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A proposal for self-correcting stabilizer quantummemories in 3
dimensions (or slightly less)
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Abstract
Wepropose a family of local CSS stabilizer codes as possible candidates for self-correcting quantum
memories in 3D. The construction is inspired by the classical Isingmodel on a Sierpinski carpet fractal,
which acts as a classical self-correctingmemory.Ourmodels are naturally defined on fractal subsets of
a 4Dhypercubic lattice withHausdorff dimension less than 3. Though this does not imply that these
models can be realizedwith local interactions in 3 , we also discuss this possibility. TheX andZ
sectors of the code are dual to one another, andwe show that there exists afinite temperature phase
transition associatedwith each of these sectors, providing evidence that the systemmay robustly store
quantum information atfinite temperature.

1. Introduction

There is significant interest fromboth an abstract and practical perspective as to if and how self-correcting
quantummemoriesmight be realized. A practical self-correctingmemorywould allow for arbitrarily long
storage of quantum information atfinite temperaturewithout the need for constant active error-correction
techniques. The 4D toric code is a simple, exactly solvable example of a systemwith local interactions in four
spatial dimensions that is known to have self-correcting properties [1, 2]. In 2D, the toric code is known to be
unstable atfinite temperature [3–5], and there are numerous no-go theorems that rule out broad classes of
models for self-correction [6–9]. Despite this, some attempts have beenmade to engineer self-correcting
behavior in 2D systems [10–12].Many approaches towards realizing some aspects of self-correction in 3Dhave
also been found, notably including theHaah code [13–16] among others [17–23], though no local spinmodels in
2Dor 3D are known to be fully self-correcting. There are also several no-go results restricting possible self-
correctingmodels in 3D [8, 24–27]. For a comprehensive review of quantummemories atfinite temperature,
see [28].

We propose here a local spinmodel with dimension less than 3, and argue that itmay act as a self-correcting
quantummemory (SCQM). Our approach is based on fractal geometries, and inspired by the classical self-
correcting behavior of an Isingmodel on a Sierpinski carpet graph. The Sierpinski carpets [29] are a family of
fractal subsets of 2 withHausdorff dimension between 1 and 2.We propose a family of quantumCSS codes
that can be considered as 4D toric codes on discretizations of the product of two Sierpinski carpet fractals (with
appropriate boundary conditions). Concretely, our codes are defined through the homological product
construction [30, 31] applied to two toric codes on 2DSierpinski carpet graphs, yielding a code familywith
extensive degeneracy. Though thesemodels naturally embed in 4 , theirHausdorff dimensionmay be chosen to
be less than 3.We call these codes fractal product codes (FPCs).We also discuss the prospect of realizing these
codes locally in 3 , thoughwe do not prove that this is possible.

Thoughwe call them codes, FPCs shouldmore properly be consideredHamiltonian systems given by a
(negative) sumof stabilizer generators, andwe show that such systems have (at least) two phase transitions at
finite temperature, one associatedwith each sector (X orZ) of theCSS code. The tools we use to show this are
generalized duality transformations and correlation inequalities. Given these phase transitions, we argue that the
FPC systemmay act as a SCQMat sufficiently low temperatures. Though there is an extensive degeneracy, we
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expect the phase transitionswe identify to correspond to the appearance of thermal stability for one preferred
encoded qubit associatedwith global degrees of freedom.

The use of the Sierpinski carpet fractals is not crucial for our construction, and sowe also briefly discuss the
more general family of product codes that could arise fromother graphs, such as alternative fractal graphs.

1.1. TheCaltech rules
Apractical quantummemory could in principle take any number of forms. In order to concretely discuss a
SCQM, it is convenient to set a series of criteria which such a system should satisfy. As such, we briefly review the
so-calledCaltech rules.

Amodel is aD-dimensional SCQMunder theCaltech rules if:

(1) (finite spins) It consists offinite dimensional spins embedded in D with finite density

(2) (bounded local interactions) It evolves under a Hamiltonian comprised of a finite density of interactions of
bounded strength and bounded range

(3) (nontrivial codespace) It encodes at least one qubit in its degenerate ground space

(4) (perturbative stability) The logical space associated with at least one encoded qubit must be perturbatively
stable in the thermodynamic limit

(5) (efficient decoding)This encoded qubit allows for a polynomial time decoding algorithm

(6) (exponential lifetime)Under coupling to a thermal bath at some non-zero temperature in the weak-coupling
Markovian limit, the lifetime of this encoded qubit asymptotically scales exponentially in the number of
spins.

We purposely leave the precise definition of perturbative stability vague, andwill discuss it further in
section 5.2. It is also often required that theHamiltonian be gapped, butwhile thismay be desirable it is not a
necessary condition for self-correcting behavior.

The 4D toric code is an example of a 4DCaltech SCQM.Other proposals in 2 or 3 dimension oftenmake use
of long-range interactions, bosonicmodes in place of spins, or do not achieve asymptotically exponential
memory lifetime. Depending on the context, such relaxations of theCaltech rulesmay be perfectly reasonable
strategies to produce a practical passive quantum information storage device. The rules as stated above are
largely inspired by analogy to classically self-correcting Isingmodels, and are by design extremely restrictive.
Alternative criteria for self-correctingmemories are also discussed in [28].

Althoughwe believe our proposalmay be a candidate for a 3DCaltech SCQM,we stress that wemerely
provide suggestive arguments, and do not prove, that it satisfies themajority of these constraints.

2. Fractals and dimensionality

Key to our constructionwill be the notion of fractal geometry. Fractal objects have spatial dimension that
interpolates between the familiar integral topological dimensions. This dimension can be quantified in several
useful ways, such as theHausdorff dimension or the box-counting dimension.Wewill not give details ofmany
results familiar in fractal geometry, insteadwe refer the interested reader to a standard text such as [32].

