= D mie e (). ®)
7.k:
k=i
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Figure 5. SC*(3, 1, D forl = 0-3, neglecting the exterior vertices.

Thelogical operators of the middle homological product code correspond to the elements of the homology and
cohomology groups H, (C ® C"yand H*(C ® ('), and correspondingly the number of encoded qubits is given
by kmiacecy = dim Hy(C @ C').

3.2. Defining the FPCs

Consider the toric code [45] (or more properly the surface code [1]) 7(b, ¢, I) ona Sierpinski carpet

graph SC(b, ¢, I) defined in the standard way, so that qubits reside on the edges and X- or Z-type stabilizers are
associated with vertices or plaquettes of the graph, respectively. These are conventionally given as

A, = Hew X.and B, = He~p Z, for X, and Z, the Pauli operators on edge e. We only associate Z-type
stabilizers with the interior plaquettes, so as to retain locality of the stabilizer generators.

This is a surface code with holes punched into the manifold for each independent exterior plaquette, each of
these holes and the outer boundary having smooth boundary conditions. Since such a system with 4 smooth
holes plus the outer smooth boundary encodes h qubsits [1], and the Sierpinski carpet graph SC(b, ¢, 1) has
|R.(b, ¢, I)|exterior plaquettes not including the outer boundary, it is clear that the (logarithm of the) degeneracy
1 — ( b — CZ)l

1 — (% -3
directly verified that the number of qubits in the system is equal to the total number of independent stabilizers,
plus the number of encoded qubits, i.e. |[E| = |P.| + |V| — 1 + |B,|, where we have noted that there are
|V']| — lindependent X-type stabilizers.

In the homological language, the spaces 7, 77, and 7, correspond to vertices, edges, and interior plaquettes
of SC(b, ¢, 1) respectively. The homology group Hy (7') is given as the quotient of the space of vertices by the
space of vertices that are boundaries of some set of edges. Since all sets containing an even number of vertices are
boundaries, we see that Hy (7)) = Z, breaks into even and odd elements. In contrast, the second homology
group H, (7) is given as the sets of plaquettes with no boundary, which is empty, giving H, (7)) = 0. The first
homology group is given by the quotient of the cycles in the graph by the interior boundaries. Since there are
|E,| = k7 independent exterior boundaries, we find H; (7)) =~ Z;‘T as expected.

We will also make use of the dual code 7 *, where the X-type and Z-type stabilizers have been exchanged.
This is the toric code on the dual graph to SC(b, ¢, [) (i.e. where plaquettes and vertices have been exchanged,

ofthiscodeis kr = |R| = (we suppress the (b, ¢, I)labels as convenient). It can also be

and which we denote SC* (b, ¢, 1), seefigure 5), with the appropriate high-coordination vertices neglected for
the purposes of defining the stabilizer group. In the homological language, a dual code has Cj = C,, Cf = C,,
af* = (ag’)T and C** = C. From these duality properties, the homology groups of this code are immediate:
Hy(T*) = Z,, Hy(T*) = 0,and H(T) = Zk7.

We define the family of FPCs(b, c, I) as the middle homological product mid(7 ® 7 *) for suitable b and c.
The physical qubits of this code correspond to basis vectors of
TRTY)N=Ty@Tie T, TF® T, ® T, Therearethus
ngpcen = |V (b, ¢, DIP + |E(b, ¢, D* + |P:(b, ¢, I)|* physical qubits in this code.

The degeneracy of these codes can easily be determined by the Kiinneth formula as

Kevciseny = dim(Ho(T) © Hy(T*)) + dim(Hi(T) @ Hy(T*)) + dim(Ho(T) @ Ho(T%)), )

=11+ (kr) + - 0), (10)

1 - (b2 — cz)l
1 - (b2 — cz)

where, in the second last line, we note that H, (7*) = Hy(7) = Z,and H,(7) = Hy(T*) = 0.

