
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 194.95.157.141

This content was downloaded on 03/08/2016 at 09:00

Please note that terms and conditions apply.

A representation-free description of the Kasevich–Chu interferometer: a resolution of the

redshift controversy

View the table of contents for this issue, or go to the journal homepage for more

2013 New J. Phys. 15 013007

(http://iopscience.iop.org/1367-2630/15/1/013007)

Home Search Collections Journals About Contact us My IOPscience

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutionelles Repositorium der Leibniz Universität Hannover

https://core.ac.uk/display/52920192?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
iopscience.iop.org/page/terms
http://iopscience.iop.org/1367-2630/15/1
http://iopscience.iop.org/1367-2630
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


A representation-free description of the
Kasevich–Chu interferometer: a resolution of the
redshift controversy

Wolfgang P Schleich1, Daniel M Greenberger2

and Ernst M Rasel3
1 Institut für Quantenphysik and Center for Integrated Quantum Science and
Technology (IQST), Universität Ulm, Albert Einstein Allee 11, D-89069 Ulm,
Germany
2 City College of New York, New York, NY 10031, USA
3 Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1,
D-30167 Hannover, Germany
E-mail: wolfgang.schleich@uni-ulm.de, greenbgr@sci.ccny.cuny.edu
and rasel@iqo.uni-hannover.de

New Journal of Physics 15 (2013) 013007 (48pp)
Received 18 July 2012
Published 7 January 2013
Online at http://www.njp.org/
doi:10.1088/1367-2630/15/1/013007

Abstract. Motivated by a recent claim by Müller et al (2010 Nature 463
926–9) that an atom interferometer can serve as an atom clock to measure
the gravitational redshift with an unprecedented accuracy, we provide a
representation-free description of the Kasevich–Chu interferometer based on
operator algebra. We use this framework to show that the operator product
determining the number of atoms at the exit ports of the interferometer is a
c-number phase factor whose phase is the sum of only two phases: one is
due to the acceleration of the phases of the laser pulses and the other one is
due to the acceleration of the atom. This formulation brings out most clearly
that this interferometer is an accelerometer or a gravimeter. Moreover, we
point out that in different representations of quantum mechanics such as the
position or the momentum representation the phase shift appears as though
it originates from different physical phenomena. Due to this representation
dependence conclusions concerning an enhanced accuracy derived in a specific
representation are unfounded.
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1. Introduction

The wave–particle dualism of quantum mechanics [1], with its mind boggling manifestations
such as Einstein–Podolsky–Rosen correlations [2], delayed choice experiments [3] and the
quantum eraser [4] to name a few, has always been and still is a conundrum; in recent
years there has been a shift in the paradigm. Rather than trying to understand these alien
features of quantum theory we put them to use for technological applications. Indeed, the new
field of quantum technology has emerged giving birth to quantum cryptography and quantum
information processing with the long term goal of a building quantum computer.

1.1. At the interface of quantum mechanics and general relativity

At the same time, the wave nature of matter has opened a new avenue for precision testing
of the foundations of physics. Indeed, matter wave interferometry has come a long way from
the original experiment of scattering electrons from a single crystal of nickel by Davisson and
Germer [5] via neutron interferometry [6] to electron [7], atom, or molecule interferometers [8];
even large molecules such as C60 show interference properties [9]. A new era has started with the
creation of cold atomic beams and the use of light fields as beam splitters [10, 11] and ultra-cold
atoms in the form of Bose–Einstein condensates. Here, new tests of general relativity [12], such
as the gravito-magnetic field governing the Lense–Thirring effect [13–15], are now within reach
by atom interferometry [16–18]. Since atoms experience gravity, such precision tests require
microgravity as provided by the International Space Station, and there is indeed a new drive to
put atom interferometers into space [19].

An important step toward this goal is a recent experiment performed at the drop tower in
Bremen [20] where a Bose–Einstein condensate was created and measured while in free fall.
Similarly, the experiments demonstrating interferometry with laser-cooled atoms on a parabolic
flight of a plane [21–23] or with Bose–Einstein condensates at the drop tower [24] provide
important stepping stones toward tests of general relativity [25] such as the equivalence principle
with the wave nature of matter. In this context we also draw attention to the measurement of the
quantized energy levels of a neutron in the gravitational field [26] and the recent application of
the Ramsey method to measure the gravitationally induced shift [27, 28].

These experiments build on the extremely beautiful and seminal neutron-interference
experiment [29–31] by Roberto Collela, Albert Overhauser, and Sam Werner (COW) which
was carried out over 35 years ago and which for the first time saw a matter wave interference
effect due to gravity. Even then the question arose whether one could see in such an arrangement
relativistic effects and the question was largely resolved [32, 33].

However, recently in the context of atom optics [34, 35] similar questions came up
again. Indeed, it has been claimed [36] that one can measure the gravitational redshift in
the Kasevich–Chu atom interferometer [37] with a much greater precision than in other
measurements schemes. This claim has been disputed [38, 39] in a series of papers, an exciting
discussion [40–47] has emerged and new ideas [48–50] have been put forward.

1.2. The redshift controversy

In the Kasevich–Chu atom interferometer [37] shown in figure 1, an atomic beam interacts with
three short laser pulses which coherently split and recombine the beam. The number of atoms
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Figure 1. Kasevich–Chu atom interferometer represented in space–time. Three
laser pulses at the times t = 0, T and 2T induce two-photon transitions in an
atom between the ground state |g1〉 and the state |g2〉 through a virtual state
which is detuned from the excited state |e〉. These transitions are accompanied
by a momentum transfer ±h̄k where the plus or minus signs correspond to the
transition from |g1〉 to |g2〉, or from |g2〉 to |g1〉, respectively. As a result the
laser pulses coherently split and recombine the atomic beam moving against
a linear gravitational potential aligned along the z-axis. With appropriately
chosen parameters the laser pulses at the t = 0 and 2T act as beam splitters,
whereas the one at t = T serves as a mirror. The two paths leading after the
time 2T to an atom either being in the state |g1〉 or |g2〉 interfere and the
counts of atoms in these two exit ports depend on the sum of two phases. (i)
The difference δφ ≡ φ(2T )− 2φ(T )+φ(0)∼= φ̈(0)T 2 between the phases of the
three laser pulses represents the discrete version of the second derivative φ̈ of
φ = φ(t) in time. (ii) The phase δϕ = kz̈T 2 results from the quantum mechanical
commutation relation between position and momentum. Hence, the total phase
α ≡ δφ + δϕ of the Kasevich–Chu interferometer is the sum of the accelerations
of the laser phase and the atom which with z̈ = −g reads α = δφ− δϕg where
δϕg ≡ kg T 2. The classical trajectories which are bent due to the gravitational
field are independent of the phases of the laser pulses. However, the de Broglie
wave of the atom is sensitive to them and, the appearance of δφ is a manifestation
of the scalar Aharanov–Bohm effect. Moreover, the phase δϕg is a consequence
of the different time ordering on the two paths: on the upper one the atom travels
in the gravitational field first with the momentum p + h̄k and then with p whereas
in the lower path it is the other way around.

in the two exit beams is determined by the difference in phase between the de Broglie waves on
the two paths.

We emphasize that there is a great similarity between the Kasevich–Chu atom
interferometer and the COW neutron interferometer. Therefore, one might wonder if one could
not just transfer the results from one to the other. However, there are subtle differences between
these two devices which shall be discussed elsewhere [51].

Today several approaches [52–55] to describe atom optics in gravitational fields, and to
obtain this phase difference, exist. The approach [52] most relevant for the present discussion
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is based on the Feynman path integral [56]. Here the phase of the wave function arises from
the propagation along the classical trajectories and the interaction with the laser pulses. This
technique is well suited for the connection [57] to general relativity since according to Louis
de Broglie [58] the phase of a matter wave is proportional to the proper time which in the
non-relativistic limit reduces to the Lagrangian integrated over the coordinate time [32, 33]. In
this sense the appearance of the gravitational potential in the Lagrangian is a non-relativistic
residue [59] of general relativity. It is this formalism that has been central to the controversy
surrounding the redshift.

The Feynman path integral approach lives in space–time, that is, it is expressed in terms of
the continuous spectrum of eigenvalues of the position operator and the coordinate time. Due
to this choice of the quantum mechanical representation the physical origin of the phase shift
in the interferometer is attributed to the interaction of the atom with the laser and not to its
time evolution in the gravitational field between the pulses. However, the controversy about the
redshift has originated from the division of terms in the semi-classical approach contributing
to the phase shift in the interferometer into four parts: one from the kinetic and one from the
potential energy in the Lagrangian, one due to the phases of the laser pulses and one from
the interaction of the atom with the laser field. When the phases of the laser fields are time-
independent only three terms are relevant. They have the same magnitude but differ in their
signs. Indeed, the phases due to the kinetic and the potential energy are positive whereas the one
due to the laser interaction is negative. One can therefore interpret the phase in the interferometer
as the result of the cancellation of the phases either due to the kinetic and potential energy, or
due to the kinetic energy and the laser interaction. In the first case the phase of the interferometer
is a consequence of the interaction of the atom with the laser. In the second interpretation it is
due to the potential energy and therefore due to the redshift. Hence, the cancellation of these
terms is crucial for the argument.

In the present paper we demonstrate that this decomposition of phases and their
interpretation in terms of physical phenomena actually depends on the specific quantum
mechanical representation chosen to perform the calculation. In order to bring out this fact
most clearly we pursue an approach [60] based on operator algebra. In particular, we show that
the phase of the interferometer is a consequence of a product of unitary time evolution operators
which with the help of the canonical commutation relations between position and momentum
operators reduce to a single c-number phase factor. Therefore, when we evaluate this product in
a particular representation, either position, or momentum, or energy, we of course always arrive
at the same c-number phase factor.

However, the way in which this term arises will depend crucially on the chosen
representation. In the position representation which is at the very heart of the Feynman path
integral approach the phase shift in the interferometer emerges from a cancellation of terms
which is completely different when we employ the momentum representation. Therefore, it is
dangerous to derive conclusions about improved accuracy from the cancellation of terms in
one specific representation as it was done in [36]. Moreover, our operator approach shows that
the phase in this interferometer is the difference of the accelerations of the laser phase and the
atom in the gravitational field. This feature allows us to analyze the interferometer in different
scenarios which brings out the different roles of these phases.

This representation dependence is reminiscent of calculating a quantum mechanical
expectation value by employing quantum mechanical phase space distribution functions [61].
Indeed, there exist many such phase space functions and they all take on different values in
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phase space. Nevertheless, each of them is associated with a specific operator ordering such
that expectation values of so-ordered operators with the corresponding phase space distribution
functions yield the correct quantum mechanical results. However, no specific operator ordering
is above another.

1.3. Outline of article

Our article which is the more detailed companion of a shorter version [62] is organized as
follows: we start in section 2 by reviewing the connection between the phase of a de Broglie
wave, proper time in general relativity and the non-relativistic Lagrangian. In section 3 we
briefly summarize the essential ingredients of the Kasevich–Chu atom interferometer and then
provide a semiclassical description of it based on the result of section 2 that the phase of a matter
wave is given by the classical action. We devote section 4 to our operator algebra approach
toward the interferometer. We then in section 5 show the interplay between the two phases due
to the accelerations of the phase and the atom discussing three scenarios. Sections 6 and 7 are
dedicated to the demonstration of the representation-dependent interpretation of the contributing
terms leading to the total phase shift in the interferometer. In section 8 we summarize our main
results and provide an outlook.

In order to keep the paper self-contained we have included detailed calculations and
derivations in several appendices. For example, we dedicate appendix A to a derivation of the
effective Hamiltonian describing the interaction of a three-level atom with two short counter-
propagating laser pulses which are far-detuned from the excited state. In particular, we show that
this arrangement serves as a beam splitter or a mirror for atoms provided the parameters of the
pulse are chosen appropriately. In appendix B we expand on the semi-classical approach toward
the interferometer and provide a connection with the Wentzel–Kramers–Brillouin (WKB)-wave
function. Moreover we resolve a small puzzle put forward in [60]. In appendix C we then recall
an operator identity crucial for our study of the interferometer. We analyze in appendix D
the time evolution of a momentum eigenstate in a linear potential and show that the state
changes its eigenvalue according to Newtonian mechanics and accumulates the phase. Finally,
in appendix E we present an alternative evaluation of the relevant matrix element in position
space using the method of stationary phase.

2. Non-relativistic residues

In the present section we briefly recall the fact that the classical action determining the phase of
a matter wave is a non-relativistic residue of the proper time, that is of a relativistic origin.

In 1924 Louis de Broglie [58] published his far-reaching proposal of the existence of matter
waves. It is interesting to note that the starting point of his considerations was the question
of the transformation properties of energy and proper time under Lorentz transformations. In
this way he arrived at the conclusion that the phase βg of the matter wave ψ ≡ exp(−iβg) is
given by

βg ≡
mc2

h̄
τ, (1)

where τ is the proper time of the particle of rest mass m, and c and h̄ denote the speed of light
and Planck’s constant, respectively.
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In general relativity τ is determined by the space–time [25] parameterized by the Cartesian
coordinates xµ ≡ (ct, x, y, z)withµ= 0, 1, 2 and 3 and characterized by the metric coefficients
gµν through the line element

c2 dτ 2
= ds2

= gµν dxµ dxν. (2)

In the limit of a weak gravitational field and a velocity

v(i) ≡
dx (i)

dt
≡ ẋ (i), (3)

which is small compared to c the metric coefficients reduce to

g00
∼= 1 +

2

c2
8, g j j

∼= −1 and gi j = 0 (4)

for i 6= j .
Here and throughout the article dots indicate derivatives with respect to coordinate time t

and 8=8(r) is the Newtonian potential.
Hence, in the non-relativistic limit the proper time follows from the relation

dτ ∼=

[
1 −

2

c2

(
1

2
v 2

−8

)]1/2

dt ∼= dt −
1

mc2
L̃g dt, (5)

where in the last step have expanded the square root and have introduced the non-relativistic
Lagrangian

L̃g ≡
1

2
mv 2

− m8. (6)

As a result, the de Broglie wave ψ takes the form

ψ = e−iβg ∼= exp

[
−

i

h̄
mc2t

]
exp

[
i

h̄

∫
dt L̃g

]
(7)

and the appearance of L̃g and, in particular, of the kinetic and the potential energies in the phase
βg of the de Broglie wave is a consequence of the proper time. In this sense these energies are
the non-relativistic residues of the proper time.

Indeed, the kinetic energy arises from the combination of the expansion of the relativistic
square root containing the term (v/c)2 and reflecting the phenomenon of time dilation in special
relativity, and the multiplication by the factor mc2. For this reason Müller et al [36] refer to
the kinetic energy term as the time dilation term. Likewise, since the contribution due to the
Newtonian gravitational potential8 gives rise to the redshift, Müller et al [36] call it the redshift
term.