Wewill consider only fractals that are particularly well-behaved, in that they are self-similar Borel sets
satisfying the open set condition. For fractals with these properties,many different fractal dimensions coincide,
and sowewill simply denote the dimension of a fractal F as Fdim (for concreteness this can be taken as the
Hausdorff dimension). The dimensions of these sets also satisfy F F F Fdim dim dim1 2 1 2( )´ = + , whichwill be
a useful identity.

2.1. Sierpinski carpets
Our construction ismotivated by a particular family of fractals, the Sierpinski carpets [29]. These fractals have
dimension between 1 and 2, and are naturally defined as self-similar subsets of 2 . Althoughmore general
definitions of Sierpinski carpets are sometimes used, for our purposes it will be sufficient to define a Sierpinski
carpet by two positive integers b and c, with b c( )- even and positive (following e.g. [33] or [34]).We denote the
resulting fractals by b cSC ,( ).

The fractals b cSC ,( ) can be defined as the limit of a sequence b c lSC , ,( ) as l  ¥.We call the b c lSC , ,( )
the (b, c) Sierpinski carpets at level l, and they are constructed by dividing the unit square into b2 smaller squares,
deleting the central c2 squares, and iterating this procedure l times. An example is shown infigure 1. The
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dimension of a (b, c) Sierpinski carpet is b c
b c

b
dimSC ,

ln

ln

2 2

( ) ( )
( )

=
-

. For positive integral b, c, and b c( )- , it is

clear that achievable dimensions are dense in the interval b c1 dimSC , 2( )< < (and empty outside).

2.2. Sierpinski carpet graphs
At level l, a (b, c) Sierpinski carpet is an arrangement of b c l2 2( )- out of a possible b l2 elementary squares.
Drawing the borders of these squares yields the Sierpinski carpet graphs, i.e.with a vertex at each corner of
occupied squares (note alternative conventions exist in the literature, see [33] or [34] for discussion).Wewill
denote such graphs by b c lSC , ,( ) . Examples are shown infigure 2. These graphs consist of

V b c l b c c
b b c

b b c

b c

b c
b, , 2

1

1
2 1 vertices, and 1

l
l l l

l2 2

2 2

2 2

2 2

2 2
( ) ( )

( )
( )
( )∣ ( )∣ ( )= - +

- -

- -
-

- -

- -
+ +

E b c l b c c
b b c

b b c
b, , 2 2 2 edges. 2

l
l l

l2 2

2 2

2 2
( ) ( )

( )∣ ( )∣ ( )= - +
- -

- -
+

It will be convenient to distinguish between ‘interior’ and ‘exterior’ plaquettes of the Sierpinski carpet
graphs. The interior plaquettes are those bounding occupied squares of the Sierpinski carpet fractal, while the
exterior plaquettes are theminimal cycles not generated by interior ones (i.e. those cycles bounding ‘deleted’
regions of the fractal, plus the outer boundary). b c lSC , ,( ) can be shown to contain P b c l, ,i∣ ( )∣ interior
plaquettes and P b c l, ,e∣ ( )∣ independent exterior plaquettes, with

P b c l b c, , and 3i
l2 2( )( ) ( )= -

P b c l
b c

b c
, ,

1

1
, 4e

l2 2

2 2

( )
( )( ) ( )=

- -

- -

noting that the outer boundary can be generated by the product of all interior and exterior plaquettes.
Wewill sometimes use the term ‘Sierpinski carpet’ to refer to either the fractal or graphwhen it is clear which

object ismeant from context.

2.3. Sierpinski carpet Isingmodels
It is possible to define a classical ferromagnetic Isingmodel on a Sierpinski carpet graph, and study the
thermodynamic properties forfixed b and c as l  ¥. Thesemodels have two-fold degenerate ground spaces,
and thus can be considered as classical codes. General arguments suggest [35, 36], many numerical studies
demonstrate (e.g. [33, 34]), and it can be rigorously proved [37–39], that such a family of Isingmodels has a

Figure 1. lSC 3, 1,( ) for l=0–4.

Figure 2. lSC 3, 1,( ) for l=0–4, overlaid on lSC 3, 1,( ).
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phase transition at non-zero temperature. This behavior is similar to the 2D Isingmodel, but in contrast to the
1D Isingmodel which famously has no ordered phase atfinite temperature. Intuitively, the existence of the phase
transition is due to the fact that the Sierpinski carpet graphs have infinite ramification order (i.e. in the limit
l  ¥, an infinite number of bondsmust be cut to separate the graph into two infinite pieces). General
arguments suggest that an Isingmodel defined on any family of fractal graphswith sufficiently large ramification
(in our context, scaling fast enoughwith l)will have afinite temperature phase transition, while thosewithfinite
ramification order do not exhibitfinite-temperature phase transitions. The Sierpinski triangle graphs (figure 3)
are an example of a family of fractal graphswith finite ramification, and the corresponding Isingmodel has only
a zero-temperature phase transition [40], much like the 1D Isingmodel.

Another quantity of interest is theminimumenergy barrier thatmust be overcome to transition between the
two degenerate code states by a sequence of spin flips.While this quantity is not as important as the existence of a
phase transition, we can nonetheless compute it. In order to transition between the two code states, every spin on
the latticemust beflipped. The energy barriermust then be at least proportional to the number of bonds it takes
to separate the graph into two comparably sized pieces (this can be thought of as the ramification). To calculate
the energy barrier in this way, we choose a cut thatminimizes the number of crossed bonds in the limit l  ¥,
and then compute the total number of bonds that would be frustrated if the spins on one side of the cut were
flipped and those on the other not. An example of such aminimal cut for odd b is a vertical line running down
the center of the graph, as shown infigure 4. It can directly be computed that the total number of bonds that such

aminimal cut crosses is
b c

b c

1

1
1

l 1( )
( )
- -
- -

+
+⎡

⎣⎢
⎤
⎦⎥, providing a lower bound to the energy barrier ED . Since the

total number of spins in this Isingmodel is n V b c l, ,∣ ( )∣º , we see that E O n b c b c

1

log 2 2( )( )D - -⎜ ⎟⎛
⎝

⎞
⎠, i.e. ED is

polynomial in n (as themaximumpossible energy is also polynomial in n, ED cannot be superpolynomial).
Though a polynomial energy barrier is typical formodels withfinite temperature phase transitions such as the
2D Isingmodel or the 4D toric code, examples exist of systemswith polynomial energy barrier but nofinite
temperature phase transition, such as thewelded codes [21]. It should also be noted that a polynomial energy
barrier is necessary for a stabilizerHamiltonian to have an exponentialmemory lifetime [41, 42], but not
sufficient [43].