2

=1+ (1D
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The number of qubits in the code 7gpc p,c1) scales asymptotically as (b — ¢2)?, as does the number of

i ; kepc(b,c,1
encoded qubits kgpcp,c, 1), suggesting a constant rate rppc(p,c,1) = ML CLDN

MEPC(b,c,])
The degeneracy of this system comes from two different sources. The H; (7)) ® H; (7 *) term gives rise to an

. (1= (= ¥
extensive number of encoded qubits | ——————
1—(b*—¢)

Hy(T) ® H,(T*) term produces a single qubit of degeneracy, and we call this qubit ‘global’. The two kinds of
encoded qubits have quite different properties, and we will largely focus on the global encoded qubit.

Some intuition for the properties of an FPC can be gained by considering its relation to the 4D toric code.
Noting that both SC(b, ¢, I)and sc* (b, ¢, ) are subgraphs of the square lattice, we see that
SC(b, ¢, 1) x sc* (b, ¢, 1) isasubgraph of the 4D hypercubic lattice. The qubits of the FPC correspond to basis
vectors of (T ® T*),,1.e. (interior) plaquettes of SC(b, ¢, I) x SC*, ¢, ). Similarly the X-type and Z-type
stabilizers correspond to the links (7 ® 7 *); and cubes (7 ® 7 *); respectively. When interpreting an FPC in
this way, itappears as the 4D toric code [1] defined on a fractal subset of Z*. In order to complete the
specification we must determine the boundary conditions at each boundary of this surface. If we consider the
graph S/C(b, ¢, 1) to be oriented in the X—y plane, and extended by S/(\Z*(b, ¢, 1) into the w—Z plane, we should
consider boundaries with normals in the X or  directions to be ‘smooth’ and those in the W or Z directions to be
‘rough’. It is straightforward to show that the total number of qubits in this code scales asymptotically as
[24imSC(1:0) for [ the linear lattice size of the hypercubic lattice.

As previously mentioned, the encoded qubits of this code can be classified as either global or local.
Interpreting the system as a punctured 4D toric code, we can see why this characterization has been made. As can
be seen by studying the homology and cohomology groups H, (7 ® 7 *)and H?(7 ® T *), each local qubit has
corresponding logical operators whose support can be localized on a membrane around and between punctures
in the 4D toric code, while the global qubit has corresponding logical operators that run in either the X—j plane
or the w—Z plane, and so have support on a membrane in the shape of the Sierpinski carpet SC(b, ¢, I). These
global logical operators inherit much of the structure of the Ising model on the Sierpinski carpet, and in
particular their polynomial energy barrier.

Itis clear that the FPCs are self-dual in the sense that by exchanging the X and j axes with the # and Z axes
we exchange the X and Z sectors of the code. Algebraically, this can be seen from the fact that the homological
products C ® C'and C' ® C areisomorphic.

2
) , and we will call these qubits ‘local’. By contrast, the

4. Thermodynamics of FPCs

The Hamiltonian for an FPC is given by a negative sum of stabilizer generators for each link and cube of the
lattice:

Hppc(b, 6, ) = — IT Xi— > IT 4« 12)
" T % DT H
Ae(T0T¥) je(angT*)] B Be(T0T™), keang )
with X; and Z; the relevant Pauli matrices on qubit i.
In order to study the thermodynamic properties of the quantum Hamiltonians corresponding to
FPC(b, ¢, 1), it will be convenient to consider each of the two sectors X and Z individually. Since the X-type and
Z-type stabilizers commute pairwise, for the purposes of considering thermalization processes we can consider
each sector separately (see [2] for an analogous discussion). We denote the corresponding classical codes
FPCx (b, ¢, I)and FPC(b, c, 1) with associated Hamiltonians

prcx(b, C, l) = — Z H . Xj, (13)
Ae(T0T¥) je(a(mw)] N

2

Hppe, (b, 6, ) =— > I =z (14)

BE(ToTY), (T

As noted, these two systems are related by a rotation and so can be considered dual to one another, meaning we
need only study the properties of one of these classical codes. The thermodynamic limit corresponds to taking
I — ooforfixedbandc.

