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Abstract. Ultra cold polar bosons in a disordered lattice potential, described
by the extended Bose–Hubbard model, display a rich phase diagram. In the
case of uniform random disorder one finds two insulating quantum phases—the
Mott-insulator and the Haldane insulator—in addition to a superfluid and a
Bose glass phase. In the case of a quasiperiodic potential, further phases are
found, e.g. the incommensurate density wave, adiabatically connected to the
Haldane insulator. For the case of weak random disorder we determine the phase
boundaries using a perturbative bosonization approach. We then calculate the
entanglement spectrum for both types of disorder, showing that it provides a
good indication of the various phases.
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1. Introduction

The extraordinary experimental advances on the realization and control of ultracold quantum
gases subjected to optical lattice potentials [1] pave the way for the application of these systems
as ‘quantum simulators’ [2], capable of exploring with unprecedented accuracy complex models
from condensed matter physics [3, 4] to high-energy physics [5].

The investigation of the interplay of disorder and interaction effects remains an open
question in condensed matter physics, linked to the study of the metal–insulator transition.
For bosonic systems, the Bose glass phase [6, 7] is an example of a novel strongly correlated
phase arising from the simultaneous effect of disorder and interactions. Most solid-state based
physical systems have to deal with some amount of disorder, which originates e.g. from defects
in the material or impurity atoms. A very peculiar feature of quantum gases is that one can add
a tunable and controllable amount of disorder in the pure system. In the regime of vanishing
interactions, Anderson localization has been observed, first in one spatial dimension [8, 9] and
then also in three dimensions [10, 11]. The Bose glass phase (BG) has also been explored with
bosons with short-range interactions on a lattice [12].

The very recent advances on trapping and cooling ultracold molecules [13] and atoms with
a large dipole moment [14, 15] lead to the exploration with atomic quantum simulators of yet
another set of systems, those with long-range interactions. For the case of one-dimensional
bosons on a lattice, the minimal model accounting for longer-range interactions is the extended
Bose–Hubbard model, which includes next-neighbour interactions among the bosons. In the
case of a clean system, the extended Bose–Hubbard model already displays a rich phase diagram
which, in addition to the Mott insulator (MI) already found in the Bose–Hubbard model [7],
features several novel insulating phases, i.e. the density wave (DW) and the Haldane insulator
(HI) [16, 17]. The DW phase is characterized by a spatial modulation of the density profile,
i.e. it displays quasi-long-range diagonal (or crystal) order, while the HI is characterized by
a non-local order parameter (hidden or string order, defined in section 2.2 below). At average
unitary lattice filling, the HI density profile features a regular sequence of spatial modulations
with on-site filling either 0 or 2, diluted in an arbitrary sequence of sites with filling 1 [17].

In this context, a relevant question arises regarding the fate of such insulating phases
under the effect of disorder, as well as which novel phases arise in the presence of disorder.
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In the strong-coupling regime and for unitary lattice filling, a good starting point to understand
this behaviour is to map the problem onto spin chains. For the latter system, the stability of
the various insulating phases at weak disorder has been studied using renormalization group
arguments [18–24] and numerical methods [25–28]. For example, the DW phase is found
to disappear at infinitesimally small disorder, according to the Imry–Ma argument [29, 30].
In analogy to the results known for the Bose–Hubbard model, other insulating phases are
expected to shrink in the phase diagram, in favour of disordered correlated phases of the Bose-
glass type. The mapping onto spin systems fails when the tunnel energy becomes sufficiently
important with respect to repulsive interactions to allow large occupancy of given lattice sites,
and a superfluid (SF), gapless phase builds up. In the general case, the problem has to be
addressed numerically, and we have recently explored it using density-matrix renormalization
group (DMRG) method [31], establishing a phase diagram by following the behaviour of several
correlation functions.

In this work, we support the phase diagram using two complementary tools: a
bosonization and renormalization group description at weak disorder, and the study of the
entanglement spectrum for the system. The bosonization approach combined with perturbative
renormalization group methods allows us to provide relevant information on the phase diagram
in the weak disorder region. It predicts that the qualitative shape of the phase diagram close
to the MI–HI transition depends on the value of the on-site interactions. We perform DMRG
simulations for two values of the on-site interactions to check this picture. The entanglement
spectrum allows us to obtain the phase diagram by an alternative approach to the study of
correlation functions. It is based on the fact that the largest eigenvalues of the reduced density
matrix of a sub-system carry information on the phase of the system. We show that this recently
developed approach turns out to be useful to recognize the various phases of disordered lattice
bosons.