Although we support the notion of L̃g being the non-relativistic residue of the relativistic
phase, we throughout this article adhere to the standard notation of kinetic and potential energy.
Moreover, we emphasize that the potential energy only contains the gravitational interaction and
not the interaction of the particle with an electromagnetic field. This fact will become important
when we discuss in the next section the Kasevich–Chu interferometer.

We conclude this section by noting that the first contribution in (7) results from the
rest mass of the atom. In an interferometer with two paths of identical coordinate time t
the resulting phase shifts from this term are therefore identical, and not of interest in the
standard Kasevich–Chu interferometer. However, there might be situations where it will be
important [49] but they are not analyzed in the present article.
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3. Kasevich–Chu atom interferometer: classical and semi-classical considerations

In order to keep the article self-contained we first briefly review the essential ingredients
of the Kasevich–Chu atom interferometer used in [37] and shown in figure 1. We then
analyze the classical trajectories of an atom moving under the influence of gravity and three
short laser pulses. The idea that the phase shift in the interferometer is governed by the
corresponding action motivates our study of the dynamical phases corresponding to the kinetic
and gravitational potential energies as well as the interaction with the laser pulses along the
closed classical path of the atom in the interferometer. We show that they are closely connected
which allows us to combine the terms contributing to the total phase shift in several different
ways and to attribute its origin to different physical phenomena.

3.1. The inner workings of the interferometer

For the sake of clarity we consider a one-dimensional motion of the atom along the z-axis. The
constant gravitational field of acceleration g points in the negative z-direction. Initially the atom
is in its ground state |g1〉.

At time t = 0 a short laser pulse excites via a two-photon transition the atom into a
superposition of the states |g1〉 and |g2〉. The parameters of the pulse, such as the pulse length
and its electric field strength are adjusted as to create a superposition of |g1〉 and |g2〉 with equal
weights. As discussed in the next subsection this transition is accompanied by a momentum
transfer of h̄k where k is the wave vector of the sum of the wave vectors of the two photons.
This process leads to a coherent splitting of the atomic beam into an upper and a lower path.
Throughout our article we assume that the pulse is so short that the atom does not move during
its duration.

At time T a second pulse interacts with the atom. As a result the atom on the upper path
moving in |g2〉 goes into the ground state |g1〉 and the momentum is reduced by h̄k. In contrast,
the atom on the lower path moving in the ground state |g1〉 makes a transition to |g2〉 and
increases its momentum by h̄k. This pulse is adjusted so that the atom makes the transitions
with absolute certainty.

At time t = 2T a third laser pulse interacts with the atom and the two paths recombine.
For this purpose the parameters of the pulse are chosen in such a way as to create again a
superposition with equal weights. As a result the atom in the state |g1〉 in the upper path can
either go to |g2〉 and increase its momentum by h̄k leaving the set-up in the excited state |g2〉,
or continue in |g1〉 with the same momentum. The atom in the lower path in |g2〉 has also two
alternatives: it can continue in |g2〉 or reduce its momentum by h̄k and arrive in |g1〉. Hence, for
each of the two exits there exist two paths that lead to them.

3.2. Classical trajectories

We now evaluate the classical trajectories resulting from the Euler–Lagrange equations

d

dt

∂L
∂ ż

−
∂L
∂z

= 0, (8)

where the Lagrangian

L≡
1

2
mv2

− Vg(z)− Vlp(z, t) (9)
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involves, apart from the kinetic energy with the velocity v ≡ ż, also the linear potential

Vg(z)≡ mgz (10)

due to the constant gravitational field, and the space- and time-dependent potential

Vlp(z, t)≡

2∑
j=0

δ(t − jT )J j(z) (11)

created by the three laser pulses at the times t = 0, T and 2T .
As shown in appendix A the potential Vlp describes the beam splitters and mirrors for the

atoms, and the actions

J j(z)≡


−h̄[kz +φ( jT )]

+h̄[kz +φ( jT )]

0

(12)

correspond to transitions from |g1〉 to |g2〉 and |g2〉 to |g1〉 indicated by the minus and the plus
sign, respectively, or no interaction at time t = jT .

When we substitute the Lagrangian (9) into the Euler–Lagrange equations (8) we find with
the help of the explicit forms (10)–(12) of the potentials the classical equation of motion

ṗ(t)= −mg +
2∑

j=0

δ(t − jT )p j , (13)

for the momentum p(t)≡ mv(t)≡ mż(t) where the momentum transfer

p j ≡


+h̄k

−h̄k

0

(14)

in the j th laser pulse results from the transitions |g1〉 to |g2〉 and from |g2〉 to |g1〉, respectively,
or from no interaction.

Integration of (13) yields

p(t)= pg(0)− mgt +
2∑

j=0

2(t − jT )p j ≡ pg(t)+
2∑

j=0

2(t − jT )p j . (15)

Here pg(0) and 2 are the momentum of the atom shortly before the first laser pulse and the
Heaviside step function, respectively.

The transition from |g1〉 to |g2〉 at the times t = jT of the laser pulses increases the
momentum pg( jT )≡ pg(0)− mgjT of the atom due to the gravitational field by h̄k, whereas
the transition from |g2〉 to |g1〉 decreases it by h̄k. In case of no interaction the momentum
transfer p j vanishes. We emphasize that the phase φ = φ( jT ) of the pulse does not enter into
the Newtonian dynamics of the atom since φ is only time but not space dependent.

When we integrate the equation of motion

v(t)≡ ż(t)= vg(0)− gt +
2∑

j=0

2(t − jT )
p j

m
(16)
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for the velocity following from (15) with vg(0)≡ pg(0)/m we find the trajectory

z(t)= zg(t)+
2∑

j=0

∫ t

−∞

dt ′2(t ′
− jT )

p j

m
. (17)

Here

zg(t)≡ zg(0)+ vg(0)t −
1

2
gt2 (18)

describes the motion solely in the linear gravitational potential and zg(0) is the position of the
atom just before the first laser pulse. Throughout the article we adhere to a notation where we
denote trajectories following from the Lagrangian L given by (9) and including the gravitational
potential as well as the laser pulses by z = z(t) and v = v(t). In contrast, we call the trajectories
associated with the Lagrangian

Lg ≡
1

2
mv2

− Vg(z) (19)

in the presence of gravity but the absence of the pulses by zg = zg(t) and vg = vg(t).
In table 1 we compile the time-dependent coordinates and velocities of the atom in the two

arms of the interferometer.

3.3. Phase shift from action

In section 2 we have shown that the phase of a de Broglie wave is the action in units of h̄.
However, this derivation has relied on the fact that the only interaction of the atom is of a
gravitational nature. In the case of the atom interferometer we have in addition the interaction
with laser pulses. We assume that the phase shift α is still given by the action

α =
1

h̄

∮
dt L (20)

of the complete Lagrangian L evaluated along the closed classical trajectory of the atom in the
interferometer following from the Euler–Lagrange equations (8). Here we always subtract the
contributions originating from the lower path from the ones of the upper path.

We emphasize that (20) is an extrapolation of (7) that is frequently made. In particular,
all articles [36–52] relevant for the redshift controversy start from this assumption. Moreover,
we recall that the cancellation of terms which serves as the theoretical underpinning of the
claims made in [36] is based on (20). It is for this reason that we now briefly discuss the
consequences of (20). Moreover, these considerations also lay the ground work for section 7
where we compare and contrast the exact quantum calculation in position space with this semi-
classical result, and in particular, with the way the total phase shift α arises in the exact and in
the semi-classical approach. In section 7 we show that these actions do not appear in the exact
analysis.

In appendix B we compare and contrast the Lagrange approach toward quantum mechan-
ics to the more familiar Hamilton one in the semi-classical limit. We show that in the case
of an energy wave function the phase α given by (20) leads us to the well-known phase of a
WKB-wave. Since this treatment is independent of the assumption that the interaction originates
from gravity the expression for α provides a convincing argument the α is correct even for a
particle in the presence of non-gravitational fields.
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Table 1. Evaluation of the dynamical phases corresponding to the kinetic and
potential energy along the closed path of the interferometer. Here we always
subtract the contributions arising from the lower path from the ones occurring
on the upper path. In the two columns we display the Newtonian dynamics
between the first and the second, and between the second and third laser
pulse, respectively. The time variable covers the complete domain 06 t 6 2T .
Moreover, we have introduced for the sake of clarity the abbreviations vg(t)≡

vg(0)− gt and zg(t)≡ zg(0)+ vg(0)t − gt2/2 for the velocity and position of the
atom in the gravitational field.

Between 0 and T Between T and 2T

Velocity vu on upper path vg(t)+ h̄k
m vg(t)

Velocity vl on lower path vg(t) vg(t)+ h̄k
m

Difference v− ≡ vu − vl
h̄k
m −

h̄k
m

in velocities

Sum v+ ≡ vu + vl 2vg(t)+ h̄k
m 2vg(t)+ h̄k

m
of velocities

Action due to kinetic energy∫ 2T
0 dt 1

2 m(v2
u − v2

l ) h̄k
∫ T

0 dt
[
vg(t)+ h̄k

2m

]
−h̄k

∫ 2T
T dt

[
vg(t)+ h̄k

2m

]
=

1
2 m

∫ 2T
0 dt v+v−

Dynamical phase due to
kinetic energy −k[zg(2T )− 2zg(T )+ zg(0)] = −kz̈g(0)T 2

=
1
h̄

∮
dt 1

2 mv2 kgT 2
= δϕg

Upper path zu zg(t)+ h̄k
m t zg(t)+ h̄k

m T

Lower path zl zg(t) zg(t)+ h̄k
m (t − T )

Difference z− ≡ zu − zl
h̄k
m t h̄k

m (2T − t)∫ 2T
0 dt mg z− h̄kg

∫ T
0 dt t h̄kg

∫ 2T
T dt (2T − t)

Dynamical phase due to
gravitational energy 1

h̄

∮
dt mg z k gT 2

≡ δϕg

3.4. Actions of kinetic and potential energies and laser pulses

We start our analysis of the semi-classical phase shift α following from (20) by evaluating the
action associated with the complete Lagrangian L. Indeed, with the help of the expression (9)
for L we find ∮

dt L=

∮
dt

1

2
mv2

−

∮
dt Vg −

∮
dt Vlp. (21)
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Next we calculate the actions associated with these three energies. In table 1 we establish the
identity

1

h̄

∮
dt

1

2
mv2

=
1

h̄

∮
dt mgz = δϕg (22)

for the actions expressed in units of h̄ corresponding to the kinetic and gravitational energies on
the closed classical path of the atom through the interferometer with the abbreviation

δϕg ≡ kgT 2. (23)

We now turn to the action due to the laser pulses. With the help of the delta function in Vlp

defined by (11) we can immediately perform the integration over time and find combinations of
the phases ∓[kz( jT )+φ( jT )] with j = 0, 1 and 2 at the times of the pulses. According to (12)
the minus and plus signs correspond to the transitions |g1〉 to |g2〉 and |g2〉 to |g1〉, respectively.
Moreover, we have to take into account that at T the position zu(T ) of the atom on the upper
arm is different from the one on the lower arm which we denote by zl(T ). Needless to say, we
assume start and end points z(0) and z(2T ) to be identical in the two arms. We shall show in
section 7 that this assumption of the semi-classical approach follows in a strict sense from the
exact quantum mechanical calculation of position space.

As a result we arrive at the expression

1

h̄

∮
dt Vlp=−{[kz(2T )+φ(2T )]−[kzl(T )+φ(T )]} + [kzu(T )+φ(T )]−[kz(0)+φ(0)]. (24)

In quantum mechanics it is customary that an operator at an earlier time stands to the right
of an operator at a later time. In (24) and throughout the article we adhere to this rule even when
we deal with c-numbers since it brings out most clearly how the individual contributions arise in
the time evolution of the atom through the interferometer. Indeed, on the upper path we go from
|g1〉 to |g2〉 at t = 0 which introduces a minus sign in front of the last square bracket and return
at T to |g1〉. This process is associated with a plus sign. On the lower arm the same sequence is
shifted in time by T , that is we reach |g2〉 at T and return to |g1〉 at 2T . Moreover, we subtract
the contributions from the lower path from the upper path.

When we combine the terms we arrive at

1

h̄

∮
dt Vlp = −[δφ + δϕ], (25)

where we have introduced the difference

δφ ≡ φ(2T )− 2φ(T )+φ(0) (26)

between the phases of the laser pulses at the three interactions times, and the phase

δϕ ≡ kδz = k[z(2T )− zl(T )− zu(T )+ z(0)] (27)

due to the positions of the atom at the times of the laser pulses.
It is interesting to note that the phase δφ is the discrete version of the second derivative of

the phase with respect to time. For a quadratic variation of φ in time this result is even exact.
Hence, one contribution to the dynamical phase associated with the laser pulse arises from the
acceleration of the phase of the pulses. The other contribution emerges from a combination
of coordinates of the atom which is again reminiscent of a second derivative. However, δϕ
contains the sum zu(T )+ zl(T ) of the positions of the atom in the two arms rather than 2z(T ).
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Nevertheless, we recover the acceleration when we recall from the bottom part of table 1 the
relation

δz =

[
zg(2T )+

h̄k

m
T

]
− zg(T )−

[
zg(T )+

h̄k

m
T

]
+ zg(0), (28)

that is

δz = zg(2T )− 2zg(T )+ zg(0) (29)

which demonstrates that in δz only zg appears. Moreover, it enters in the form of a second
derivative in time and therefore brings in the acceleration z̈g of the atom due to gravity. One
might suspect that the appearance of the acceleration of the atom is limited to the case of
a linear potential. However, in the representation-free description of the interferometer based
on operator algebra we show that due to the different sequence of events in the two arms the
commutation relations of quantum mechanics lead to the acceleration even for a potential of
arbitrary shape.

When we now substitute the expression (29) for δz into the formula (27) for δϕ we find

δϕ = kz̈gT 2
= −kgT 2

= −δϕg, (30)

and the accumulated phase due to the interaction with the laser pulses reads

1

h̄

∮
dt Vlp = −[δφ− δϕg]. (31)

We emphasize that the phase φ of the laser pulse enters in a rather decisive way. Although φ
does not contribute to the classical trajectories it appears in the quantum mechanical description
as a phase. In this sense the appearance of φ is a manifestation of the scalar Aharanov–Bohm
effect.