Figure 3. Sierpinski triangle graphs at levels 1–4.

Figure 4.Aminimal cut through SC 3, 1, 3( ) shown in red, with frustrated bonds highlighted in orange.
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3. Fractal product codes

In this sectionwe define the FPCs. Althoughwe call them codes, they should be understood as either quantum
codes (in the sense of a subspace of a largerHilbert space) or as local commutingHamiltonians (such that the
frustration-free ground space is the corresponding codespace)depending on context. Since the codes we present
are (CSS) stabilizer codes, theHamiltonian formulation simply corresponds to a negative sumof generators of
the stabilizer group. As such, the presentation of the codes will containmore information than is necessary to
specify the codespace only, as wewill also be interested in the particular (typically non-minimal) choice of
generators of the stabilizer group. By setting theHamiltonian, this choice of generators will set the energetics and
thermodynamic properties of the system. Since the code is CSS, we can also consider theX sector and theZ
sectors of the code separately as classical codes or classicalHamiltonian systems in the analogousway.

In order to define the FPCs, it will be convenient to recall the homological product of two codes.

3.1.Homological product codes
The homological (or hypercomplex)product [30, 31] is a construction for building newCSS codes from existing
ones,making use of tools from algebraic topology.We need not introduce the full generality of the homological
product here andwill simply sketch it as is appropriate for our needs; we refer the interested reader to [30, 31], or
a standard reference on algebraic topology, e.g. [44].

In the homological product construction, each quantumCSS code  is represented by three vector spaces
over the binary field 2 : 0 , 1 , and 2 , and twomaps :2 2 1 ¶  and :1 1 0 ¶  such that 01 2

 ¶ ¶ = . The
basis vectors of 1 correspond to qubits, while those of 0 ( 2 ) correspond toX-type (Z-type) stabilizer
generators. Note that these need not beminimal generating sets of stabilizers, and in fact the choice of generators
significantly affects the construction. Themaps 2

¶ and T
1( )¶ define the qubits onwhich each stabilizer

generator has support, and the constraint 01 2
 ¶ ¶ = enforces that the stabilizer group is abelian.

Often, as will be the case in our construction, the basis vectors of i correspond to geometrical objects of
dimension i, e.g.vertices, edges, and plaquettes of some cell complex for i 0, 1, 2= respectively. Themaps i

¶
then specify the i 1( )- -dimensional objects that comprise the boundary of a given i-dimensional object. This
description can be understood as a generalized toric code construction, where qubits are placed on i-
dimensional objects,X-type stabilizers associatedwith i 1( )- -dimensional objects, andZ-type stabilizers
associatedwith i 1( )+ -dimensional objects.

Associatedwith each space i is a homology group H ker imi i i 1( )  = ¶ ¶ + and cohomology group

H ker imi
i

T
i

T
1( ) ( ) ( )  = ¶ ¶ - (with 3

¶ and 0
¶ maps from and to the zero space, respectively, such that

im im 0
T

3 0( ) ¶ = ¶ = , ker 0 0
¶ = , and ker

T
3 3( ) ¶ = ). In this language, theX-type andZ-type logical

operators correspond to elements of H1( ) and H1( ) respectively. As such, the number of encoded qubits in
such a code is given by k Hdim dim ker dim im1 1 2( ) ( ) ( )

 º = ¶ - ¶ (or equivalently Hdim 1( ) ).
The homological product of two codes  and ¢ yields a newobject  Ä ¢withfive spaces and fourmaps,

given by

, 5
j i

j

i i j
0

( ) ( ) ( )   ÅÄ ¢ = Ä ¢
=

-

c c c c c c 6j i j i i i j i i i j i( )( ) ( )( ) ( )   ¶ Ä ¢ = ¶ Ä ¢ + Ä ¶ ¢Ä ¢
- -

¢
-

for ci iÎ and ci i¢ Î ¢.
We could define three different codes from the general construction, but for our purposes we take the

middle homological product code, denoted by mid( ) Ä ¢ and defined by the three spaces 1( ) Ä ¢ ,

2( ) Ä ¢ , 3( ) Ä ¢ , and twomaps 2
( ) ¶ Ä ¢ , and 3

( ) ¶ Ä ¢ . In mid( ) Ä ¢ , basis vectors of the space 2( ) Ä ¢
correspond to qubits, while basis vectors of the spaces 1( ) Ä ¢ and 3( ) Ä ¢ correspond toX- orZ-type
stabilizer generators, respectively.

Properties of the homological product codes can be determined directly from those of their component
codes. In particular, it will be useful to determine the logical operators of such codes. These can be calculated
using theKünneth formulae

H H H , 7i
j k

j k i

j k
, :

( ) ( )( ) ( )   ÅÄ ¢ = Ä ¢

+ =

H H H . 8i

j k
j k i

j k

, :
( ) ( )( ) ( )   ÅÄ ¢ = Ä ¢

+ =
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The logical operators of themiddle homological product code correspond to the elements of the homology and
cohomology groups H2 ( ) Ä ¢ and H 2 ( ) Ä ¢ , and correspondingly the number of encoded qubits is given
by k Hdimmid 2 ( )( )    = Ä ¢Ä ¢ .