The main technical result of this paper is the following:

Theorem 1. The classical Hamiltonians corresponding to each of the classical codes FPCx (b, ¢) and FPC, (b, c) have
finite temperature phase transitions.
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The proof of this theorem, given in section 4.3, makes use of two main tools: duality transformations and
correlation inequalities. Both of these results apply to the class of generalized Ising models, to which FPCxand
FPC_zbelong. Generalized Ising models consist of ferromagnetic interactions on sets of spins (for simplicity,
spin-%). Such systems are specified by a lattice of spins A, and interaction strengths Jz > 0 foreach R C A, with
a Hamiltonian

H({k},) = -kl 2 (15)
RCA  jeR

Itis clear that each of the sectors of the FPC can be trivially written in this way (up to a trivial change of basis).

We will be interested in the phase transitions of such a model at finite inverse temperature 3, and so it will be
convenient to define rescaled interaction strengths Kr = (3, the set of non-trivial interactions X = {Ky > 0},
and their supports B = {R C A|Ky € K}. Wewill also abuse notation and treat suitable sets as groups when
convenient, with multiplication given as the exclusive union g g, = (g1 U gz) \ (gl N gz) for g;in an appropriate
setsuch as BB. Also of interest is the symmetry set (or group) S, with elements
S = {R|(—=1ISNBl = 1 V B € B},and N, defined as the number of generators of the group S, so that
|S| = 2%, S should be understood physically as the group of spin flips that commute with each term in the
Hamiltonian. Finally, it is convenient to construct the group of constraints
C={CCB| HC‘E c Hjeci Z; = I}. Elements of this group are sets of interactions that are not independent.

The partition function of a generalized Ising model is

ZAK) = exp ( ZKB(—l)IRﬁBI], (16)

RCA BeB

where the R represents possible sets of spins pointing down, and so H].E  Zjacting on the corresponding state

will accumulate a phase (—1)IRN B,

4.1. Correlation inequalities
The GKS inequalities [46, 47] (see also [48]) are simple correlation inequalities for ferromagnetic systems. These
inequalities state that for a generalized Ising model

[H Zj][{/n Zj’] = [H Zj) [H Zj/] . (17)

Animmediate corollary of this inequality is that

%B (felf\lAZj] - [g Zj](j’l;[za Zj/] - [g Zf] [};[B Zj’] > 0. (18)

Intuitively, increasing the strength of, or adding more ferromagnetic interactions cannot decrease the
correlations present in the system. In particular, if there exists an ordered phase of a ferromagnetic system, it
cannot be destroyed by adding extra symmetry-respecting ferromagnetic terms to the Hamiltonian. This is the
crucial sense in which we will make use of the GKS inequalities.

4.2. Duality transformations on general Ising models

Duality transformations are extensively used in statistical mechanics to relate the thermodynamic properties of
different models. They have previously been used to study the properties of topologically ordered models [3, 8].
We make use of a particular family of duality transformations on general Ising models due to Merlini and
Gruber [49] that have a natural geometrical interpretation. Given a system of spins A and set of interactions /C,
Merlini and Gruber give a prescription to construct a dual system A* with interactions K* and a (surjective) map
¢ : B — B*suchthat

2, K = VAN T finRaK, - 2(, k) (19)
BeB

2K%

for e "5 = HBEW] 5+ tanh Kg. This relation between the partition functions ensures that a non-analyticity in

the free energy (i.e. a phase transition) in the (A*, X*) system also corresponds to a phase transition in the
(A, K) system at an appropriately rescaled temperature.

In order to construct such a dual system, we consider an arbitrary generating set of the constraint group C.
For each generator C;, we assign a site 1 € A*, The interaction regions B;|< are labelled by interaction terms

B] € B, with B]* = {Vz* S A*lB] € G}
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4.3. Finite temperature phase transition
Given the Merlini-Gruber duality transformation and the GKS inequalities, we can now prove theorem 1.