We conclude by noting that the relation

1

h̄

∮
dt

1

2
mv2

−
1

h̄

∮
dt mgz = δϕg − δϕg = 0 (32)

following from equation (22) suggests the identity∮
dt Lg = 0, (33)

where Lg is the Lagrangian (19) describing the motion of the atom solely due to the gravitational
field. However, such an interpretation is misleading since the identity (22) of the actions due
to kinetic and gravitational energy is a result of the full Lagrangian L given by (9) which
also includes the potential Vlp created by the laser pulses and acting as the beam splitters and
mirrors of the interferometer. Indeed, for the identity (22) we need the two distinct arms of
the interferometer which are a result of the interactions of the atom with the laser pulses, and
therefore of Vlp. Needless to say, the trajectories following solely from Lg do not provide two
but only a single path connecting two points in space during the time 2T . Nevertheless, the
identity (22) still holds true but on a rather trivial level since in this case both actions vanish
identically. This property is in full accordance with the fact that δϕg vanishes for k = 0, that is
in the absence of a momentum transfer.
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3.5. Different orderings yield different interpretations of phase shift

We are now in a position to calculate the total phase shift α in the interferometer. From
equation (21) we note that α is given by the sum of three terms. Since we are in the semi-classical
limit these contributions are c-numbers rather than operators. As a result we can combine them
in several different ways and each combination is connected with a different interpretation.

For example, we may consider the order∮
dt L=

[∮
dt

1

2
mv2

−

∮
dt Vg

]
−

∮
dt Vlp. (34)

Due to the identity (22) the first two terms cancel each other and with the help of (25) we arrive
at

α =
1

h̄

∮
dt L= −

1

h̄

∮
dt Vlp = δφ− δϕg. (35)

Hence, this analysis suggests that α arises solely from the interaction of the atom with the laser
pulses, a point which has been stressed repeatedly in [38, 39, 52].

In contrast, Müller et al [36] have proposed to combine the terms in the way∮
dt L=

[∮
dt

1

2
mv2

−

∮
dt Vlp

]
−

∮
dt Vg, (36)

which due to (22) and (31) leads us to

α =
1

h̄

∮
dt L=

[
δϕg + (δφ− δϕg)

]
−

∮
dt Vg = δφ− δϕg, (37)

in full agreement with (35). However, now the interpretation of the origin of the phase shift
α is completely different from the first choice of order. Indeed, we have obtained a mixed
representation in which the α arises partly from the interaction with the laser giving rise to
δφ, and partly from the action due to the gravitational potential producing −δϕg. It is this
interpretation of the cancellation of terms which is at the very heart of the redshift controversy.
However, as shown in sections 6 and 7 the three phase terms in (21) do not occur in the
momentum nor in the position representation of the exact quantum mechanical calculation.

3.6. A perturbative treatment of the gravitational phase shift

The lower part of table 1 illustrates that the influence of the gravitational field cancels out in the
difference

z−(t)≡ zu(t)− zl(t)=


h̄k

m
t for 06 t < T,

h̄k

m
(2T − t) for T 6 t 6 2T,

(38)

in height of the upper and lower path and is solely given by the momentum difference h̄k
between these trajectories. Therefore, we also arrive at the identity

1

h̄

∮
dt Vg =

1

h̄

∮
dt mgz = δϕg (39)
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if we evaluate the action associated with Vg not using the exact trajectories given by the
Lagrangian L but by the ones following from the Lagrangian

L f ≡
1

2
mv2

− Vlp, (40)

consisting solely of the kinetic energy and the laser interaction. We emphasize that this approach
is not consistent with the fact that we use the full Lagrangian L to specify the phase shift but for
the evaluation of the trajectories only L f . Nevertheless it still provides the correct answer since
z− given by (38) is independent of g.

4. Phase shift as a consequence of time ordering: acceleration of atom

The states |ψ1〉 and |ψ2〉 of the center-of-mass motion in the two exit ports leading to |g1〉 and
|g2〉, respectively are a result of a sequence of unitary operations Ûg, or Û (±)(t) on the initial
state |ψi〉 which reflect either the quantum mechanical motion of the atom in the gravitational
field, or the interaction a laser pulse at time t , respectively. The plus or the minus sign in U (±)

correspond to the momentum change by ±h̄k due to the transitions from |g1〉 to |g2〉 or from
|g2〉 to |g1〉. We now analyze these products of unitary operators and rederive the phase shift in
the interferometer using operator algebra.

4.1. Sequence of events, probability and operator product

We emphasize that the order of events on the upper path is different from the one on the lower
path. Indeed, pursuing the upper path leading to |g1〉 we first have transition to |g2〉, followed by
the motion in the gravitational field, return to |g1〉, and again motion in the gravitational field.
At the third pulse there is no interaction. Hence, on the upper path the sequence Ûu of unitary
transformations reads

Û u ≡ Ûg Û (−)(T ) Ûg Û (+)(0). (41)

In contrast, on the lower path also leading to |g1〉 the atom does not interact with the first
laser pulse and remains in |g1〉. As a result, we first have motion in the gravitational field, then a
transition to |g2〉 due to the second laser pulse to be followed by motion in the gravitational field
and finally return to |g1〉 due to the third laser pulse. Therefore, on the lower path the sequence
Û l of unitary transformations reads

Û l ≡ Û (−)(2T ) Ûg Û (+)(T ) Ûg. (42)

The quantum state |ψ1〉 of the motion at the exit port for atoms in the ground state |g1〉 is the
sum

|ψ1〉 =
(−i)2

2
(Û u + Û l)|ψi〉 (43)

of the evolutions along the two paths. As shown in appendix A the factor 1/2 arises from the
two 50 : 50 beam splitters represented by the first and the third laser pulse and the factor (−i)2

reflects the two momentum kicks by the pulses.
As a result, the probability

P1 =
1

2

[
1 +

1

2
(〈ψi |Û

†
l Û u|ψi〉 + c.c.)

]
(44)
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to find the atom in the state |g1〉 at the exit of the interferometer is determined by the expectation
value e ≡ 〈ψi |Û

†
l Uu|ψi〉 of the operator product Û †

l Uu in the initial state |ψi〉 of the center-of-
mass motion. Since Û l is a unitary operator with Û †

l = Û−1
l the expectation value e determining

P1 enjoys a simple interpretation: we first evolve the state |ψi〉 according to Û u and then return
to |ψi〉 with the time-inverted evolution of Û l. Since Û−1

l Û u is a unitary operator e must be
a phase factor exp(iα). However, we now show that already the operator product Û †

l Û u is a
c-number phase factor, that is we establish the identity

Û †
l Û u = Û−1

l Û u = eiα. (45)

The fact that this relation is independent of the representation is the deeper reason why the
cancellation taking place in a specific representation cannot be relied on to draw conclusions
about improved accuracy.

4.2. Acceleration obtained from different sequences of events

We now derive explicit expressions for Û u and Û l. For this purpose we recall that the center-
of-mass motion of an atom of mass m in a time-independent gravitational field of potential
V = V (z) is governed by the time evolution operator

Ug ≡ exp

(
−

i

h̄
Ĥ T

)
, (46)

where

Ĥ ≡
p̂2

2m
+ V (ẑ). (47)

According to appendix A the action of the beam splitter can be described by the unitary
operator

Û (±)(t)≡ e±i[kẑ+φ(t)] (48)

and φ = φ(t) denotes the phase of the laser pulse at time t .
When we substitute the expression (48) for Û (±) into (41) and (42) for Û u and Û l we

arrive at

Û u = Ûg e−i[kẑ+φ(T )] Ûg ei[kẑ+φ(0)] (49)

and

Û l = e−i[kẑ+φ(2T )] Ûg ei[kẑ+φ(T )]Ûg. (50)

Since the phases φ(0), φ(T )and φ(2T ) are c-numbers we can factor them out and we find
the representation

Û u = ei[−φ(T )+φ(0)] ÛgÛ(+)
g (51)

and

Û l = ei[−φ(2T )+φ(T )] Û(+)
g Ûg, (52)

where we have introduced the abbreviation

Û(+)
g ≡ e−ikẑ e−iĤ T/h̄ eikẑ (53)
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for the time evolution operator Ûg of the center-of-mass-motion of the atom in the gravitational
field sandwiched between the two operators exp(−ikẑ) and exp(ikẑ) originating from the laser
pulses.

With the help of the familiar techniques of operator algebra we rederive in appendix C the
operator identity

Û(+)
g ≡ exp

(
−

i

h̄
Ĥ (+)T

)
, (54)

where

Ĥ (+)
≡

(
p̂ + h̄k

)2

2m
+ V (z)= Ĥ +

(h̄k)2

2m
+

h̄k

m
p̂. (55)

In the last step we have recalled the definition (47) of Ĥ .
Hence, the two paths in the interferometer correspond to two different orders of events: on

the upper path we first propagate with an atom in |g2〉 and therefore with Ĥ (+), and then with
the atom |g1〉 which corresponds to the Hamiltonian Ĥ . As a result we find

Û u = ei[−φ(T )+φ(0)] exp

(
−

i

h̄
Ĥ T

)
exp

(
−

i

h̄
Ĥ (+)T

)
. (56)

On the lower path we first propagate with the atom in |g1〉, that is with Ĥ and then with the atom
in |g2〉 corresponding to Ĥ (+) which leads us to

Û l = ei[−φ(2T )+φ(T )] exp

(
−

i

h̄
Ĥ (+)T

)
exp

(
−

i

h̄
Ĥ T

)
. (57)

The expressions (56) and (57) bring out most clearly the different sequence of events in the
two arms of the interferometer by the different order of Ĥ and Ĥ (+).

The two Hamiltonians Ĥ and Ĥ (+) do not commute with each other. Indeed, we find from
(55) the identity

[Ĥ , Ĥ (+)] =
h̄k

m
[Ĥ , p̂] (58)

which with the Heisenberg equations of motion

˙̂z =
i

h̄
[Ĥ , ẑ] =

p̂

m
and ˙̂p = m ¨̂z =

i

h̄
[Ĥ , p̂], (59)

that is

m ¨̂z =
i

h̄
[Ĥ , p̂] (60)

leads us to

[Ĥ , Ĥ (+)] = −ih̄2k ¨̂z. (61)

Hence, the fact that Ĥ and Ĥ (+) do not commute is a measure of the acceleration of the atom.
We emphasize that so far we have not used the specific form of the potential. Indeed, the fact
that the different order of Ĥ and Ĥ (+) is a measure of the acceleration is true for any potential
V = V (z) that is only dependent on position.
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4.3. Phase shift for linear gravitational potential

However, it is not straightforward to combine the two time evolutions due to Ĥ and Ĥ (+) into a
single one. Indeed, we recall the Baker–Cambell–Hausdorff theorem

e Â eB̂
= e Â+B̂ e

1
2 [ Â,B̂], (62)

which only holds true for

[ Â, [ Â, B̂]] = [B̂, [ Â, B̂]] = 0. (63)

However, for a constant gravitational field with a linear potential

Vg(z)≡ mgz, (64)

we find that the acceleration
¨̂z = −g (65)

is a c-number. As a result the conditions (63) are satisfied and we find from (62) for the
Hamiltonians

Ĥg ≡
p̂2

2m
+ mgẑ (66)

and

Ĥ(+)
g ≡

(
p̂ + h̄k

)2

2m
+ mgẑ, (67)

the expressions

Û u = ei[−φ(T )+φ(0)] exp

[
−

1

2

[
Ĥg, Ĥ(+)

g

] T 2

h̄2

]
exp

[
−

i

h̄

(
Ĥg + Ĥ(+)

g

)
T

]
(68)

and

Û l = ei[−φ(2T )+φ(T )] exp

[
−

1

2

[
Ĥ(+)

g , Ĥg

] T 2

h̄2

]
exp

[
−

i

h̄

(
Ĥ(+)

g + Ĥg

)
T

]
. (69)

Indeed, with the help of the commutator (61) we arrive at the representations

Û u = ei[−φ(T )+φ(0)] e+iδϕ/2 Ûc (70)

and

Û l = ei[−φ(2T )+φ(T )] e−iδϕ/2 Ûc (71)

for the products Û u and Û l of the unitary operators along the upper and lower path. Here we
have introduced the phase

δϕ ≡ k ¨̂zT 2 (72)

which arises from the commutation relation (61) between Ĥg and Ĥ(+)
g and contains the

acceleration of the atom. Moreover, we have defined the unitary operator Ûc ≡ exp[−i(Ĥ(+)
g +

Ĥg)T ] involving the sum of Ĥ(+)
g and Ĥg and representing the time evolution due to both

Hamiltonians.
Since Ĥg + Ĥ(+)

g = Ĥ(+)
g + Ĥg we find that Ûc appears identically in Û u as well as Û l. In

addition on the upper path the phase shift δϕ/2 due to the acceleration appears with a plus sign
whereas on the lower path occurs with a negative sign. Hence, we find a non-vanishing phase
difference δϕ between the two arms due to the acceleration of the atom.
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4.4. Phase shift caused by accelerations of the laser phase and atom

We are now in the position to prove our initial claim that the operator product Û †
l Û u is a

c-number phase factor. Indeed, with the help of (70) and (71) we immediately establish the
identity

Û †
l Û u = eiα, (73)

that is Û †
l Û u is free of any operators but only involves the sum

α ≡ δφ + δϕ (74)

of the phase difference δφ between the phases of the laser pulses at the three interactions times,
and the phase δϕ due to the acceleration of the atom in the gravitational field. Here we have
recalled the definition (26) of δφ.

For the special case of a constant acceleration given by (65) we find from equation (72) the
expression

δϕ = −δϕg ≡ −kgT 2. (75)

In summary, the difference in the order of the time evolution operators Ĥg and Ĥ(+)
g gives

rise to a c-number phase factor exp(−iδϕg)which is a measure of the acceleration of the atom in
the gravitational potential. Another contribution to the phase shift α in the interferometer arises
from the phases φ(0), φ(T ) and φ(2T ) of the laser pulses which appear in the expressions (56)
and (57) for Û u and Û l. The sum of δφ andδϕ yields α in complete agreement with the previous
section.

It is interesting to note that (58) also suggests that the phase shift δϕ is a consequence of
the commutation relation

[ p̂, ẑ] =
h̄

i
. (76)

Indeed, with the definition (66) of Ĥg we find from (58) the identity

[Ĥg, Ĥ(+)
g ] = h̄kg

[
ẑ, p̂

]
= ih̄2 kg (77)

which by virtue of (68), (69) and (75) yields again δϕg.

4.5. Summary of operator approach

In the present section we have developed a formalism based on unitary operators to obtain the
phase shift in the Kasevich–Chu interferometer. Our representation-free approach brings out
most clearly that this phase shift consists of the sum of only two phases: (i) the phase difference
δφ between the phases of the laser pulses at the three interaction times, and (ii) the phase δϕ
due to the acceleration of the atom in the gravitational field.