3.2.Defining the FPCs
Consider the toric code [45] (ormore properly the surface code [1]) b c l, ,( ) on a Sierpinski carpet
graph b c lSC , ,( ) defined in the standardway, so that qubits reside on the edges andX- orZ-type stabilizers are
associatedwith vertices or plaquettes of the graph, respectively. These are conventionally given as
A Xv e v e=

~
and B Zp e p e=

~
forXe andZe the Pauli operators on edge e.We only associateZ-type

stabilizers with the interior plaquettes, so as to retain locality of the stabilizer generators.
This is a surface codewith holes punched into themanifold for each independent exterior plaquette, each of

these holes and the outer boundary having smooth boundary conditions. Since such a systemwith h smooth
holes plus the outer smooth boundary encodes h qubits [1], and the Sierpinski carpet graph b c lSC , ,( ) has
P b c l, ,e∣ ( )∣exterior plaquettes not including the outer boundary, it is clear that the (logarithmof the) degeneracy

of this code is k P
b c

b c

1

1
e

l2 2

2 2
∣ ∣ ( )

( ) = =
- -
- -

(we suppress the b c l, ,( ) labels as convenient). It can also be

directly verified that the number of qubits in the system is equal to the total number of independent stabilizers,
plus the number of encoded qubits, i.e. E P V P1i e∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣= + - + , wherewe have noted that there are
V 1∣ ∣ - independentX-type stabilizers.

In the homological language, the spaces 0 , 1 , and 2 correspond to vertices, edges, and interior plaquettes
of b c lSC , ,( ) respectively. The homology group H0 ( ) is given as the quotient of the space of vertices by the
space of vertices that are boundaries of some set of edges. Since all sets containing an even number of vertices are
boundaries, we see that H0 2( ) @ breaks into even and odd elements. In contrast, the second homology
group H2 ( ) is given as the sets of plaquettes with no boundary, which is empty, giving H 02 ( ) @ . Thefirst
homology group is given by the quotient of the cycles in the graph by the interior boundaries. Since there are
P ke∣ ∣ = independent exterior boundaries, we find H k

1 2( ) @ as expected.
Wewill alsomake use of the dual code * , where theX-type andZ-type stabilizers have been exchanged.

This is the toric code on the dual graph to b c lSC , ,( ) (i.e. where plaquettes and vertices have been exchanged,
andwhichwe denote b c lSC , ,( )* , see figure 5), with the appropriate high-coordination vertices neglected for
the purposes of defining the stabilizer group. In the homological language, a dual code has 0 2* = , 1 1* = ,

T
1 2( )
* ¶ = ¶ and ** = . From these duality properties, the homology groups of this code are immediate:

H2 2( )* @ , H 00 ( )* @ , and H k
1 2( ) @ .

We define the family of b c lFPCs , ,( ) as themiddle homological product mid( )* Ä for suitable b and c.
The physical qubits of this code correspond to basis vectors of

2 0 2 1 1 2 0( )* * * *       Ä = Ä Å Ä Å Ä . There are thus
n V b c l E b c l P b c l, , , , , ,b c l iFPC , ,

2 2 2∣ ( )∣ ∣ ( )∣ ∣ ( )∣( ) º + + physical qubits in this code.
The degeneracy of these codes can easily be determined by theKünneth formula as

k H H H H H Hdim dim dim , 9b c lFPC , , 0 2 1 1 2 0( ) ( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )( ) * * *     = Ä + Ä + Ä

k1 1 0 0 , 10
2( )( · ) ( · ) ( )= + +

b c

b c
1

1

1
, 11

l2 2

2 2

2( )
( ) ( )= +

- -

- -

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

where, in the second last line, we note that H H2 0 2( ) ( )*  @ @ and H H 02 0( ) ( )* @ @ .

Figure 5. lSC 3, 1,( )* for l=0–3, neglecting the exterior vertices.
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The number of qubits in the code n b c lFPC , ,( ) scales asymptotically as b c l2 2 2( )- , as does the number of

encoded qubits k b c lFPC , ,( ), suggesting a constant rate r
k

n
b c l

b c l

b c l
FPC , ,

FPC , ,

FPC , ,
( )

( )

( )
º .

The degeneracy of this system comes from two different sources. The H H1 1( ) ( )* Ä term gives rise to an

extensive number of encoded qubits
b c

b c

1

1

l2 2

2 2

2( )
( )

- -
- -

⎛
⎝⎜

⎞
⎠⎟ , andwewill call these qubits ‘local’. By contrast, the

H H0 2( ) ( )* Ä termproduces a single qubit of degeneracy, andwe call this qubit ‘global’. The two kinds of
encoded qubits have quite different properties, andwewill largely focus on the global encoded qubit.

Some intuition for the properties of an FPC can be gained by considering its relation to the 4D toric code.

Noting that both b c lSC , ,( ) and b c lSC , ,( )* are subgraphs of the square lattice, we see that

b c l b c lSC , , SC , ,( ) ( )*´  is a subgraph of the 4Dhypercubic lattice. The qubits of the FPC correspond to basis

vectors of 2( )* Ä , i.e.(interior)plaquettes of b c l b c lSC , , SC , ,( ) ( )*´  . Similarly theX-type andZ-type
stabilizers correspond to the links 1( )* Ä and cubes 3( )* Ä respectively.When interpreting an FPC in
this way, it appears as the 4D toric code [1] defined on a fractal subset of 4 . In order to complete the
specificationwemust determine the boundary conditions at each boundary of this surface. If we consider the

graph b c lSC , ,( ) to be oriented in the x yˆ– ˆ plane, and extended by b c lSC , ,( )* into the w zˆ – ˆ plane, we should
consider boundaries with normals in the x̂ or ŷ directions to be ‘smooth’ and those in the ŵ or ẑ directions to be
‘rough’. It is straightforward to show that the total number of qubits in this code scales asymptotically as
L b c2dimSC ,( ) for L the linear lattice size of the hypercubic lattice.