Consider FPC (b, ¢, ). The set of spins in this model A are associated with (a subset of the) faces of the
hypercubic lattice. Of course, this is according to their presence in (7 ® 7 *),, or equivalently
G=SCb,c 1) x §C*(b, ¢, 1) modulo exterior boundaries (we will also use G to label this corresponding
lattice, where it is understood that exterior boundaries as neglected as appropriate). The interaction regions B
are associated with cubes of G, and each includes the faces that bound it. We perform a Merlini—-Gruber duality
transformation on this system as follows:

The constraint group of FPC can be generated by elements labelled by hypercubes (formed by all cubes
bounding the hypercube) and exterior boundaries (formed by all smooth cubes terminating at that boundary) of
the lattice G. Thus to determine the dual system, we place sites at each hypercube and exterior boundary of G,
and we determine the interactions of the dual system by noting that each cube interaction in the bulk belongs to
two hypercubes, and at the (smooth) boundaries each cube interaction belongs to a single hypercube constraint
and the relevant exterior boundary constraint. Thus the interactions of the dual system will all be two-body.
Though it is relatively clear what the geometry of such a system looks like, we need not consider the entire lattice.
Instead, it suffices to consider a single slice in the w—Z plane.

If we consider extending the graph sc* (b, ¢, 1) (lying in the w—Z plane) by a single plaquette from
SC(b, ¢, 1), we find hypercubes corresponding to each plaquette of §a*(b, ¢, ). Since the dual system replaces
hypercubes by vertices, and has nearest-neighbor two-body interactions, the corresponding slice of the dual
system gives an Ising model on the planar dual graph to §é*(b, ¢, ), thatis, SC(b, ¢, 1). Thus, the Hamiltonian
of the dual system will consist of an Ising model on §E(b, ¢, 1) plus some other terms, i.e.

H(A*, IC*) = Hsc + ... (20)

for Hyc the ferromagnetic Ising model on the relevant (b, ¢, I) Sierpinski carpet graph as described in section 2.3.
Since the symmetry group of the dual model is simply generated by Hv X,*, and all terms neglected in (20)
are two-body, itis clear that they respect this symmetry.

Now appealing to the GKS inequality, if we were to begin with the system Hgc, then by adding the additional
symmetry-respecting ferromagnetic terms to give H (A*, K*) we cannot decrease the (spontaneous)
magnetization of the system. Since it is known that the Ising model on a Sierpinski carpet Hsc has a magnetically
ordered phase for some range of finite inverse temperatures 3 [37—39], this tells us that H (A*, K*) will also have
such an ordered phase. Although there are infinitely many dual interactions acting on each of the spins
corresponding to exterior boundaries of G, in the bulk H (A*, K*) acts with a bounded density of bounded
strength operators. We therefore conclude thatin the § — 0 limit the system will be disordered, demonstrating
that there must be a finite temperature phase transition.

Since H (A*, K*)is dual to the Hamiltonian Hppc,, we deduce that it too possesses a finite temperature
phase transition. The symmetry between FPC, and FPCy implies that the same is true for the X sector of the
theory, completing the proof of theorem 1.

*61\*

Though the following is by no means a rigorous argument, we intuitively associate the identified phase
transitions with the global encoded qubit, as the Hamiltonian Hsc in equation (20) corresponds only to action
on those qubits of Hgp(, in a cross-sectional slice of the lattice, as do the logical operators of the global encoded
qubit. The existence of finite temperature phase transitions such as those identified in theorem 1 is indicative
that the system may be able to robustly store quantum information in this global qubit at finite temperature.

5. Revisiting the Caltech rules

By construction, FPCs satisfy the non-trivial codespace Caltech rule, as has been shown using the Kiinneth
formula in equation (11). We will now discuss the remaining rules in turn.

5.1. Embedding into R? (finite spins, bounded local interactions)
The fractal lattice on which an FPC is defined is a discretization of SC(b, ¢) x SC(b, c). By choosing the

parameters b and c such that dimSC(b, ¢) < i, this fractal will have Hausdorff dimension less than or equal to

3. Though this may be enough by itself to warrant curiosity about the properties of such a model, it is clearly a
desirable feature that these codes can be implemented with local interactions in R®.