This result is in sharp contrast to the discussion in section 3.5 based on semiclassical
considerations in position space which interprets the total phase shift as the sum of four phases
with the cancellation of two. In the next section we shall show that this decomposition into the
two phases δφ and δϕ is crucial in understanding the observed phase shift when we use different
coordinate systems to describe the interferometer.

Moreover, our analysis also clearly shows that the phase shift depends on the specific
interferometer configuration. Indeed, the unitary operators corresponding to the individual path
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are determined by the sequence of beam splitters, mirrors, and motion in the gravitational field.
It is the order of these events which gives rise to the phase shift.

We conclude by emphasizing that our operator approach toward atom interferometry is
rather general and by no means limited to the Kasevich–Chu interferometer. Indeed, it can be
applied to any other interferometer configuration.

Most recently, we have employed [64] this formalism to analyze the similarities and
differences between an atom interferometer where the mirrors at t = T are realized by an
evanescent light wave and the Kasevich–Chu interferometer. Such a device is motivated by
analogies [51] between atom and neutron interferometers.

5. Interplay between chirp and acceleration: different frames

The important roles of δφ and δϕ and their interplay in contributing to the total phase shift
α ≡ δφ + δϕ in the interferometer stand out most clearly in three scenarios summarized in
table 2. So far we have concentrated on describing the interferometer in a frame in which the
lasers and the observer are at rest and the atoms are accelerated by the gravitational field giving
rise to the phase shift δϕ = −δϕg. For the sake of simplicity we assume that the phases of the
laser pulse are constant in time and therefore, δφ vanishes. Hence, the total phase shift α in the
interferometer solely results from the acceleration of the atom, that is α = 0 + (−δϕg)= −δϕg.
For this reason we refer to this scenario as the accelerometer scenario (I).

However, we can also describe this scenario in a frame in which the atoms are not
accelerated. Since in this frame z̈ = 0 the phase δϕ given according to (72) by the acceleration
of the atom vanishes.

This coordinate system is accelerated and as a result the phases of the laser pulses which
are constant in the laboratory frame are not constant anymore but vary quadratically in time.
Indeed, the Galilei-coordinate transformation

za ≡ z −

(
vat +

1

2
at2

)
(78)

connecting the z-coordinates z and za in the laboratory system and a frame accelerated
with constant acceleration a and with the velocity va at t = 0 transforms the phase of the
electromagnetic wave to

kz +φ(t)= k

(
za + vat +

1

2
at2

)
+φ(t)≡ kza +φa(t), (79)

where

φa(t)≡ φ(t)+ k

(
vat +

1

2
at2

)
(80)

denotes the phase of the pulse in the accelerated frame.
When we assume that in the laboratory frame φ is time-independent we find

φ̈a(0)= ka, (81)

which for a = −g leads to

δφ = −kgT 2
= −δϕg. (82)

Hence, in the accelerated frame the total phase shift α in the interferometer solely results
from the quadratic variation of the laser pulse, that is from the chirp due to the coordinate

New Journal of Physics 15 (2013) 013007 (http://www.njp.org/)

http://www.njp.org/


21

Table 2. Origin of the total phase shift α in the Kasevich–Chu atom
interferometer in three different scenarios each analyzed in the laboratory and
in an accelerated frame. The total phase shift α in the interferometer is given
by the sum α ≡ δφ + δϕ of the phases δφ ≡ φ(2T )− 2φ(T )+φ(0)∼= φ̈(0)T 2

and δϕ ≡ kz̈T 2 due to the accelerations φ̈ and z̈ of the laser phase and the
atom in the gravitational field or from both giving rise to a vanishing of α.
The three scenarios referred to as accelerometer (I), inertial motion (II), and
Einstein equivalence principle (III) are best described in the laboratory frame (lf):
I—constant laser phase and gravity; II—constant laser phase and no gravity; and
III—quadratic chirp of laser phase and gravity. We also analyze each scenario
from an accelerated frame (af) which in I, II, and III are a = −g, g, and −g,
respectively. We obviously arrive at the same answer for the total phase α as
in the laboratory frame. However, α arises from different physical phenomena,
either from the laser phase or the gravitational field. We emphasize that the
analysis in the accelerated frame of scenario II is identical to the laboratory frame
of scenario III which is a manifestation of the Einstein equivalence principle.
Likewise, the laboratory frame of II is identical to the accelerated frame of III.

Scenarios
Frame
used in
analysis

Accelerations
of coordinate
system and atom

Phase δφ due
to acceleration
of pulses

Phase δϕ due
to acceleration
of atom

Total Phase
α ≡ δφ+ δϕ

Accelerometer
(I)

lf
a = 0

g 0 −δϕg −δϕg

af
a = −g

−δϕg 0 −δϕg

Inertial
motion
(II)

lf 0 0 0

af δϕg −δϕg 0

Einstein
equivalence
principle
(III)

lf δϕg −δϕg 0

af 0 0 0
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transformation (78). Indeed, we find α = −δϕg + 0 = −δϕg, in complete agreement with the
description in the laboratory frame.

A particularly instructive scenario arises when there is no gravity in the laboratory frame
and the phases of the pulses are constant. We refer to this scenario as the inertial motion (II). In
this case both phases δφ and δϕ vanish leading to α = 0 + 0 = 0.

However, when we describe the situation in a frame that is accelerated with a = g so that
it looks like the atom is in a gravitational field the phases of the atom as well as of the laser are
non-vanishing. Indeed, for the atom it is as if the gravity is leading again to δϕ = −δϕg while
the laser phase gets chirped giving rise according to (81) to δφ = kgT 2

= δϕg. However, both
effects compensate each other in the total phase α = δϕg + (−δφg)= 0, in complete agreement
with the description in the laboratory frame.

The understanding of the third scenario referred to as Einstein equivalence principle is
crucial for the experiments discussed in [36, 38–52]. In these experiments the laser fields are
chirped in the laboratory frame in a way to compensate for the phase shift δϕ = −δϕg due
to the gravitational field, that is δφ = −δϕ = δϕg which yields indeed α = δϕg + (−δϕg)= 0.
Therefore, this situation corresponds to the inertial-motion scenario II viewed from the
accelerated frame.

For the sake of completeness we also briefly mention a description of scenario III in which
the coordinate system is accelerated with the atom, that is a = −g. In this frame the chirped
pulse has a constant phase, that is δφ = 0. Moreover, the phase δϕ due to the acceleration of
the atom vanishes as well, leading to α = 0 + 0 = 0, in complete accordance with the previous
analysis of scenario III.

6. Phase shift obtained in momentum representation

The operator approach of section 4 brings out most clearly that the product Û l
†Û u of unitary

operators determining in (44) the probability P1 of an atom to be at the exit of the interferometer
in |g1〉 reduces to a c-number phase factor. This phase factor is an observable.

Needless to say, we do not have to resort to operator algebra to evaluate the operator
product. We might as well have used a specific representation of the center-of-mass motion. In
the present and the next section we analyze the atom interferometer using two representations:
first the momentum and then the position representation.

We start our discussion by considering the momentum representation and show that in this
formulation the contribution δϕg to the total phase shift α in the interferometer arises solely
from the unitary time evolution of the momentum eigenstates between the laser pulses. For this
purpose we represent the operator product

Û l
†Û u =

∫
∞

−∞

dp′

∫
∞

−∞

dp 〈p′
|Û l

†Û u|p〉|p′
〉〈p| (83)

in terms of momentum eigenstates |p〉 and thus have to evaluate the action of Û u and Û l on |p〉.
With the help of (49) and (50) we obtain the explicit expressions

Û u|p〉 = e−iĤg T/h̄ e−i[kẑ+φ(T )] e−iĤg T/h̄ ei[kẑ+φ(0)]|p〉 (84)

and

Û l|p〉 = e−i[kẑ+φ(2T )] e−iĤg T/h̄ ei[kẑ+φ(T )] e−iĤg T/h̄
|p〉, (85)

where we have used the definition (46) of Ûg and have replaced Ĥ by Ĥg.
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6.1. Propagation in the gravitational potential

Next we recall the familiar relation

e±ikẑ
|p〉 = |p ± h̄k〉 (86)

shifting |p〉 by ±h̄k where the plus or minus signs correspond to the absorption or emission of
the photon, respectively. We emphasize that here the signs are opposite to but consistent with
the ones in the definition (11) of Vlp. The reason for this counter-intuitive fact stands out most
clearly from appendix A.5 which allows us trace this sign change back to the fact that time
evolution in quantum mechanics is always given by exp(−iĤ t/h̄).

Moreover, in appendix D we verify the identity

e−iĤg t/h̄
|pg(0)〉 = e−i[κ(pg(0))−κ(pg(t))]|pg(t)〉 (87)

with

pg(t)≡ pg(0)− mgt (88)

and

κ(p)≡
p3

6h̄m2g
. (89)

Equation (87) states that during the time evolution in a linear gravitational potential a
momentum eigenstate |pg(0)〉 remains a momentum eigenstate and its eigenvalue follows
Newtonian dynamics. However, the state also acquires a phase which is the difference of the
phases evaluated at the initial and the final momentum, that is the difference between κ at pg(0)
and κ at pg(t). It is also interesting that κ is cubic in the momentum.

With the help of the identities (86) and (87) we find for the actions of the unitary operators
Û u and Û l corresponding to the upper and the lower paths on the initial momentum state |pg(0)〉
the expressions

Û u|pg(0)〉 = ei[−φ(T )+φ(0)] e−i1u |pg(2T )〉 (90)

and

Û l|pg(0)〉 = ei[−φ(2T )+φ(T )] e−i1l |pg(2T )〉 (91)

with the phases

1u ≡ κ(pg(T ))− κ(pg(2T ))+ κ(pg(0)+ h̄k)− κ(pg(T )+ h̄k) (92)

and

1l ≡ κ(pg(T )+ h̄k)− κ(pg(2T )+ h̄k)+ κ(pg(0))− κ(pg(T )). (93)

Hence, on both paths the propagation of the initial momentum state |pg(0)〉 by Û u and Û l

leads to the same momentum state |pg(2T )〉 = |pg(0)− mg(2T )〉 which differs from |pg(0)〉
due its motion in the gravitational field. In particular, |pg(2T )〉 is independent of the momentum
kicks ±h̄k originating from the interaction of the atom with the laser pulses since on both paths
one photon is first absorbed but then again emitted. Moreover, the phases φ(0), φ(T ) and φ(2T )
appear in the same way as in the operator approach, a fact which is not surprising since they are
c-numbers.
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6.2. Diagonal representation of operator product due to identical final states

In the evaluation of the matrix element 〈p′
|Û l

†Û u|p〉 we need for Û l the initial momentum state
|p′

〉 rather than |p〉. Thus we arrive at the final momentum state |p′(2T )〉 = |p′(0)− 2mgT 〉

rather than |pg(2T )〉 = |pg(0)− 2mgT 〉 and the initial momentum pg(0) is replaced by p′

g(0).
Likewise, we need to substitute in 1l the momentum pg(0) by p′

g(0) which we denote by a
prime on 1l, that is 1′

l.
From (90) and (91) we find that the matrix element

〈p′

g(0)|Û l
†Û u|pg(0)〉 = eiδφ e−i(1u−1

′

l) 〈p′

g(2T )|pg(2T )〉 (94)

consists of the product of two phase factors and the scalar product

〈p′

g(2T )|pg(2T )〉 = 〈p′

g(0)− 2mgT |pg(0)− 2mgT 〉 (95)

between two momentum states. Here we have also recalled the definition (26) of δφ.
The orthonormality condition 〈p′

|p〉 = δ(p′
− p) of momentum states reduces (94) to

〈p′

g(0)|Û l
†Û u|p′

g(0)〉 = eiδφ e−i(1u−1l) δ(p′

g(0)− pg(0)). (96)

Here we have already made use of the delta function to replace 1′

l by 1l.
The phase difference 1≡1u −1l between the upper and the lower path is given by the

difference

1≡ δκ(pg(0))− δκ(pg(0)+ h̄k) (97)

between the quantity

δκ(pg(0))≡ κ(pg(2T ))− 2κ(pg(T ))+ κ(pg(0)) (98)

evaluated at pg(0) and pg(0)+ h̄k.
When we substitute (96) into the momentum representation (83) of Û l

†Û u we obtain by
performing the integration over p′ with the help of the delta function the identity

Û l
†Û u = eiδφ

∫
∞

−∞

dpg(0) e−i1
|pg(0)〉〈pg(0)|, (99)

that is Û l
†Û u is diagonal.

6.3. The phase shift in the interferometer is independent of the momentum

Unfortunately, the definition (97) of1 suggests that1 depends on pg(0) and we cannot yet use
the completeness relation to arrive at the desired phase factor representation (73) of the operator
product. However, we now show that 1 is indeed independent of pg(0).

For this purpose we first note that in complete analogy to δφ also δκ involves the times 0,
T and 2T of the laser pulses and is of the form of the discrete version of a second derivative in
time, that is

δκ(pg(0))∼=
d2

dt2
κ(pg(t))|t=0T 2

=
∂2κ

∂p2

∣∣∣∣
p=pg(0)

(
∂pg

∂t

)2
∣∣∣∣∣
t=0

T 2. (100)

In the last step we have made use of the fact that in a constant gravitational field the second
derivative of the momentum vanishes.
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When we replace the difference of momenta in 1 by the differential, that is

1∼= −
∂

∂p
(δκ)h̄k, (101)

we find with the help of (100) as well as the definitions (88) and (89) of pg and κ the result

1= −
∂3κ

∂p3

∣∣∣∣
p=pg(0)

(
∂pg

∂t

)2
∣∣∣∣∣
t=0

h̄kT 2
= −gkT 2

= −δϕg. (102)

We emphasize that (100) and (101) are exact as can easily be verified by evaluating the full
expressions.

Equation (102) shows that 1 is independent of pg(0) and (99) reduces to

Û l
†Û u = eiα

∫
∞

−∞

dpg(0) |pg(0)〉〈pg(0)| = eiα, (103)

where we have recalled the definition (35) of α and taken once again advantage of the
completeness relation of the momentum states.

6.4. Summary

In this section we have rederived from the momentum representation of quantum mechanics
the result (73) that the operator product Û l

†Û u is a c-number phase factor. Our calculation
rests on three facts: (i) the time evolution of a momentum eigenstate along the two arms of
the interferometer leads to the same final momentum state which ensures that the momentum
representation of Û l

†Û u is diagonal; (ii) the phase difference 1 accumulated by the momentum
states in the gravitational field between the laser pulses is the difference of δκ at the momenta p
and p + h̄k where δκ contains the momenta at the times of the three laser pulses which equates
1 to δϕg; (iii) hence,1 is independent of the initial momentum which reduces Û l

†Û u to a phase
factor.