As previouslymentioned, the encoded qubits of this code can be classified as either global or local.
Interpreting the system as a punctured 4D toric code, we can seewhy this characterization has beenmade. As can
be seen by studying the homology and cohomology groups H2 ( )* Ä and H 2 ( )* Ä , each local qubit has
corresponding logical operators whose support can be localized on amembrane around and between punctures
in the 4D toric code, while the global qubit has corresponding logical operators that run in either the x yˆ– ˆ plane
or the w zˆ – ˆ plane, and so have support on amembrane in the shape of the Sierpinski carpet b c lSC , ,( ). These
global logical operators inheritmuch of the structure of the Isingmodel on the Sierpinski carpet, and in
particular their polynomial energy barrier.

It is clear that the FPCs are self-dual in the sense that by exchanging the x̂ and ŷ axes with the ŵ and ẑ axes
we exchange theX andZ sectors of the code. Algebraically, this can be seen from the fact that the homological
products  Ä ¢ and  ¢ Ä are isomorphic.

4. Thermodynamics of FPCs

TheHamiltonian for an FPC is given by a negative sumof stabilizer generators for each link and cube of the
lattice:

H b c l X Z, , 12
A

j A

j

B
k B

kFPC
T

1
2

3 3
( ) ( )( ) ( )

( ) ( )
* ** *      

å  å = - -
Î Ä

Î ¶
Î Ä Î¶Ä Ä⎛

⎝⎜
⎞
⎠⎟

withXi andZi the relevant Paulimatrices on qubit i.
In order to study the thermodynamic properties of the quantumHamiltonians corresponding to

b c lFPC , ,( ), it will be convenient to consider each of the two sectorsX andZ individually. Since theX-type and
Z-type stabilizers commute pairwise, for the purposes of considering thermalization processes we can consider
each sector separately (see [2] for an analogous discussion).We denote the corresponding classical codes

b c lFPC , ,X ( ) and b c lFPC , ,Z ( )with associatedHamiltonians

H b c l X, , , 13
A

j A

jFPCX
T

1
2

( ) ( )
( ) ( )

* *   

å = -
Î Ä

Î ¶
Ä⎛

⎝⎜
⎞
⎠⎟

H b c l Z, , . 14
B

k B

kFPCZ

3 3
( ) ( )

( ) ( )
* *   

å = -
Î Ä Î¶

Ä

As noted, these two systems are related by a rotation and so can be considered dual to one another,meaningwe
need only study the properties of one of these classical codes. The thermodynamic limit corresponds to taking
l  ¥ forfixed b and c.

Themain technical result of this paper is the following:

Theorem1.The classical Hamiltonians corresponding to each of the classical codes b cFPC ,X ( ) and b cFPC ,Z ( ) have
finite temperature phase transitions.
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The proof of this theorem, given in section 4.3,makes use of twomain tools: duality transformations and
correlation inequalities. Both of these results apply to the class of generalized Isingmodels, towhich FPCX and
FPCZ belong. Generalized Isingmodels consist of ferromagnetic interactions on sets of spins (for simplicity,
spin- 1

2
). Such systems are specified by a lattice of spinsΛ, and interaction strengths J 0R  for each R Ì L, with

aHamiltonian

H J J Z . 15R
R

R
R

j R
j( ){ } ( )å = -

ÍL Î

It is clear that each of the sectors of the FPC can be trivially written in this way (up to a trivial change of basis).
Wewill be interested in the phase transitions of such amodel at finite inverse temperatureβ, and so it will be

convenient to define rescaled interaction strengths K JR Rb= , the set of non-trivial interactions K 0R{ } = > ,
and their supports R KR{ ∣ } = Í L Î .Wewill also abuse notation and treat suitable sets as groupswhen
convenient, withmultiplication given as the exclusive union g g g g g g1 2 1 2 1 2( ) ( )⧹È Ç= for gi in an appropriate
set such as  . Also of interest is the symmetry set (or group)  , with elements

R B1 1S B{ ∣( ) } = - = " ÎÇ , and N , defined as the number of generators of the group  , so that
2N∣ ∣ = .  should be understood physically as the group of spin flips that commutewith each term in the

Hamiltonian. Finally, it is convenient to construct the group of constraints
C Z I

c C j c j
i i

{ ∣ }   = Í =
Î Î

. Elements of this group are sets of interactions that are not independent.

The partition function of a generalized Isingmodel is

K, exp 1 , 16
R B

B
R B( ) ( ) ( )∣ ∣ 


å å ÇL = -
ÍL Î

⎛
⎝⎜

⎞
⎠⎟

where theR represents possible sets of spins pointing down, and so Z
j B jÎ

acting on the corresponding state

will accumulate a phase 1 R B( )- Ç .

4.1. Correlation inequalities
TheGKS inequalities [46, 47] (see also [48]) are simple correlation inequalities for ferromagnetic systems. These
inequalities state that for a generalized Isingmodel

Z Z Z Z . 17
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An immediate corollary of this inequality is that

K
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Intuitively, increasing the strength of, or addingmore ferromagnetic interactions cannot decrease the
correlations present in the system. In particular, if there exists an ordered phase of a ferromagnetic system, it
cannot be destroyed by adding extra symmetry-respecting ferromagnetic terms to theHamiltonian. This is the
crucial sense inwhichwewillmake use of theGKS inequalities.