Most studies of embeddings of fractals into other spaces are concerned with bilipschitz embeddings. Such an
embedding would neither increase distances (making previously local interactions nonlocal) or decrease
distances (increasing the density of sites) by more than a constant factor. It seems unlikely that a bilipschitz
embedding is possible from SC(b, ¢) x SC(b, c) to R?, no matter what values of b and care chosen. However,

9



10P Publishing

NewJ. Phys. 18 (2016) 013050 C GBrell

such an embedding is not necessary to preserve locality. In particular, it is possible for a map to take a finite
number of far separated points to the same location, and still preserve locality in the sense that we require. This is
because such an map will only increase the density of points by a constant factor. As an example, a projection of
the torus into the plane will map two distant points to the same location, but in doing so will only increase the
density of sites by a factor of 2. This would still allow the model to satisfy the relevant Caltech rules. Furthermore,
the fact that the sites of our code only lie on a discrete lattice, instead of in over the entire fractal as would
normally be considered, may provide further flexibility in constructing a locality-preserving map into R>.

While we leave the realization of FPCs in IR? as an open question, we will briefly discuss some relevant facts
that are suggestive of this possibility. It is well known that a random projection of a fractal with dimension
d < Dinto RP will yield an object with dimension d [32]. By itself, this is suggestive that certain features of a
suitable fractal survive under a random projection. Clearly a projection will not increase the distance between
qubits, however one must also be wary that this projection will not cause the density to diverge.

In order to consider whether or not this will happen for a random projection of SC(b, ¢) x SC(b, ¢)into
IR3, it is interesting to consider a related family of fractals with low lacunarity. Lacunarity is a measure of violation
of translation invariance, and low-lacunarity Sierpinski carpets can be constructed by varying the location of the
removed volumes at each level [50]. At a fixed Hausdorff dimension, the lacunarity can be made arbitrarily
small, in which case the density of points in the fractal approaches uniformity. If the Hausdorff dimension is less
than 3, then a random projection of a fractal with vanishing lacunarity into R* should lead to a bounded density
asrequired. Using these ideas, one could either directly define a family of low-lacunarity FPCs that can be locally
realized in R?, or it may be possible to extrapolate from this result to demonstrate a local realization in R? of the
family of FPCs defined in section 3.2.

Complicating this simple idea is the fact that that taking both the low lacunarity limit and the
thermodynamic limit of our discrete lattice together at a fixed Hausdorff dimension seems quite a subtle task.
Another obstacle is that constructions of low lacunarity fractals are not unique or canonical. In addition,
although it is expected that Ising models on low-lacunarity Sierpinski carpets will have finite temperature phase
transitions [50], the effect of lacunarity on the thermodynamic properties such as the critical temperature of
Ising models is not well understood [36, 51]. Another related class of fractals that may be instructive for
considering projections into IR? are the random Sierpinski carpets [52], although their properties are also poorly
understood.

5.2. Perturbative stability

Typically, perturbative stability of the codespace of a system similar to an FPC is shown by proving that the gap
and ground space degeneracy is stable under arbitrary quasi-local perturbations, as in the topological stability
theorems [53-55]. This guarantees that a quasi-adiabatic continuation between the ground spaces of the
perturbed and unperturbed models exists [53, 56], ensuring that their properties are stable. Though Hgpc are
gapped, the topological stability theorems do not apply to our system, as the ground space does not have
macroscopic distance (due to the presence of the local encoded qubits). Under generic perturbation, naive
perturbation theory suggests that the degeneracies associated with the local encoded qubits will be lifted, while
splitting of levels associated with the global encoded qubit will be exponentially suppressed in system size as
desired (due to the local indistinguishability of the global qubit states).

In order to make the stability of the global encoded qubit more concrete, a finer notion of perturbative
stability seems to be required. We do not expect that our entire ground space will be stable, nor a subspace of it.
Instead, it seems likely that by factorizing the ground space into the global encoded qubit system and the local
encoded qubit systems, the global subsystem will be stable in the sense that an appropriate continuation could be
constructed from the unperturbed logical space to the perturbed logical space. Similar considerations would
apply to other systems that might be of independent interest, such as a toric code with a small but non-zero
density of punctures, or a nonabelian anyon model with a finite density of particles.