Our calculation suggests that the phase shift α in the Kasevich–Chu interferometer is
determined by the difference between the acceleration-like chirp of the phases of the laser pulses
and the phase difference between the dynamical phases acquired by the atom in the two arms
during its motion in the gravitational field.

7. Phase shift obtained in position representation

We now analyze the interferometer in position space and arrive at a description [52] in terms
of propagators and the Feynman path integral. However, in contrast to [39, 41, 52] which start
from this formulation of quantum mechanics we perform the complete calculation in standard
non-relativistic Schrödinger quantum mechanics. Needless to say during our analysis we shall
repeatedly make contact with the Feynman approach.

As motivated by the previous sections we focus on the operator product Û l
†Û u and

represent it now in terms of position eigenstates |z〉. With the help of the completeness relation
we find

Û l
†Û u =

∫
∞

−∞

dz′′′

∫
∞

−∞

dz M(z′′′, z)|z′′′
〉〈z|, (104)
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where we have introduced the matrix element

M ≡ 〈z′′′
|Û l

†Û u|z〉 =

∫
∞

−∞

dz′′
〈z′′′

|Û †
l |z

′′
〉〈z′′

|Û u|z〉 (105)

consisting of the product of the matrix elements 〈z′′
|Û u|z〉 and 〈z′′′

|Û l
†
|z′′

〉 = 〈z′′
|Û l|z′′′

〉
∗

representing the propagation from z to z′′ according to the unitary evolution operator Û u, and
the reverse motion from z′′ to z′′′ due to Û †

l . In order to obtain M which connects z with z′′′ we
have to integrate over the intermediate coordinate z′′.

7.1. Propagation on a continuum of paths

We start by evaluating the action of Û u and Û l on a position eigenstate |z〉. Unfortunately,
the time evolution of |z〉 in a linear potential is slightly more complicated than that of |p〉. In
particular, |z〉 does not remain an eigenstate.

We calculate the matrix elements 〈z′′
|Û u|z〉 and 〈z′′

|Û l|z′′′
〉 with the help of the

expressions (49) and (50) for Û u and Û l by inserting a complete set of states |z′
〉 and |z̃′

〉.
In particular, we find the representation

〈z′′
|Û u|z〉 =

∫
∞

−∞

dz′
〈z′′

|e−iĤg T/h̄
|z′

〉〈z′
|e−i[kẑ+φ(T )] e−iĤg T/h̄ ei[kẑ+φ(0)]

|z〉. (106)

Here we have replaced in Ûg the Hamiltonian Ĥ by Ĥg, that is we consider again for the sake
of clarity the case of a constant gravitational field.

The familiar identity

e±ikẑ
|z〉 = e±ikz

|z〉 (107)

leads us to the expression

〈z′′
|Û u|z〉 =

∫
∞

−∞

dz′ G(z′′, T |z′) e−i[kz′+φ(T )] G(z′, T |z) ei[kz+φ(0)], (108)

where we have introduced the propagator G(z′, T |z)≡ 〈z′
|e−iĤg T/h̄

|z〉 in the linear gravitational
field which takes the atom during the time T from the position z to z′. Moreover, we have left
the terms in the sequence in which they appear on the upper path.

Similarly, we arrive with the representation (50) of Û l at

〈z′′
|Û l|z

′′′
〉 =

∫
∞

−∞

dz̃′
〈z′′

|e−i[kẑ+φ(2T )] e−iĤg T/h̄
|z̃′

〉〈z̃′
|ei[kẑ+φ(T )] e−iĤg T/h̄

|z′′′
〉, (109)

that is

〈z′′
|Û l|z

′′′
〉 =

∫
∞

−∞

dz̃′ e−i[kz′′+φ(2T )] G(z′′, T |z̃′) ei[kz′+φ(T )] G(z̃′, T |z′′′). (110)

For a linear potential the propagator G which contains the classical action

Scl(z
′, T |z)≡

m

2T
(z′

− z)2 −
1

2
(z + z′)mgT −

1

24
mg2T 3 (111)

corresponding to the Newtonian trajectory connecting during the time T the two positions z and
z′, and a normalization factor

N ≡

√
m

2π ih̄T
(112)
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which depends on T but not on z or z′, takes the form

G(z′, T |z)= N exp

[
i

h̄
Scl(z

′, T |z)

]
. (113)

As a result the matrix element corresponding to the upper path reads

〈z′′
|Û u|z〉 = ei[−φ(T )+φ(0)] N 2

∫
∞

−∞

dz′ exp

[
i

h̄
3u(z

′
; z′′, z)

]
, (114)

where

3u(z
′
; z′′, z)≡ Scl(z

′′, T |z′)+ Scl(z
′, T |z)+ h̄k(−z′ + z). (115)

In (114) the integration over the coordinate z′ constitutes an integration over paths. Indeed,
the appearance of the sum of the two classical actions Scl(z′′, T |z′) and Scl(z′, T |z) in (115)
indicates that we start at z and reach z′′ on a continuum of paths given by all possible
intermediate coordinates z′ ranging from minus to plus infinity. The expression (114) is the
Feynman path integral for the matrix element 〈z′′

|Û u|z〉.
Likewise, we find from (110) for the lower path

〈z′′
|Û l|z

′′′
〉 = ei[−φ(2T )+φ(T )] N 2

∫
∞

−∞

dz̃′ exp

[
i

h̄
3l(z̃

′
; z′′, z′′′)

]
(116)

with

3l(z̃
′
; z′′, z′′′)≡ Scl(z

′′, T |z̃′)+ Scl(z̃
′, T |z′′′)+ h̄k(−z′′ + z̃′). (117)

The integration variables z′ and z̃′ enter into 3u and 3l through the actions Scl in the same
way. However, in 3u the term h̄kz′ appears with a negative sign, corresponding to the emission
of a photon of momentum h̄k due to the second laser pulse, whereas at 3l the contribution
h̄kz̃′ carries a positive sign representing absorption. Needless to say, this difference in signs
makes a decisive difference in the integrals defining the two matrix elements. Hence, each
trajectory characterized by the start and end points z and z′′, or by z′′′ and z′′ respectively but
most importantly by the mid points z′ and z̃′, carries a phase 3u/h̄ or 3l/h̄. They depend not
only on these coordinates but also on the path the atom has taken as expressed by the subscripts
u and l.

7.2. Matrix element

We are now in the position to evaluate the matrix element M given by (105). For this purpose
we substitute (114) and (116) into (105) and find

M = eiδφ
|N |

4

∫
∞

−∞

dz′′

∫
∞

−∞

dz′

∫
∞

−∞

dz̃′ exp

{
i

h̄

[
3u(z

′
; z′′, z)−3l(z̃

′
; z′′, z′′′)

]}
. (118)

Here we have recalled the definition (26) of δφ.
It is interesting to note that M is a triple integral of a phase factor whose phase is given

by the difference 3u −3l between the phases accumulated on the upper and the lower arm
of the interferometer. The three integration variables are the three coordinates given by the
intermediate points z and z̃′ on the upper and the lower path and the end point z′′ of both arms.
We emphasize that at this stage we do not yet know that the path is closed. Indeed, we have not
shown that z = z′′′, that is the property of the operator product Û †

l Û u being diagonal.
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In order to achieve this goal, two approaches offer themselves: we can take advantage of
the fact that z′ only enters into 3u, and z̃′ only into 3l and perform the integrations separately.
Since 3u and 3l contain the integration variables z′ and z̃′ at most quadratically the required
integrations can be evaluated in an exact way. Moreover, this technique allows us to make
contact with the classical trajectories and actions analyzed in section 3. However, there is a
slight complication due to the fact that we do not know yet that Û †

l Û u is diagonal and thus
z 6= z′′′. As a result the integrations do not yield as much insight as one would want.

For this reason we follow a different route and first perform the integration over z′′. In
appendix E we include for the sake of completeness the detailed analysis of the first approach.

7.3. Interference of end points yields coupling of the two arms

When we recall the definitions (115) and (117) of 3u and 3l the matrix element M given
by (118) takes the form

M = eiδφ m

2π h̄T

∫
∞

−∞

dz′

∫
∞

−∞

dz̃′ I (z̃′, z′)× exp

{
i

h̄

[
Scl(z

′, T |z)− Scl(z̃
′, T |z′′′)

+h̄k(z − z′
− z̃′)

] }
, (119)

where we have introduced the integral

I ≡
1

2π

m

h̄T

∫
∞

−∞

dz′′ exp

{
i

h̄

[
Scl(z

′′, T |z′)− Scl(z
′′, T |z̃′)+ h̄kz′′

]}
(120)

and have recalled the definition (112) of the normalization constant N .
The explicit form (111) of Scl reduces I to

I (z̃′, z′)=
1

2π

∫
∞

−∞

dK exp

[
i

(
z̃′

− z′ +
h̄k

m
T

)
K

]
× exp

{
−i

m

2h̄T
(z̃′

− z′)
[
z̃′ + z′

− gT 2
]}
,

(121)

where we have introduced the integration variable K ≡ mz′′/(h̄T ).
Hence, the integral over z′′, that is over K , is the Fourier representation of a delta function

and we arrive at

I = δ

(
z̃′

− z′ +
h̄k

m
T

)
exp

[
ik

(
z′

−
h̄k

2m
T −

1

2
gT 2

)]
, (122)

where we have used the familiar property

f (x)δ(x)= f (0)δ(x). (123)

As a result, the integration over all end points z′′, that is the interference of all paths leading to
the same end point z′′ has resulted in a delta function which couples the mid points z′ and z̃′ of
the two integrations. Indeed, the relation

z′
= z̃′ +

h̄k

m
T (124)

indicates that the mid point z′ on the upper arm is separated from the one on the lower arm,
that is from z̃′ by the distance h̄kT/m traveled by the atom in the time T due to the momentum
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transfer h̄k resulting from the first laser pulse. This observation is in complete agreement with
the lower part of table 1 which predicts the dependence

zu = zl +
h̄k

m
t (125)

for the time-dependent coordinates of the classical trajectories corresponding to the two arms.
Next we substitute the result (122) for I into (119) for M and perform with the help of the

delta function the integration over z̃′ which yields

M = eiδφ m

2π h̄T

∫
∞

−∞

dz′ exp

{
i

h̄

[
Scl(z

′, T |z) − Scl

(
z′ +

h̄k

m
T, T |z′′′

)
+h̄k

(
z − z′

−
1

2
gT 2

)]}
. (126)

Now we are left with a single integration only and the definition (111) of Scl finally leads us to

M = eiα 1

2π

∫
∞

−∞

dζ ei(z−z′′′)ζ
= eiαδ(z − z′′′), (127)

where we have introduced the integration variable ζ ≡ mz′/(h̄T ).
Due to the delta function in the difference z − z′′′ arising from the integration over z′, that

is over ζ the matrix element M is diagonal with the phase factor exp(iα) and reduces to

Û l
†Û u = eiα, (128)

in complete agreement with the representation-free approach based on operator algebra, or the
momentum representation.

7.4. Connection to semi-classical description

At this point it is useful to focus on the essential points of this rather lengthy calculation. Indeed,
we identify the expression (118) for the matrix element M as the crucial quantity which contains
three important ingredients. (i) It is determined by the integration of a phase factor over the mid
points z′ and z̃′ as well as the end point z′′ of the interferometer. (ii) The phase of the phase factor
involves in the classical actions corresponding to the motion of the atom in the gravitational
potential and the momentum exchange with the laser pulses the integration variables z′, z̃′ and
z′′ in a way such that the integration over all end points z′′ enforces a constant separation h̄kT/m
between z′ and z̃′. (iii) This constraint allows us to perform the integration over z̃′, and the
resulting phase together with the integration over z′ leads us to the diagonal nature of M , and
thereby closes the path, that is z′′′

= z′.
We emphasize that at no point in this exact evaluation of the operator product Û †

l Û u

in position space did we take advantage of, or are even reminded of the cancellation of the
dynamical phases associated with the kinetic and the potential energy which has played a key
role in the semi-classical treatment of section 2. Indeed, these phases did not even appear in the
final expression since parts of them were needed to perform the integrations over z′, z̃′ and z′′.
Hence, the exact evaluation of M in position space proceeds in quite a different manner than the
semi-classical one. Needless to say we arrive at the same result.
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In order to bring out most clearly the similarities and differences between the two
approaches we first cast the exact expression (118) for M into the form

〈z′′′
|Û †

l Û u|z〉 = |N |
4

∫
∞

−∞

dz′′

∫
∞

−∞

dz′

∫
∞

−∞

dz̃′ exp

(
i

h̄
S

)
. (129)

Here we have introduced the abbreviation

S ≡ Scl(z
′′′, T |z̃′)+ Scl(z̃

′, T |z′′)+ Scl(z
′′, T |z′)+ Scl(z

′, T |z)+ h̄
[
kz′′ +φ(2T )

]
− h̄

[
kz̃′ +φ(T )

]
−h̄

[
kz′ +φ(T )

]
+ h̄ [kz +φ(0)] (130)

and have also recombined the phases φ(0), φ(T ) and φ(2T ) of the laser pulse with the phases
kz, kz′, kz̃′ and kz′′ of the atom in the laser. Since the interferometer has two arms we have two
phases kz′ and kz̃′ at the time T .

Next we express the classical action Scl of the atom in the linear gravitational potential
given by (111) by the time integral of the corresponding Lagrangian Lg defined by (19). In this
way we can cast the quantity S determining M into the compact form

S =

∫
C

dt Lg −

∫
C

dt Vlp ≡

∫
C

dt L. (131)

Here L follows from (9) and C denotes a path in time such that at the moments t = 0, T and 2T
of the laser pulses the coordinates z, z′, z̃′ and z′′ together with the start points z and z′′′ define
the path z → z′

→ z′′
→ z̃′

→ z′′′ in position space. We evaluate the action corresponding to the
Lagrangian L along such a path.

The formal expression (131) for S brings (129) into the form

〈z′′′
|Û †

l Û u|z〉 =

∫
D{z} exp

(
i

h̄

∫
C

dt L
)
, (132)

where we have introduced the abbreviation∫
D{z} ≡ |N |

4

∫
∞

−∞

dz′′

∫
∞

−∞

dz′

∫
∞

−∞

dz̃′ (133)

for the three integrations.
The phase factor in the expression (132) for the matrix element 〈z′′′

|Û †
l Û u|z〉 is reminiscent

of the semi-classical analysis of section 3. However, we emphasize that in the exact calculation
discussed in the present section we have to integrate this phase factor over z′′, z′ and z̃′, that is
we have to average it over a continuum of paths. The only points that are fixed in this average
are the start and the end points z and z′′′ of these trajectories. In particular, this phase factor is
not evaluated at the points z(2T ), z′

u and z′

l given by the classical trajectories in contrast to the
semi-classical one. Most importantly the path is not closed and z 6= z′′′. A closed path emerges
only after we have performed all three integrations. Obviously at this stage of the calculation
the semi-classical phase factor in terms of L does not exist anymore since we needed parts of it
to perform the integrations.