4.2.Duality transformations on general Isingmodels
Duality transformations are extensively used in statisticalmechanics to relate the thermodynamic properties of
differentmodels. They have previously been used to study the properties of topologically orderedmodels [3, 8].
Wemake use of a particular family of duality transformations on general Isingmodels due toMerlini and
Gruber [49] that have a natural geometrical interpretation. Given a systemof spinsΛ and set of interactions ,
Merlini andGruber give a prescription to construct a dual system *L with interactions * and a (surjective)map

: * j  such that

K, 2 sinh 2 , 19N N

B
B ( )( )( ) · ( )∣ ∣ * ** *

   


  L = LL - L + -

Î

for Ke tanhK
B B B

2
B 1
*

*
* = j

-
Î - . This relation between the partition functions ensures that a non-analyticity in

the free energy (i.e. a phase transition) in the ,( )* *L system also corresponds to a phase transition in the
,( )L system at an appropriately rescaled temperature.
In order to construct such a dual system, we consider an arbitrary generating set of the constraint group  .

For each generatorCi, we assign a site vi* *Î L . The interaction regions Bj* are labelled by interaction terms

Bj Î , with B v B Cj i j i{ ∣ }* * *= Î L Î .
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4.3. Finite temperature phase transition
Given theMerlini–Gruber duality transformation and theGKS inequalities, we can nowprove theorem 1.

Consider b c lFPC , ,Z ( ). The set of spins in thismodelΛ are associatedwith (a subset of the) faces of the
hypercubic lattice. Of course, this is according to their presence in 2( )* Ä , or equivalently

G b c l b c lSC , , SC , ,( ) ( )*º ´  modulo exterior boundaries (wewill also useG to label this corresponding
lattice, where it is understood that exterior boundaries as neglected as appropriate). The interaction regions 
are associatedwith cubes ofG, and each includes the faces that bound it.We perform aMerlini–Gruber duality
transformation on this system as follows:

The constraint group of FPCZ can be generated by elements labelled by hypercubes (formed by all cubes
bounding the hypercube) and exterior boundaries (formed by all smooth cubes terminating at that boundary) of
the latticeG. Thus to determine the dual system, we place sites at each hypercube and exterior boundary ofG,
andwe determine the interactions of the dual systemby noting that each cube interaction in the bulk belongs to
two hypercubes, and at the (smooth) boundaries each cube interaction belongs to a single hypercube constraint
and the relevant exterior boundary constraint. Thus the interactions of the dual systemwill all be two-body.
Though it is relatively clearwhat the geometry of such a system looks like, we need not consider the entire lattice.
Instead, it suffices to consider a single slice in the w zˆ – ˆ plane.

If we consider extending the graph b c lSC , ,( )* (lying in the w zˆ – ˆ plane) by a single plaquette from
b c lSC , ,( ) , wefind hypercubes corresponding to each plaquette of b c lSC , ,( )* . Since the dual system replaces

hypercubes by vertices, and has nearest-neighbor two-body interactions, the corresponding slice of the dual

system gives an Isingmodel on the planar dual graph to b c lSC , ,( )* , that is, b c lSC , ,( ) . Thus, theHamiltonian
of the dual systemwill consist of an Isingmodel on b c lSC , ,( ) plus some other terms, i.e.

H H, 20SC( ) ( )* *L = + ¼

forHSC the ferromagnetic Isingmodel on the relevant b c l, ,( ) Sierpinski carpet graph as described in section 2.3.
Since the symmetry group of the dualmodel is simply generated by X

v v* * * ÎL
, and all terms neglected in (20)

are two-body, it is clear that they respect this symmetry.
Now appealing to theGKS inequality, if wewere to beginwith the systemHSC, then by adding the additional

symmetry-respecting ferromagnetic terms to give H ,( )* *L we cannot decrease the (spontaneous)
magnetization of the system. Since it is known that the Isingmodel on a Sierpinski carpetHSC has amagnetically
ordered phase for some range offinite inverse temperaturesβ [37–39], this tells us that H ,( )* *L will also have
such an ordered phase. Although there are infinitelymany dual interactions acting on each of the spins
corresponding to exterior boundaries ofG, in the bulk H ,( )* *L acts with a bounded density of bounded
strength operators.We therefore conclude that in the 0b  limit the systemwill be disordered, demonstrating
that theremust be afinite temperature phase transition.

Since H ,( )* *L is dual to theHamiltonian HFPCZ
, we deduce that it too possesses afinite temperature

phase transition. The symmetry between FPCZ and FPCX implies that the same is true for theX sector of the
theory, completing the proof of theorem1.

Though the following is by nomeans a rigorous argument, we intuitively associate the identified phase
transitionswith the global encoded qubit, as theHamiltonianHSC in equation (20) corresponds only to action
on those qubits of HFPCZ

in a cross-sectional slice of the lattice, as do the logical operators of the global encoded
qubit. The existence offinite temperature phase transitions such as those identified in theorem 1 is indicative
that the systemmay be able to robustly store quantum information in this global qubit atfinite temperature.

5. Revisiting theCaltech rules

By construction, FPCs satisfy the non-trivial codespace Caltech rule, as has been shownusing theKünneth
formula in equation (11).Wewill nowdiscuss the remaining rules in turn.

5.1. Embedding into 3 (finite spins, bounded local interactions)
The fractal lattice onwhich an FPC is defined is a discretization of b c b cSC , SC ,( ) ( )´ . By choosing the

parameters b and c such that b cdimSC ,
3

2
( )  , this fractal will haveHausdorff dimension less than or equal to

3. Though thismay be enough by itself towarrant curiosity about the properties of such amodel, it is clearly a
desirable feature that these codes can be implementedwith local interactions in 3 .

Most studies of embeddings of fractals into other spaces are concernedwith bilipschitz embeddings. Such an
embeddingwould neither increase distances (making previously local interactions nonlocal) or decrease
distances (increasing the density of sites) bymore than a constant factor. It seems unlikely that a bilipschitz
embedding is possible from b c b cSC , SC ,( ) ( )´ to 3 , nomatter what values of b and c are chosen.However,

9

New J. Phys. 18 (2016) 013050 CGBrell



such an embedding is not necessary to preserve locality. In particular, it is possible for amap to take a finite
number of far separated points to the same location, and still preserve locality in the sense that we require. This is
because such anmapwill only increase the density of points by a constant factor. As an example, a projection of
the torus into the planewillmap two distant points to the same location, but in doing sowill only increase the
density of sites by a factor of 2. This would still allow themodel to satisfy the relevant Caltech rules. Furthermore,
the fact that the sites of our code only lie on a discrete lattice, instead of in over the entire fractal as would
normally be considered,may provide further flexibility in constructing a locality-preservingmap into 3 .