Since the specification of which perturbations are local is dependent on the embedding of the code into
Euclidean space, one might wonder whether the perturbative stability properties of an FPC could be different
depending on whether it is realized in R%, or in R? (assuming that this is possible). However, since the relevant
arguments in the topological stability theorems do not directly depend on the embedding, only on the properties
of the code itself such as the distance scaling polynomially with L, we do not expect that this will be the case.

5.3. Efficient decoding

Due to the similarity between the 4D toric code and the FPCs, it seems likely that any decoding algorithm for the
4D toric code may be adapted to decode the FPCs. A notable example of such a decoder that also applies to
topological codes in general is the topological renormalization group decoder due to Bravyi and Haah [15, 16].
Unfortunately, for the same reasons that we could not apply the topological stability theorems (namely the
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presence of local encoded qubits), the proof of threshold for this decoder does not directly apply for the FPCs.
However, we anticipate that this algorithm and proof of threshold could be adapted to our setting. Given the
self-similar nature of the FPCs, alternative renormalization group based decoding methods [57-59] might also
be effective decoders for these systems. Though we would not expect identical thresholds, it may also be possible
to derive optimal thresholds for FPCs using similar statistical mechanical tools as have been applied to the 4D
toric code [60].

For the purposes of decoding the global encoded qubit, the FPC should be treated as a subsystem code
[61,62], with thelocal encoded degrees of freedom playing the role of gauge qubits. Other natural candidates for
an FPC decoding algorithm are the 4D toric code heat-bath algorithm [1] or a variant of Toom’s rule [63].
Particularly, a concrete proof that the FPC is indeed a self-correcting memory would likely also guarantee the
existence of a polynomial decoding algorithm, as in [2] for the 4D toric code. For similar reasons, we also expect
that the FPCs may be single-shot fault-tolerant [64].

5.4. Exponential lifetime

We have not proven that the memory lifetime of a FPC scales exponentially with system size for some finite
temperatures, simply that there are phase transitions of the system at finite temperature. This seems highly
suggestive that the system may function as a SCQM below the critical temperatures, but the relation between
thermodynamic phase transitions and memory lifetime is not fully understood [43, 65] and so a rigorous proof
of this fact is desirable. We anticipate that it may be possible to construct such a proof by combining the
techniques used to prove the exponential lifetime of the 4D toric code [2] (see also [66]) with those used in the
Peierls-type proof of the finite-temperature phase transition in the Sierpinski carpet Ising model [38, 39].

6. Discussion

6.1. Alternative FPCs

The main ideas of this construction are clearly not limited to the Sierpinski carpet fractals. The results and
methods apply directly to any pair of well-behaved fractals (e.g. self-similar Borel sets satisfying the open set
condition) with infinite ramification, corresponding Ising models with finite temperature phase transitions, and
combined dimension <3. For these fractals an FPC can be constructed in an analogous way, and may also actas a
SCQM in 3D. Similarly, by varying the relative dimension of the two fractals used, one can introduce an
asymmetry between the critical temperatures of the X and Z sectors of the system. General results are known on
the existence of phase transitions in fractal graphs [35, 36, 39], and families of infinitely ramified fractals are
known [67], though these are not as well studied as the Sierpinski carpets treated here.

It should also be noted that the particular discretization of the fractal used to define the fractal graph does not
play a critical role in our construction. An alternative convention for defining the Sierpinski carpet graphs, for
example as discussed in [33, 34], would be equally amenable to our analysis.

Though our construction seems to manifestly break translation invariance, it might also be possible to
restore it approximately. There is some evidence that variants of the Sierpinski carpet with low lacunarity behave
like concrete geometric realizations of hypercubic lattices with fractional dimension in certain limits [50]. It
would be interesting to see whether the use of these fractal graphs would allow for a translation-invariant FPC as
alimiting case. In order to answer such questions, the precise details of any embedding into R* would need to be
investigated.