Needless to say, the final expression for the phase shift derived from the exact calculation
is identical to the one obtained from the semi-classical analysis. However, the way in which we
arrive at this result is fundamentally different in the two approaches. This feature is just one
more vivid demonstration that the procedures to evaluate the operator product depend on the
representation, an observation which constitutes the central theme of our article.
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8. Summary and outlook

In summary, based on our operator approach we have shown that the phase shift in the
Kasevich–Chu interferometer is the sum of only two phases which correspond to the
acceleration of the phases of the laser pulses, and the acceleration of the atom. We have
demonstrated that the latter term results from the difference in the order of two unitary time
evolutions giving rise to a c-number phase factor in the interfering amplitudes corresponding
to the two paths. When we evaluate the operator product determining the number of atoms
at the exit ports in different representations we, of course, always arrive at the same phase
factor. However, the way in which this term emerges depends critically on the representation.
Therefore, in different representations the contributing terms appear to arise from different
physical origins.

For example, in the momentum representation the phase due to the acceleration arises
from the time evolution between the laser pulses. This behavior is in sharp contrast to the
position representation where this phase results from the interference of a continuum of paths
corresponding to a continuum of positions of the atom at the times of the laser pulses. This
representation is intimately connected to the Feynman path integral approach in which the phase
shift is solely the result of the interaction of the atom with the laser pulses. It is the difference
of this interaction between the upper and lower beams that introduces gravity into the problem.
Indeed, here the time evolution of the atom between the pulses is identical in the two arms and
therefore cancels out in the relative phase.

Our operator approach confirms that the Kasevich–Chu interferometer is a accelerometer
or a gravimeter [38, 39], but not an ensemble of two clocks. Moreover, due to the representation
dependence of the phase shift there is no justification to prefer one representation over another.
Therefore, conclusions drawn from one specific representation do not justify any claims
concerning an improved accuracy.
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Appendix A. Description of atom interferometer

In the present appendix we develop an elementary description of the Kasevich–Chu
interferometer. For this purpose we study the interaction of a three-level atom with a short
laser pulse and show that the resulting Schrödinger dynamics realizes a coherent beam splitter
for the atomic motion. Here we first assume arbitrary transmission and reflection coefficients
determined by the parameters of the laser pulses and then consider the special case of the
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Kasevich–Chu interferometer. We conclude by deriving the effective potential Vlp for the center-
of-mass-motion resulting from a short laser pulse, a concept which is central to our classical and
semi-classical discussions in section 3.

Although the Kasevich–Chu interferometer has been discussed extensively in the literature
we have not been able to find the analysis presented in this appendix. Moreover, the material is
crucial for the understanding of the article and therefore keeps it self-contained.

A.1. Atom–laser interaction

We consider the center-of-mass motion of a three-level atom described [61] by the atomic
Hamiltonian

Ĥ a ≡ h̄ω1|g1〉〈g1| + h̄ω2|g2〉〈g2| + h̄ωe|e〉〈e| (A.1)

and shown in figure 1 as influenced by the interaction with the electromagnetic field

E(t)≡ E1(t) e−iν1t ei[k1z+φ1(t)] + E2(t) e−iν2t e−i[k2z+φ2(t)], (A.2)

which consists of two counter-propagating waves of envelope E j = E j(t), frequency ν j , wave
vector k j and phase φ j = φ j(t) where j = 1 and 2. Throughout our article we assume that the
pulses are so short that the position of the atom is not influenced by it during its duration.
Consequently, we for the time being neglect the dynamics of the center-of-mass motion of the
atom and only take into account the interaction Hamiltonian

Ĥ I ≡ h̄�1(t)|e〉〈g1| e−iν1t ei[k1z+φ1(t)] + h̄�2(t)|e〉〈g2| e−iν2t e−i[k2z+φ2(t)] + h.c. (A.3)

Here, the time-dependent Rabi frequencies � j =� j(t) involve the dipole moments of the
transitions and the envelopes E j of the pulses. Moreover, the two different signs in the phases of
the field reflect the fact that we deal with counter-propagating electromagnetic fields.

In the interaction picture defined by the atomic Hamiltonian Ĥ a the interaction Hamiltonian
Ĥ (I)

I ≡ exp(iĤ at/h̄)Ĥ I exp(−iĤ at/h̄) reads

Ĥ (I)
I ≡ h̄�1(t)|e〉〈g1| e−i11t ei[k1z+φ1(t)] + h̄�2(t)|e〉〈g2| e−i12t e−i[k2z+φ2(t)] + h.c., (A.4)

where we have introduced the detunings

11 ≡ ν1 − (ωe −ω1) (A.5)

and

12 ≡ ν2 − (ωe −ω2) (A.6)

between the two laser frequencies ν1 and ν2 and the frequencies ωe −ω1 and ωe −ω2 of the
atomic transitions between |g1〉 and |e〉 and |g2〉 and |e〉.

A.2. Quantum state of atom in perturbation theory

In the limit of large detunings11 and12 the interaction Hamiltonian Ĥ (I)
I oscillates rapidly. We

gain insight into the resulting dynamics by the elementary perturbative expansion

|ψa(t)〉 ∼=

[
1−

i

h̄

∫ t

0
dt ′ Ĥ (I)

I (t
′)−

1

h̄2

∫ t

0
dt ′

∫ t ′

0
dt ′′ Ĥ (I)

I (t
′)Ĥ (I)

I (t
′′)

]
|ψa(0)〉 (A.7)

of the time evolution of an initial atomic state |ψa(0)〉 due to the Schrödinger equation with Ĥ (I)
I .
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A.2.1. Average of oscillatory terms. We first cast Ĥ (I)
I into the compact form

Ĥ (I)
I = Â1(t)e

−i11t + Â2(t)e
−i12t + Â†

1(t)e
i11t + Â†

2(t)e
i12t , (A.8)

where the operators

Â1(t)≡ h̄�1(t) ei[k1z+φ1(t)]|e〉〈g1| (A.9)

and

Â2(t)≡ h̄�2(t) e−i[k2z+φ2(t)]|e〉〈g2| (A.10)

are slowly varying compared to their phase factors with the detunings 11 and 12.
Hence, in the integration of Ĥ (I)

I over time we only integrate the phase factors, that is∫ t

0
dt ′ Ĥ (I)

I (t
′)= −

Â1(t)

i11

(
e−i11t

− 1
)
−

Â2(t)

i12

(
e−i12t

− 1
)

+
Â†

1(t)

i11

(
ei11t

− 1
)

+
Â†

2(t)

i12

(
ei12t

− 1
)
. (A.11)

When we now average this result over the rapid oscillations due to 11 and 12 we arrive at

∫ t

0
dt ′ Ĥ (I)

I (t ′)∼=
Â1(t)

i11
+

Â2(t)

i12
−

Â†
1(t)

i11
−

Â†
2(t)

i12
. (A.12)

Here the bar indicates average over rapidly-oscillating terms.
As a result, in first order perturbation theory the time evolution of |ψa〉 is governed by the

slowly varying operators Â j and Â†
j divided by the large detunings 1 j .

Next we turn to the second order perturbation theory which involves the product of Ĥ (I)
I (t)

and the integral of Ĥ (I)
I given by (A.8) and (A.11). We only retain slowly varying terms, that is

phase factors which contain the difference1− ≡11 −12 between the detunings. Phase factors
which oscillate with 11, 12 or 211, 212 or 11 +12 we neglect since they will only provide
small contributions in the integration over t ′. As a result we find from (A.8) and (A.11) the
formula

Ĥ (I)
I (t

′)

∫ t ′

0
dt ′′ Ĥ (I)

I (t
′′)=

Â1 Â†
1

i11
+

Â1 Â†
2

i12
e−i1−t ′ +

Â2 Â†
1

i11
ei1−t ′ +

Â2 Â†
2

i12

−
Â†

1 Â1

i11
−

Â†
1 Â2

i12
ei1−t ′

−
Â†

2 Â1

i11
e−i1−t ′

−
Â†

2 Â2

i12
. (A.13)

A.2.2. Explicit form of second order correction. We now evaluate the operator products and
obtain from the definitions (A.9) and (A.10) the expressions

Â1 Â†
1 = h̄2

|�1|
2
|e〉〈e| (A.14)

and

Â2 Â†
2 = h̄2

|�2|
2
|e〉〈e| (A.15)

together with

Â†
1 Â1 = h̄2

|�1|
2
|g1〉〈g1| (A.16)
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and

Â†
2 Â2 = h̄2

|�2|
2
|g2〉〈g2|. (A.17)

Here we have assumed that the atomic states |g1〉, |g2〉 and |e〉 are normalized.
Since |g1〉 and |g2〉 are orthogonal we obtain the identities

Â1 Â†
2 = 0 (A.18)

and

Â2 Â†
1 = 0. (A.19)

However, most important for our discussion of the interferometer are the products

Â†
1 Â2 = h̄2�∗

1�2 e−i[kz+φ+(t)]|g1〉〈g2| (A.20)

and

Â†
2 Â1 = h̄2�∗

2�1 ei[kz+φ+(t)]|g2〉〈g1|, (A.21)

where we have introduced the abbreviations

k ≡ k1 + k2 (A.22)

and

φ+ ≡ φ1 +φ2. (A.23)

As a consequence, (A.13) reduces to∫ t ′

0
dt ′′ Ĥ (I)

I (t
′) Ĥ (I)

I (t
′′)= h̄2

(
|�1|

2

i11
+

|�2|
2

i12

)
|e〉〈e| − h̄2 |�1|

2

i11
|g1〉〈g1|

−h̄2 |�2|
2

i12
|g2〉〈g2| − h̄2�

∗

1�2

i12
e−i(kz+φ+) ei1−t ′

|g1〉〈g2|

−h̄2�1�
∗

2

i11
ei(kz+φ+) e−i1−t ′

|g2〉〈g1|, (A.24)

which contains slowly-varying terms that are diagonal in the atomic states, and off-diagonal
ones that oscillate with the difference 1− of the two detunings. The diagonal ones cause an
intensity-dependent shift of the atomic levels. Since the main interest of this appendix is the
description of the Kasevich–Chu interferometer we do not discuss these shifts further but solely
focus on the terms that cause a transition from |g1〉 to |g2〉 and back.

A.2.3. State after pulse for identical detunings. The special choice of identical detunings, that
is 1− = 0 and neglecting the intensity-dependent shifts leads us to the expression∫ t ′

0
dt ′′ Ĥ (I)

I (t
′) Ĥ (I)

I (t
′′)= ih̄2

[
�(t)ei(kz+φ+) σ̂ † +�∗(t)e−i(kz+φ+) σ̂

]
, (A.25)

where we have introduced the abbreviation

�(t)≡
�1(t)�∗

2(t)

ν1 − (ωe −ω1)
=

�1(t)�∗

2(t)

ν2 − (ωe −ω2)
(A.26)

and the Pauli spin matrices σ̂ †
≡ |g2〉〈g1| and σ̂ ≡ |g1〉〈g2| for the transition from |g1〉 to |g2〉

and from |g2〉 to |g1〉, respectively. Moreover, we have taken advantage in (A.26) of the fact that
11 =12.
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We are now in the position to obtain the final expression for the quantum state |ψa〉 in
second order perturbation. Here we integrate over the full duration of the laser pulse, which
is assumed to be symmetric around t = 0, that is we integrate from −∞ to +∞. Moreover,
we neglect the contribution (A.12) from first order perturbation theory compared to the second
order since it only involves slowly varying terms compared to the integral of slowly varying
terms.

When we substitute (A.25) into (A.7) we find

|ψa(+∞)〉 ∼=
[
1− i

(
θ eiϕσ̂ † + θ e−iϕσ̂

)]
|ψa(−∞)〉, (A.27)

where we have introduced the abbreviation∫
∞

−∞

dt �(t)≡ θ eiβ�, (A.28)

which involves the real-valued pulse area θ and a phase β� which emerges from the fact that the
product �1�

∗

2 of the two Rabi frequencies may be complex.
The total phase

ϕ ≡ kz +φ(0) (A.29)

contains the position z of the atom in the superposition of the two counterpropagating waves of
total wave vector k ≡ k1 + k2 and the sum

φ ≡ β� +φ+ = β� +φ1 +φ2 (A.30)

of the phase β� of the complex-valued pulse area and the sum φ+ ≡ φ1 +φ2 of the phases of the
two waves. For simplicity we evaluate φ at the center of the pulse, that is at t = 0.

In view of perturbation theory we can also interpret the correction to the identity operator
in (A.27) as the first term of the power expansion of an exponential and obtain the approximate
relation

|ψa(+∞)〉 ∼= Û I|ψa(−∞)〉, (A.31)

where the unitary operator

Û I ≡ exp[−i(θ eiϕσ̂ † + θ e−iϕσ̂ )] (A.32)

connects |ψa(−∞)〉 with |ψa(+∞)〉.

A.2.4. Summary. Due to the large detunings 11 and 12 we have been able to eliminate the
excited state |e〉 and we deal only with a two-level atom with states |g1〉 and |g2〉 driven by an
electromagnetic field whose time dependence originates from the envelopes E1 and E2 of the two
pulses and is therefore slow compared to optical frequencies. Hence, the internal dynamics of
the atom for a short pulse at t = 0 is governed by the unitary operator Û I defined by (A.32).

A.3. Analysis of the unitary operator

We now evaluate Û I and find from the identity [61]

exp
[
−i(θeiϕσ̂ † + θe−iϕσ̂ )

]
= cos θ − i sin θ

[
eiϕσ̂ † + e−iϕσ̂

]
(A.33)
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familiar from the Jaynes–Cummings model and from (A.29) the representation

Û I = cos θ − i sin θ
[
ei(kz+φ(0))

|g2〉〈g1| + e−i(kz+φ(0))
|g1〉〈g2|

]
(A.34)

of the internal dynamics due to the laser pulse.
Indeed, when we start from a given atomic state we can either remain in it with the

probability amplitude cosθ determined by the pulse area θ , or we make a transition with a
probability amplitude (−isinθ). In the latter case the initial state is of importance. Indeed, when
we start from |g1〉 and make a transition to |g2〉, that is we absorb a photon from the laser pulse,
we have to multiply the state by the phase factor exp[i(kz +φ(0))]. In contrast, when we begin
in the state |g2〉 and end up in |g1〉, that is we emit a photon, we multiply by the phase factor
exp[−i(kz +φ(0))].