While we leave the realization of FPCs in 3 as an open question, wewill briefly discuss some relevant facts
that are suggestive of this possibility. It is well known that a randomprojection of a fractal with dimension
d D< into D will yield an object with dimension d [32]. By itself, this is suggestive that certain features of a
suitable fractal survive under a randomprojection. Clearly a projectionwill not increase the distance between
qubits, however onemust also bewary that this projectionwill not cause the density to diverge.

In order to consider whether or not this will happen for a randomprojection of b c b cSC , SC ,( ) ( )´ into
3 , it is interesting to consider a related family of fractals with low lacunarity. Lacunarity is ameasure of violation

of translation invariance, and low-lacunarity Sierpinski carpets can be constructed by varying the location of the
removed volumes at each level [50]. At afixedHausdorff dimension, the lacunarity can bemade arbitrarily
small, inwhich case the density of points in the fractal approaches uniformity. If theHausdorff dimension is less
than 3, then a randomprojection of a fractal with vanishing lacunarity into 3 should lead to a bounded density
as required. Using these ideas, one could either directly define a family of low-lacunarity FPCs that can be locally
realized in 3 , or itmay be possible to extrapolate from this result to demonstrate a local realization in 3 of the
family of FPCs defined in section 3.2.

Complicating this simple idea is the fact that that taking both the low lacunarity limit and the
thermodynamic limit of our discrete lattice together at a fixedHausdorff dimension seems quite a subtle task.
Another obstacle is that constructions of low lacunarity fractals are not unique or canonical. In addition,
although it is expected that Isingmodels on low-lacunarity Sierpinski carpets will have finite temperature phase
transitions [50], the effect of lacunarity on the thermodynamic properties such as the critical temperature of
Isingmodels is not well understood [36, 51]. Another related class of fractals thatmay be instructive for
considering projections into 3 are the randomSierpinski carpets [52], although their properties are also poorly
understood.

5.2. Perturbative stability
Typically, perturbative stability of the codespace of a system similar to an FPC is shown by proving that the gap
and ground space degeneracy is stable under arbitrary quasi-local perturbations, as in the topological stability
theorems [53–55]. This guarantees that a quasi-adiabatic continuation between the ground spaces of the
perturbed and unperturbedmodels exists [53, 56], ensuring that their properties are stable. ThoughHFPC are
gapped, the topological stability theorems do not apply to our system, as the ground space does not have
macroscopic distance (due to the presence of the local encoded qubits). Under generic perturbation, naive
perturbation theory suggests that the degeneracies associatedwith the local encoded qubits will be lifted, while
splitting of levels associatedwith the global encoded qubit will be exponentially suppressed in system size as
desired (due to the local indistinguishability of the global qubit states).

In order tomake the stability of the global encoded qubitmore concrete, a finer notion of perturbative
stability seems to be required.We do not expect that our entire ground spacewill be stable, nor a subspace of it.
Instead, it seems likely that by factorizing the ground space into the global encoded qubit system and the local
encoded qubit systems, the global subsystemwill be stable in the sense that an appropriate continuation could be
constructed from the unperturbed logical space to the perturbed logical space. Similar considerations would
apply to other systems thatmight be of independent interest, such as a toric codewith a small but non-zero
density of punctures, or a nonabelian anyonmodel with afinite density of particles.

Since the specification of which perturbations are local is dependent on the embedding of the code into
Euclidean space, onemightwonder whether the perturbative stability properties of an FPC could be different
depending onwhether it is realized in 4 , or in 3 (assuming that this is possible). However, since the relevant
arguments in the topological stability theorems do not directly depend on the embedding, only on the properties
of the code itself such as the distance scaling polynomially with L, we do not expect that this will be the case.

5.3. Efficient decoding
Due to the similarity between the 4D toric code and the FPCs, it seems likely that any decoding algorithm for the
4D toric codemay be adapted to decode the FPCs. A notable example of such a decoder that also applies to
topological codes in general is the topological renormalization group decoder due to Bravyi andHaah [15, 16].
Unfortunately, for the same reasons that we could not apply the topological stability theorems (namely the
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presence of local encoded qubits), the proof of threshold for this decoder does not directly apply for the FPCs.
However, we anticipate that this algorithm andproof of threshold could be adapted to our setting. Given the
self-similar nature of the FPCs, alternative renormalization group based decodingmethods [57–59]might also
be effective decoders for these systems. Thoughwewould not expect identical thresholds, itmay also be possible
to derive optimal thresholds for FPCs using similar statisticalmechanical tools as have been applied to the 4D
toric code [60].

For the purposes of decoding the global encoded qubit, the FPC should be treated as a subsystem code
[61, 62], with the local encoded degrees of freedomplaying the role of gauge qubits. Other natural candidates for
an FPCdecoding algorithm are the 4D toric code heat-bath algorithm [1] or a variant of Toom’s rule [63].
Particularly, a concrete proof that the FPC is indeed a self-correctingmemorywould likely also guarantee the
existence of a polynomial decoding algorithm, as in [2] for the 4D toric code. For similar reasons, we also expect
that the FPCsmay be single-shot fault-tolerant [64].