6.2.Non-FPCs
In addition to the possibility of using alternative fractal graphs to define other families of FPCs, many of our
techniques would apply to suitable non-fractal (non-self-similar) graphs. The two main features of the
Sierpinski carpet graphs that have been important are that an Ising model on the graph has a finite temperature
phase transition, and that the total number of sites of the graph is growing slower than L for L the linear lattice
size. We can also consider arbitrary finitely coordinated graphs with finite temperature Ising model phase
transitions and suitably slowly growing number of sites.

A family of graphs with these properties can be constructed, for example, by takingan L x L square lattice
and dividing it into squares of size L* X L forsome 0 < « < 2. Central regions from within each of these
squares would then be removed to leave only a border of width L” for some 0 < 3 < «, as shown in figure 6.

The resulting lattice has a total number of points that scales as O (L>~**#). Choosing (o« — 3) > % gives the
number of sites growing slower than L2as required.

Lattices of this type contain as a subgraphs L* x L polynomial-sized rectangular sections of square lattice.
An Ising model on this subgraph would exhibit a phase transition and an exponential memory lifetime, and
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Figure 6. A non-fractal graph that could be used as the basis for a product code can be formed by removing regions froman L x L

square lattice. o and 3 can then be chosen such that the total number of sites of this graph grows slower than L3, without requiring the
self-similarity of a fractal graph.

these properties can be extended to an Ising model on the entire lattice by use of the GKS inequalities described
in section 4.1. As in the case of the Sierpinski carpet FPCs, quantum product codes based on these graphs would
inherit these phase transitions.

Although this example would not allow for alocal realization of the resulting product code in R?, it may be
possible that the additional freedom to use non-fractal graphs such as this might in general allow for more
flexibility to construct alocal model in R?.

6.3. Relation to previous work

Several existing quantum codes have relations to fractal geometry. Two of the most prominent are the Haah
codes [13] and Yoshida’s fractal spin liquids [68]. While one motivation for considering such codes has also been
to engineer self-correcting behavior, the relationship between our work and these models appears largely
superficial. In these previous works, the systems were typically defined as local, translation-invariant
Hamiltonians acting on a regular cubic lattice. These systems are engineered so that the support of their logical
operators is a fractal subset of the lattice. Significantly, such fractals are of finite ramification. In contrast, the
FPC Hamiltonians we study here are themselves defined on a fractal lattice, breaking translation invariance and
directly giving rise to the infinitely ramified fractal logical operators. The breaking of translation invariance,
along with scale invariance, also directly allows us to escape no-go theorems such as that of [25].

Recently, a new code construction has appeared that produces local subsystem codes with properties
inherited from an arbitrary base stabilizer code [69]. Using a concatenated base code, the resulting subsystem
code appears to have fractal structure. Again, the relationship between these codes and our work is purely
superficial, in particular noting that the FPCs are commuting stabilizer code models while the codes of [69] are
non-commuting subsystem codes.

6.4. Numerical simulation

In the absence of a rigorous proof of self-correction, an attractive strategy is to attempt some numerical
simulation of thermalization for an FPC system. However, this could prove prohibitively difficult since the FPCs
are only defined for certain (exponentially spaced) system sizes. The smallest FPC family with dimension <3,
correspondingtob = 14andc = 12,for = 0, 1, 2, 3requires 33, 3.8 x 10%, 8.3 x 107,and 2.1 x 10!
qubits respectively. Since the | = 0 case is simply a standard toric code, this leaves very little ability to reasonably
simulate these systems. Even by dropping the requirement that the system have dimension < 3, the smallest code
family (with b = 3, ¢ = 1)stillrequires 1.4 x 10® qubits for I = 4. In order to realistically simulate these
systems, it may be necessary to find some way to consistently interpolate between these system sizes. This
difficulty may be somewhat alleviated by the use of models based on non-fractal graphs that can be defined on
more intermediate lattice sizes as described in section 6.2.
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