The terms cosθ and (−isinθ) ensure the unitarity condition

ÛIÛI
†
= ÛI

†
ÛI = 1. (A.35)

Indeed, we find from (A.34) in the form

ÛI = cos θ − i sin θ [eiϕσ̂ † + e−iϕσ̂ ] (A.36)

and

Û†
I = cos θ + i sin θ [e−iϕσ̂ + eiϕσ̂ †] (A.37)

the relation

ÛIÛ
†
I = cos2 θ + sin2 θ [σ̂ †σ̂ + e2iϕσ̂ †2

+ e−2iϕσ̂ 2 + σ̂ σ̂ †], (A.38)

which with the properties

σ̂ 2
= σ̂ † 2

= 0 and σ̂ σ̂ † + σ̂ †σ̂ = 1 (A.39)

of the Pauli matrices σ̂ and σ̂ † leads us to (A.35).

A.4. Beam splitters and mirrors

On first sight the position-dependent phase factor in (A.34) does not seem to be important.
However, when we also describe the center-of-mass motion of the atom quantum mechanically
the coordinate z of the atom turns into an operator ẑ and we finally arrive at the unitary operators

Û (±)(t)≡ e±i[kẑ+φ(t)] (A.40)

acting on the initial quantum state |ψi〉 of the center-of-mass motion. Here the plus or the minus
sign correspond to the transitions from |g1〉 to |g2〉 or from |g2〉 to |g1〉, respectively.

We note that by an appropriate choice of the pulse envelopes E1 and E2 determining
by (A.26) and (A.28) the pulse area θ we can even create a 50 : 50 beam splitter, or a
mirror. Indeed, when we choose θ = π/4 we find with cos(π/4)= sin(π/4)= 1/

√
2 a coherent

superposition of two states of the center-of-mass motion since we superpose with equal
probability amplitudes the initial |ψi〉 state with Û (±)

|ψi〉. Hence, we have realized a beam
splitter for atoms. Moreover, we note from (A.34) that the state of the deflected atom has to be
multiplied by (−i).

On the other hand the choice θ = π/2 with cos(π/2)= 0 eliminates the possibility to
remain in the state and we always change |ψi〉. Although there is no new superposition formed
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by this interaction the center-of-mass motion is dramatically influenced by the unitary operators
Û (±) acting on |ψi〉. Indeed, the atom is deflected similarly to light by a mirror. Hence, this
choice of the laser parameters corresponds to a mirror for atoms. Again the quantum state has
to be multiplied by (−i) as indicated by (A.34).

We conclude by briefly discussing the Kasevich–Chu interferometer shown in figure 1.
Here the three laser pulses are chosen such that the first and the third one serve as 50:50 beam
splitters with cos(π/4)= sin(π/4)= 1/

√
2 while the second one is a mirror with cos(π/2)= 0.

As a result, every beam splitter brings in a factor 1/
√

2 for the two interfering quantum states.

A.5. Effective potential corresponding to laser pulse

In the preceding section we have obtained the expression (A.40) for the unitary transformations
Û (+) and Û (−) associated with a transition from the atomic state |g1〉 to |g2〉 and from |g2〉 to |g1〉,
respectively. We now show that we can interpret Û (±) as the result of the unitary time evolution
due to the Hamiltonian

Ĥ lp ≡
p̂2

2m
+ Vlp(ẑ, t) (A.41)

with the effective time- and position-dependent potential

Vlp(ẑ, t)≡ ∓h̄
[
kẑ +φ(T )

]
δ(t − T ). (A.42)

Here we have approximated the short laser pulse acting at t = T by a delta function.
During the duration of the pulse we can neglect the kinetic energy compared to Vlp, and the

quantum state |ψ(T + δ)〉 of the center-of-mass motion, shortly after the pulse, is connected to
the state |ψ(T − δ)〉 shortly before the pulse by the solution of the corresponding Schrödinger
equation

ih̄
d

dt
|ψ(t)〉 = Ĥ lp|ψ(t)〉 ∼= Vlp(t)|ψ(t)〉 (A.43)

which reads

|ψ(T + δ)〉 = exp

[
−

i

h̄

∫ T +δ

T −δ

dt Vlp(t)

]
|ψ(T − δ)〉. (A.44)

With the help of the definition (A.42) of Vlp we find immediately

|ψ(T + δ)〉 = exp
{
±i

[
kẑ +φ(T )

]}
|ψ(T − δ)〉 = Û (±)(T )|ψ(T − δ)〉. (A.45)

Hence, we can describe in the case of an internal transition the action of a laser pulse on the
center-of-mass motion of the atom by the effective potential Vlp. In particular, the excitation of
the atom from |g1〉 to |g2〉 requires the minus sign in Vlp whereas the deexcitation from |g2〉 to
|g1〉 is associated with the plus sign. In section 3 we show using Vlp and classical mechanics
that these processes give rise to an increase, or a decrease of the momentum of the atom by
h̄k. Needless to say, this statement also holds true when we describe the motion by quantum
mechanics as discussed in section 6. In case the atom is unaffected by the laser pulse and remains
in its internal state the potential Vlp vanishes and no momentum transfer occurs.
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Appendix B. Semi-classical considerations in phase space

Sections 2 and 3 of our article are based on the assumption that the phase of the wave function is
given by the action of the atom evaluated along its classical trajectory. In order to give credence
to this assumption we connect in this appendix the Lagrangian with the Hamiltonian formulation
of quantum mechanics in the semi-classical limit, and obtain in this way the phase of the energy
wave function in the WKB-approximation. Moreover, we present the resolution of a riddle put
forward in [60] where we had found that the area in phase space circumvented by the atom is
twice the phase shift due to the acceleration. We identify the origin of this factor and rederive
the total phase shift in the interferometer.

B.1. Connection to WKB-wave function

We start by connecting the Lagrange formalism with the WKB-expression of an energy wave
function. For this purpose we first cast the action due to the Lagrangian

L≡
1

2
mv2

− V (z, t) (B.1)

with a space- and time-dependent potential V in terms of the Hamiltonian

H ≡
p2

2m
+ V (z, t). (B.2)

For a potential V that is independent of v ≡ ż we find with the help of the Legendre
transformation

L= ż p − H (B.3)

the connection formula∫
dt L=

∫
dz p −

∫
dt H (B.4)

and we can derive from the non-relativistic limit of the de Broglie wave (7) neglecting the
contribution mc2t/h̄, that is, from

ψ = exp

(
i

h̄

∫
dt L

)
(B.5)

the expression

ψ ≡ eiβ
≡ exp

(
−

i

h̄

∫
dt H

)
exp

(
i

h̄

∫
dz p

)
(B.6)

for a wave function in terms of the classical Hamiltonian H and momentum p. We emphasize
that here we have focused only on the phase and not on the amplitude of ψ .

For a time-independent Hamiltonian, that is for H ≡ E , (B.6) reduces to

ψ = exp

(
−

i

h̄
Et

)
exp

(
i

h̄

∫ z

z0

dz̃ p

)
(B.7)

familiar from the WKB-representation [61] of an energy wave function.
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Table B.1. Evaluation of dynamical phase in the Kasevich–Chu atom
interferometer associated with the Hamiltonian Hg consisting solely of kinetic
and gravitational energies. Due to the momentum transfer from the laser pulses
the energy is not conserved during the complete motion of the atom through
the interferometer. However, between the pulses there is conservation of energy
which allows us to evaluate the dynamical phase in an efficient way. We
emphasize that this phase only includes the dynamical effects arising from the
gravitational field but not from the interaction of the laser pulses with the atom.
The position zg(2T ) and velocity vg(2T ) of the atom in the linear gravitational
field Vg shortly after the third laser pulse read zg(2T )≡ zg(0)+ vg(0)2T − 2gT 2

and vg(2T )≡ vg(0)− 2gT where zg(0) and vg(0) denote the position and
velocity shortly before the first pulse.

Between 0 and T Between T and 2T

Energy Eu on
upper path 1

2 m[vg(0)+ h̄k
m ]2 + Vg(zg(0)) 1

2 m vg(2T )2 + Vg(zg(2T ))
Energy El on
lower path 1

2 m[vg(0)]2 + Vg(zg(0)) 1
2 m[vg(2T )+ h̄k

m ]2 + Vg(zg(2T ))
Difference
E− ≡ Eu − El

1
2 m[2vg(0) h̄k

m + ( h̄k
m )

2] −
1
2 m[2vg(2T ) h̄k

m + ( h̄k
m )

2]
of energies
1
h̄

∮
dt Hg k[vg(0)− vg(2T )]T = −2kz̈g(0)T 2

= 2k gT 2
= 2 δϕg

B.2. Resolution of a small puzzle

Recently the authors of [60] have made the puzzling observation that the area in phase space
circumvented by the closed classical trajectory of an atom in the Kasevich–Chu interferometer
when expressed in units of h̄ is twice the phase shift due to the acceleration of the atom. The
well-known identity∮

dz p = 2
∮

dt

(
1

2
mv2

)
(B.8)

states that this area is twice the action due to the kinetic energy which according to table 1 is
given by h̄δϕg. Hence, we arrive at the relation

1

h̄

∮
dz p = 2δϕg, (B.9)

that is, the area in phase space in units of h̄ is indeed 2δϕg, which confirms and explains the
claim of [60].

Since according to (32) the action given by Lg along the closed classical trajectory
determined by L vanishes the connection formula (B.4) together with (B.9) predicts

1

h̄

∮
dt Hg = 2δϕg (B.10)

which is again twice δϕg. In table B.1 we verify that this claim is indeed correct.
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One might therefore wonder: what is the origin of the phase shift α in this phase space
picture? The answer to this question springs from the considerations of section 3. Indeed, the
dynamics of the system does not result from Hg but from H = Hg + Vlp which apart from the
gravitational potential Vg also contains the potential energy Vlp due to the laser pulses. Thus we
find from (B.6) for the phase β of the matter wave after a completion of the path the expression

β ≡ −
1

h̄

∮
dt H +

1

h̄

∮
dz p = −

1

h̄

∮
dt Hg −

1

h̄

∮
dt Vlp +

1

h̄

∮
dz p (B.11)

which reduces with (B.9), (B.10) and (25) to

β = −2δϕg +α + 2δϕg = α, (B.12)

in complete agreement with our previous analysis.

Appendix C. Operator identity

In this appendix we rederive for the sake of completeness the relation

Û ≡ e−ikẑ e−iĤ T/h̄ eikẑ
= e−iĤ (+)T/h̄, (C.1)

where

Ĥ ≡
p̂2

2m
+ V (ẑ) (C.2)

and

Ĥ (+)
≡

(
p̂ + h̄k

)2

2m
+ V (ẑ). (C.3)

Here we slightly generalize the derivation of [60]. Indeed the present treatment holds true for
any potential V = V (z) that only depends on z.

For this purpose we first expand the exponential with Ĥ into a power series and insert the
unity operator 1 in the form

eikẑ e−ikẑ
≡ 1 (C.4)

between the individual terms of Ĥ n which yields

Û =

∞∑
n=0

1

n!

(
−iT

h̄

)n (
e−ikẑ Ĥ eikẑ

) (
e−ikẑ Ĥ eikẑ

)
. . .

(
e−ikẑ Ĥ eikẑ

)
. (C.5)

Moreover, we note the identity

e−ikẑ p̂2 eikẑ
= ( p̂ + h̄k)2 (C.6)

and find

e−ikẑ Ĥ eikẑ
= e−ikẑ

(
p̂2

2m
+ V (ẑ)

)
eikẑ

=
( p̂ + h̄k)2

2m
+ V (ẑ)= Ĥ (+), (C.7)

which together with equation (C.5) leads to the desired result equation (C.1).
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Appendix D. Time evolution of a momentum state in a linear potential

In this appendix we study the propagation of a momentum eigenstate |p〉 in a linear potential
V (z)≡ γ z of steepness γ given by the Hamiltonian

Ĥ l ≡
p̂2

2m
+ γ ẑ. (D.1)

We show by taking advantage of the completeness relations of the energy and momentum
eigenstates |E〉 and |p′

〉, respectively and the momentum representation of |E〉 that a momentum
eigenstate remains a momentum eigenstate but acquires a phase. For a different derivation we
refer to the lectures [63] of Cohen-Tannoudji at the Collège de France. We conclude by deriving
two alternative but completely equivalent representations of this phase factor and illustrate our
result with the help of the Wigner function formulation [61] of quantum mechanics.

D.1. Derivation

The completeness relations of the energy eigenstates |E〉 defined by Ĥ l|E〉 = E |E〉 and the
momentum eigenstates |p′

〉 given by p̂|p〉 = p|p〉 provide us with the identity

exp

(
−

i

h̄
Ĥ lt

)
|p〉 =

∫
∞

−∞

dE
∫

∞

−∞

dp′ e−iEt/h̄u∗

E(p)uE(p
′)|p′

〉, (D.2)

where the momentum representation uE(p)≡ 〈p|E〉 of |E〉 follows from the eigenvalue
equation (

p2

2m
− γ

h̄

i

d

dp

)
uE(p)= E uE(p) (D.3)

of |E〉 in momentum space. Direct integration of this differential equation of first order in p
yields

uE(p)= N exp

[
i

h̄γ

(
p3

6m
− Ep

)]
, (D.4)

where the normalization constant N is determined by the condition∫
∞

−∞

dE u∗

E(p) uE(p
′)= δ(p − p′), (D.5)

which with the explicit form (D.4) of uE reads

|N|
2

∫
∞

−∞

dE exp

[
i(p − p′)

E

h̄γ

]
exp

[
−

i

6h̄γm
(p3

− p′3)

]
= δ(p − p′). (D.6)

The integral over E is a Dirac delta function provided

|N|
2
=

1

2π h̄γ
, (D.7)

in which case the difference of the cubes of momenta in the phase factor vanishes and we obtain
the desired orthonormality (D.6).
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When we now substitute the expressions (D.4) and (D.7) for uE and |N|
2 into (D.2) we

arrive at

exp

(
−

i

h̄
Ĥ lt

)
|p〉 =

∫
∞

−∞

dp′
1

2π h̄γ

∫
∞

−∞

dE exp

[
−i(γ t − p + p′)

E

h̄γ

]
(D.8)

× exp

[
−

i

6h̄γm
(p3

− p′3)

]
|p′

〉. (D.9)

The integration over E yields a delta function in the variable γ t − p + p′ which allows us
to perform the integration over p′ and we find the relation

exp

(
−

i

h̄
Ĥ lt

)
|p(0)〉 = exp {−i[κ(p(0))− κ(p(t))]} |p(t)〉, (D.10)

where

p(t)≡ p(0)− γ t (D.11)

is the time-dependent momentum given by the integration of the Newton equation ṗ = −γ for
a linear potential and the phase

κ(p)≡
1

6h̄γm
p3 (D.12)

is cubic in the momentum.