5.4. Exponential lifetime
Wehave not proven that thememory lifetime of a FPC scales exponentially with system size for some finite
temperatures, simply that there are phase transitions of the system atfinite temperature. This seems highly
suggestive that the systemmay function as a SCQMbelow the critical temperatures, but the relation between
thermodynamic phase transitions andmemory lifetime is not fully understood [43, 65] and so a rigorous proof
of this fact is desirable.We anticipate that itmay be possible to construct such a proof by combining the
techniques used to prove the exponential lifetime of the 4D toric code [2] (see also [66])with those used in the
Peierls-type proof of thefinite-temperature phase transition in the Sierpinski carpet Isingmodel [38, 39].

6.Discussion

6.1. Alternative FPCs
Themain ideas of this construction are clearly not limited to the Sierpinski carpet fractals. The results and
methods apply directly to any pair of well-behaved fractals (e.g. self-similar Borel sets satisfying the open set
condition)with infinite ramification, corresponding Isingmodels withfinite temperature phase transitions, and
combined dimension 3 . For these fractals an FPC can be constructed in an analogousway, andmay also act as a
SCQM in 3D. Similarly, by varying the relative dimension of the two fractals used, one can introduce an
asymmetry between the critical temperatures of theX andZ sectors of the system.General results are knownon
the existence of phase transitions in fractal graphs [35, 36, 39], and families of infinitely ramified fractals are
known [67], though these are not as well studied as the Sierpinski carpets treated here.

It should also be noted that the particular discretization of the fractal used to define the fractal graph does not
play a critical role in our construction. An alternative convention for defining the Sierpinski carpet graphs, for
example as discussed in [33, 34], would be equally amenable to our analysis.

Though our construction seems tomanifestly break translation invariance, itmight also be possible to
restore it approximately. There is some evidence that variants of the Sierpinski carpet with low lacunarity behave
like concrete geometric realizations of hypercubic lattices with fractional dimension in certain limits [50]. It
would be interesting to seewhether the use of these fractal graphswould allow for a translation-invariant FPC as
a limiting case. In order to answer such questions, the precise details of any embedding into 3 would need to be
investigated.

6.2. Non-FPCs
In addition to the possibility of using alternative fractal graphs to define other families of FPCs,many of our
techniqueswould apply to suitable non-fractal (non-self-similar) graphs. The twomain features of the
Sierpinski carpet graphs that have been important are that an Isingmodel on the graph has a finite temperature
phase transition, and that the total number of sites of the graph is growing slower than L

3
2 for L the linear lattice

size.We can also consider arbitrary finitely coordinated graphswithfinite temperature Isingmodel phase
transitions and suitably slowly growing number of sites.

A family of graphswith these properties can be constructed, for example, by taking an L×L square lattice
and dividing it into squares of size L L´a a for some 0 2a< < . Central regions fromwithin each of these
squares would then be removed to leave only a border of width Lb for some 0 b a< < , as shown infigure 6.

The resulting lattice has a total number of points that scales as O L2( )a b- + . Choosing
1

2
( ) a b- gives the

number of sites growing slower than L
3
2 as required.

Lattices of this type contain as a subgraphs L L´a b polynomial-sized rectangular sections of square lattice.
An Isingmodel on this subgraphwould exhibit a phase transition and an exponentialmemory lifetime, and
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these properties can be extended to an Isingmodel on the entire lattice by use of theGKS inequalities described
in section 4.1. As in the case of the Sierpinski carpet FPCs, quantumproduct codes based on these graphswould
inherit these phase transitions.

Although this example would not allow for a local realization of the resulting product code in 3 , itmay be
possible that the additional freedom to use non-fractal graphs such as thismight in general allow formore
flexibility to construct a localmodel in 3 .

6.3. Relation to previouswork
Several existing quantum codes have relations to fractal geometry. Two of themost prominent are theHaah
codes [13] andYoshida’s fractal spin liquids [68].While onemotivation for considering such codes has also been
to engineer self-correcting behavior, the relationship between ourwork and thesemodels appears largely
superficial. In these previousworks, the systemswere typically defined as local, translation-invariant
Hamiltonians acting on a regular cubic lattice. These systems are engineered so that the support of their logical
operators is a fractal subset of the lattice. Significantly, such fractals are offinite ramification. In contrast, the
FPCHamiltonianswe study here are themselves defined on a fractal lattice, breaking translation invariance and
directly giving rise to the infinitely ramified fractal logical operators. The breaking of translation invariance,
alongwith scale invariance, also directly allows us to escape no-go theorems such as that of [25].

Recently, a new code construction has appeared that produces local subsystem codeswith properties
inherited from an arbitrary base stabilizer code [69]. Using a concatenated base code, the resulting subsystem
code appears to have fractal structure. Again, the relationship between these codes and ourwork is purely
superficial, in particular noting that the FPCs are commuting stabilizer codemodels while the codes of [69] are
non-commuting subsystem codes.

6.4. Numerical simulation
In the absence of a rigorous proof of self-correction, an attractive strategy is to attempt some numerical
simulation of thermalization for an FPC system.However, this could prove prohibitively difficult since the FPCs
are only defined for certain (exponentially spaced) system sizes. The smallest FPC family with dimension 3< ,
corresponding to b=14 and c=12, for l 0, 1, 2, 3= requires 33, 3.8 10 , 8.3 104 7´ ´ , and 2.1 1011´
qubits respectively. Since the l 0= case is simply a standard toric code, this leaves very little ability to reasonably
simulate these systems. Even by dropping the requirement that the systemhave dimension 3< , the smallest code
family (with b c3, 1= = ) still requires 1.4 108´ qubits for l 4= . In order to realistically simulate these
systems, itmay be necessary tofind someway to consistently interpolate between these system sizes. This
difficultymay be somewhat alleviated by the use ofmodels based on non-fractal graphs that can be defined on
more intermediate lattice sizes as described in section 6.2.

Figure 6.Anon-fractal graph that could be used as the basis for a product code can be formed by removing regions from an L×L
square lattice.α andβ can then be chosen such that the total number of sites of this graph grows slower than L

3
2 , without requiring the

self-similarity of a fractal graph.
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