D.2. Alternative representation of phase factor

In (D.10) the phase factor is given by the difference between κ at the initial and the final
momentum. Due to the form (D.11) of p(t) the terms cubic in p(0) cancel and the phase only
involves terms quadratic in the initial momentum. Indeed, with the identity

a3
− (a − b)3 = 3b

[(
a −

1

2
b

)2

+
1

12
b2

]
, (D.13)

we can re-express the difference p(0)3 − (p(0)− γ t)3 and find the alternative representation

exp

(
−

i

h̄
Ĥ lt

)
|p(0)〉 = exp

[
−

i

h̄
ε(p(0); t) t

]
|p(t)〉 (D.14)

of the time evolution of a momentum state in a linear potential where we have introduced the
quantity

ε(p(0); t)≡
1

2m

[
p(0)−

1

2
γ t

]2

+
1

24m
(γ t)2. (D.15)
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D.3. Wigner function analysis

We conclude this appendix by noting that the result that in the time evolution a momentum
state remains a momentum state is also confirmed in the Wigner function formulation [61]
of quantum mechanics. Indeed, for a linear potential the dynamics of the Wigner function is
determined [60, 61] by the classical Liouville equation, that is we follow classical trajectories.
As a result the Wigner function

W (z, p; t)= W0

(
z −

p

m
t −

1

m
γ t2

; p + γ t

)
(D.16)

at time t is given in terms of the initial Wigner function W0 with re-scaled variables.
Since the Wigner function of a momentum eigenstate |p(0)〉 is a Dirac delta function, that is

W0(z, p)=
1

2π h̄
δ(p − p(0)), (D.17)

the Wigner function at time t reads

W0(z, p; t)=
1

2π h̄
δ(p − (p(0)− γ t))=

1

2π h̄
δ(p − p(t)) (D.18)

in complete agreement with equation (D.10). Unfortunately the Wigner function cannot provide
us with the phase factor in (D.14) since it is bilinear in the wave function.

It is interesting to note that the Wigner function treatment already indicates that in contrast
to the momentum eigenstate a position eigenstate |z〉 cannot remain a position eigenstate under
the time evolution in a linear potential. From the state vector formulation of quantum mechanics
this fact is obvious since the matrix element 〈z′′

| exp(−iĤ lt/h̄)|z〉 is the propagator G.
From the expression (D.16) for the time-evolved Wigner function of the initial Wigner

function

W0(z, p)=
1

2π h̄
δ(z − z(0)) (D.19)

corresponding to the position eigenstate |z(0)〉 we find

W (z, p; t)=
1

2π h̄
δ

[
z −

(
z(0)+

p

m
t +

1

m
γ t2

)]
. (D.20)

Although the expression in the round parentheses of the argument of the delta function is
reminiscent of the time dependent position coordinate z(t) of a particle in a linear potential
it cannot be interpreted as |z(t)〉 since the conjugate variable p enters. Indeed, in the position
representation of quantum mechanics momentum cannot appear.

Appendix E. Integration over all paths by method of stationary phase

In section 7 we have evaluated the matrix element M ≡ 〈z′′′
|Û †

l Û u|z〉 determining the operator
product Û †

l Û u in position space, and given according to (118) by a triple integral, by performing
first the integration over the common end point z′′ of the two paths in the interferometer, and
then the integrations over the mid points z′ and z̃′. In the present section we follow a different
route and first integrate over z′ and z̃′, and then over z′′. Since the integrals over z′ and z̃′ are
independent of each other and only involve quadratic phase factors they can be calculated in a
straightforward way. In particular, the method of stationary phase which in this case is exact,
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allows us to make contact with the classical trajectories discussed in section 3. However, there is
a subtlety: the path is not closed until we have completed the integration over z′′ which creates
a delta function and makes the matrix element M ≡ 〈z′′′

|Û †
l Û u|z〉 diagonal such that the initial

and the final coordinates z and z′′′ are identical.

E.1. Integration over mid point and emergence of two paths

We now evaluate the matrix element

M = eiδφ 1

2π

m

2h̄T

∫
∞

−∞

dz′′ I ∗

l (z
′′, z′′′) Iu(z

′′, z), (E.1)

where we have introduced the abbreviations

Iu(z
′′, z)=

√
m

iπ h̄T

∫
∞

−∞

dz′ exp

[
i

h̄
3u(z

′
; z′′, z)

]
(E.2)

and

Il(z
′′, z′′′)=

√
m

iπ h̄T

∫
∞

−∞

dz̃′ exp

[
i

h̄
3l(z̃

′
; z′′, z′′′)

]
. (E.3)

Here we have recalled the definition (112) of N and the phases

3u(z
′
; z′′, z)≡ Scl(z

′′, T |z′)+ Scl(z
′, T |z)+ h̄k(−z′ + z) (E.4)

and

3l(z̃
′
; z′′, z′′′)≡ Scl(z

′′, T |z̃′)+ Scl(z̃
′, T |z′′′)+ h̄k(−z′′ + z̃′) (E.5)

accumulated on the upper and lower path contain the classical action

Scl(z
′, T |z)≡

m

2T
(z′

− z)2 −
1

2
(z + z′)mgT −

1

24
mg2T 3. (E.6)

Since the integration variables z′ and z̃′ in (E.2) and (E.3) appear in the phases 3u and 3l by
virtue of the classical action Scl given by (E.6) at most quadratically we can perform these
integrations with the help of the integral relation∫

∞

−∞

dθ eiγ θ2
=

√
iπ

γ
(E.7)

in an exact way.
However, it is more intuitive to evaluate the integrals using the method of stationary phase,

which for phases quadratic in the integration variable is exact. The points z′

u and z′

l of stationary
phase of3u and3l select from a continuum of trajectories on the upper and lower path a single
one and follow from the conditions

0 =
∂3u

∂z′

∣∣∣∣
z′=z′

u

=

[m

T
(−z′′ + 2z′

− z)− mgT − h̄k
] ∣∣∣∣

z′=z′
u

(E.8)

and

0 =
∂3l

∂ z̃′

∣∣∣∣
z̃′=z′

l

=

[m

T
(−z′′ + 2z̃′

− z′′′)− mgT + h̄k
] ∣∣∣∣

z̃′=z′

l

, (E.9)

where we have recalled the definitions (E.4)–(E.6) of 3u, 3l and Scl, respectively.
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The points

z′

u ≡
1

2
(z′′ + z)+

h̄k

2m
T +

1

2
gT 2 (E.10)

and

z′

l ≡
1

2
(z′′ + z′′′)−

h̄k

2m
T +

1

2
gT 2 (E.11)

of stationary phase together with the expressions

∂2

∂z′2
3u =

2m

T
and

∂2

∂ z̃′2
3l =

2m

T
(E.12)

for the second derivatives following from (E.8) and (E.9) together with the integral relation (E.7)
allow us to perform the integrations over z′ and z̃′ in (E.2) and (E.3) in an exact way and we find
the expressions

Iu = exp

[
i

h̄
3u(z

′

u; z′′, z)

]
(E.13)

and

Il = exp

[
i

h̄
3l(z

′

l; z′′, z′′′)

]
. (E.14)

Hence, the method of stationary phase shows us how a single trajectory emerges from the
interference of all possible paths. Indeed, from a continuum of mid points z′ and z̃′ only z′

u
and z′

l defined by (E.10) and (E.11) are relevant. As a result we can interpret the motion of
the atom as starting at z, and reaching z′′ on the upper path via z′

u, whereas on the lower path it
begins at z′′′ and arrives at z′′ by going through z′

l. The phases accumulated during these motions
are 3u(z′

u; z′′, z) and 3l(z′

l; z′′, z′′′) evaluated at the mid points z′

u and z′

l.

E.2. Diagonal structure from interference of end points

However, it is important to note that so far we deal with two distinct start points z and z′′′. Only
when we integrate over z′′ do we get the condition z = z′′′, that is a closed path.

In order to verify this claim we substitute (E.13) and (E.14) into equation (E.1) for the
matrix element M and arrive at

M = eiδφ 1

2π

m

2h̄T

∫
∞

−∞

dz′′ exp

[
i

h̄
3−(z

′′)

]
(E.15)

where with the help of the definitions (E.4) and (E.5) the difference

3−(z
′′)≡3u(z

′

u; z′′, z)−3l(z
′

l; z′′, z′′′) (E.16)

of phases on the two paths takes the form

3−(z
′′)=−Scl(z

′′′, T |z′

l)−Scl(z
′

l, T |z′′)+ Scl(z
′′, T |z′

u)+ Scl(z
′

u, T |z)+ h̄k(z′′
−z′

l−z′

u + z). (E.17)

Nowhere clearer than from the arguments of the classical actions do we see that the path
is not closed. Indeed, reading from the right to the left we start from z and move via z′

u to z′′.
Then we go back via z′

l to z′′′ where z′′′
6= z. We can only close the path by integrating over z′′.

However, for this purpose we have to use the explicit form of the classical actions.
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Here two approaches offer themselves: (i) we recall the definitions (E.6), (E.10) and (E.11)
of Scl, z′

u and z′

l, substitute them into (E.17) and obtain in this way 3−; (ii) we expand 3− into
a Taylor series in z′′ since Scl, z′

u and z′

l depend on z′′ at most quadratically. This approach leads
us, together with the relations

3−(z
′′)

∣∣∣∣
z′′=0

= −h̄kgT 2
= −h̄δϕg (E.18)

and
∂3−

∂z′′

∣∣∣∣
z′′=0

=
m

2T
(z′′′

− z) (E.19)

as well as
∂23−

∂(z′′)2
= 0 (E.20)

to the explicit form

3−(z
′′)= −h̄δϕg + (z′′′

− z)
m

2T
z′′. (E.21)

When we substitute this expression into (E.15) we find

M = eiδφ 1

2π

∫
∞

−∞

dζ ei(z′′′
−z)ζ

= eiαδ(z′′′
− z), (E.22)

that is M is diagonal, in complete agreement with the calculation of section 7. Here we have
recalled the definition of α and have introduced the integration variable ζ ≡ mz′′/(2h̄T ).

E.3. Connection to classical trajectories

It is interesting to compare and contrast the paths following from this stationary-phase-analysis
of the quantum mechanical expression (E.1) for the matrix element with the classical trajectories
obtained in section 3. Indeed, the considerations of the present appendix suggest the paths
z → z′

u → z′′ on the upper arm of the interferometer and z′′′
→ z′

l → z′′ on the lower one, where
z′

u and z′

l are given by (E.10) and (E.11), respectively.
We note that in table 1 the positions are expressed in terms of the initial position zg(0) and

velocity vg(0) whereas in (E.10) and (E.11) z′

u and z′

l are given in terms of the initial and the
final positions z or z′′′ and z′′, respectively. We can connect the two approaches by eliminating
vg(0). Indeed, we derive from the first row of the bottom part of table 1 the identities

zu(T )= zg(0)+ vg(0)T −
1

2
gT 2 +

h̄k

m
T (E.23)

and

zu(2T )= zg(0)+ 2vg(0)T − 2gT 2 +
h̄k

m
T . (E.24)

When we eliminate vg(0) we arrive at

zu(T )=
1

2

[
zu(2T )+ zg(0)

]
+

h̄k

2m
T +

1

2
gT 2. (E.25)

With the identifications zg(0)≡ z and zu(2T )≡ z′′ we find from (E.10) the relation zu(T )= z′

u,
that is the path selected by the method of stationary phase is indeed the classical one.
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However, when we start from the second row of table 1 we find eliminating vg(0) from the
equations

zl(T )= zg(0)+ vg(0)T −
1

2
gT 2 (E.26)

and

zl(2T )= zg(0)+ 2vg(0)T − 2gT 2 +
h̄k

m
T (E.27)

the expression

zl(T )=
1

2

[
zl(2T )+ zg(0)

]
−

h̄k

2m
T +

1

2
gT 2 (E.28)

which with the identifications zg(0)≡ z and zu(2T )≡ z′′ leads us to

zl(T )≡
1

2
(z′′ + z)−

h̄k

2m
T +

1

2
gT 2. (E.29)

A comparison with the point of stationary phase z′

l given by (E.11) reveals that zl(T ) 6= z′

l unless
z = z′′′. As a result the lower path is, in general, not the classical one since they differ in their
start points.
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[24] Mütinga H et al 2012 submitted
[25] Misner C, Thorne K and Wheeler J A 1973 Gravitation (San Francisco, CA: Freeman)
[26] Nesvizhevsky V V et al 2002 Nature 415 297–9
[27] Abele H, Jenke T, Leeb H and Schmiedmayer J 2009 Phys. Rev. D 81 065019
[28] Jenke T, Geltenbort P, Lemmel H and Abele H 2011 Nature Phys. 7 468–72
[29] Colella R, Overhauser A W and Werner S A 1975 Phys. Rev. Lett. 34 1472–4
[30] Staudenmann J L, Werner S A, Colella R and Overhauser A W 1980 Phys. Rev. A 21 1419–38
[31] Werner S A 1980 Phys. Rev. B 21 1774–89
[32] Greenberger D M 1983 Rev. Mod. Phys. 55 875–905
[33] Greenberger D M and Overhauser A W 1979 Rev. Mod. Phys. 51 43–78
[34] Peters A, Chung K Y and Chu S 2001 Metrologia 38 25–61
[35] Peters A, Chung K Y and Chu S 1999 Nature 400 849–52
[36] Müller H, Peters A and Chu S 2010 Nature 463 926–9
[37] Kasevich M and Chu S 1991 Phys. Rev. Lett. 67 181–4
[38] Wolf P et al 2010 Nature 467 E1
[39] Wolf P et al 2010 Class. Quantum Grav. 26 145017
[40] Müller H, Peters A and Chu S 2010 Nature 467 E2
[41] Giulini D 2012 Quantum Field Theory and Gravity—Conceptual and Mathematical Advances in the Search

for a Unified Framework ed F Finster et al (Basel: Birkhäuser)
[42] Sinha S and Samuel J 2011 Class. Quantum Grav. 28 145018
[43] Hohensee M A, Chu S, Peters A and Müller H 2011 Phys. Rev. Lett. 106 151102
[44] Unnikrishnan C S and Gillies G T 2011 Int. J. Mod. Phys. D 20 2853
[45] Wolf P et al 2011 Class. Quantum Grav. 28 145017
[46] Hohensee M A, Chu S, Peters A and Müller H 2012 Class. Quantum Grav. 29 048001
[47] Wolf P et al 2012 Class. Quantum Grav. 29 048002
[48] Zych M, Costa F, Pikovski I and Brukner Č 2011 Nature Commun. 2 505
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