2. The model, numerical methods and phase diagrams

We consider a system of N dipolar bosons confined onto a one-dimensional deep optical lattice
and in the presence of a very shallow trapping potential. We assume the dipole orientation to
be perpendicular to the lattice direction and truncate the dipole–dipole interaction potential to
nearest-neighbour (NN) interactions. Although longer range interactions do play a role, for very
weak interactions and sufficiently large dipoles, the most relevant properties of dipolar physics
can already be understood from a model of bosons with NN interactions, which will be denoted
‘polar bosons’ for short. This leads to the Hamiltonian of the extended Bose–Hubbard model

H = −t
∑

i

(b†
i bi+1 + h.c.)+

U

2

N∑
i=1

ni(ni − 1)+ V
∑

i

ni ni+1 +
∑

i

εi ni , (1)

where b†
i , bi are creation and annihilation operators for bosons at site i , ni = b†

i bi are the number
operators, t is the tunnel energy and U (V ) are the on-site NN interaction energies. Disorder is
included in the model either through the random on-site energies εi , chosen to be uniformly
distributed in the interval [−1,1], or by a quasiperiodic potential εi =1 cos (2παi +φ), with
α = (

√
5 − 1)/2 characterizing the incommensurability of the secondary lattice. The system

length is chosen according to the Fibonacci series L = 55, 89, 144, 233 in order to make the
system as close as possible to a periodic one.
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Figure 1. Phase diagram for polar bosons with NN interactions. Left panel: clean
case in the plane (V/t,U/t), with inset showing the value of the Luttinger
parameter Ka along the MI–HI critical line, which is described by a Luttinger
model. The HI–DW critical line belongs to the Ising universality class [42].
Central and right panel: case of uniform disorder, in the plane (V/t,1/t) for
U/t = 5 and U/t = 3. The insets show the DMRG results (solid lines) for the
one-body correlator 〈b†(x)b(0)〉 at increasing disorder and at fixed V/t = 2.9 in
(b) and V/t = 1.9 in (c), close to the MI–HI transition point. At the transition to
the Bose-glass phase, the best fit with the finite-size power-law expression [43]
no longer matches the data, as illustrated by the dashed line.

2.1. Numerical method

We have studied the extended Bose–Hubbard model using the DMRG method with open
boundary conditions [32–36]. The considered system sizes range up to 233 sites and we have
taken up to 60 disorder realizations per point. In order to avoid the presence of metastable states
we allow the number of optimal states to shrink or expand at every DMRG step according to
a two-step algorithm. The algorithm keeps at least one of the eigenvectors in the blocks of
the reduced density matrix6 if they have only zero eigenvalues, and then keeps an additional
eigenvector with zero eigenvalue in the block with non-zero eigenvalues if they decay very
sharply to zero. The number of sweeps in the DMRG is 12 for weak disorder and up to 20 for
strong disorder. Furthermore, we have eliminated the edge states in the HI phase by adding one
more particle or by coupling two extra hard-core bosons at the edges of the chain in order to
form a singlet state [37].

2.2. Phase diagram of the extended Bose–Hubbard model without disorder

The phase diagram of the extended Bose–Hubbard model in the absence of disorder is
known [16, 17] and is illustrated in figure 1. If the tunnel energy is dominating on the on-
site interactions the bosons are delocalized throughout the lattice and the system is SF. The
fluid displays quasi-long-range order, with an algebraic decay of the first-order correlation
function G(r)= 〈b†

i bi+r〉/
√

〈ni〉〈ni+r〉 ∝ r−1/2K . At increasing on-site interactions and weak
NN interactions a Kosterlitz–Thouless transition occurs towards the incompressible MI phase,
characterized by a hidden parity orderOP = lim|i− j |→∞〈(−1)

∑
i<l< j δnl 〉 [17], where δnl = 1 − nl .

At sufficiently large values of U and intermediate values of V a second insulating phase is found.
This HI is characterized by a hidden string order [17] OS = lim|i− j |→∞〈δni(−1)

∑
i<l< j δnlδn j〉,

6 As usual in DMRG, the reduced density matrix is made block-diagonal with respect to the number of particles.
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Figure 2. Phase diagram for polar bosons with NN interactions in a quasiperiodic
potential in the plane (V/t,1/t) for U/t = 5. Left panel: phase diagram from
the study of correlations functions as in [31]. Right panel: results from the
entanglement spectrum function ζ as defined in the text, for a system of size
L = 89.

associated with the breaking of the Z2 × Z2 symmetry, and equivalent to a ‘valence-bond’
solid [38] picture of the HI for spin systems. At sufficiently large values of V and U a
third insulating phase occurs, a DW with spatial modulation as can be identified by the
finite correlator ODW = lim|i− j |→∞〈(−1)i− jδniδn j〉. At sufficiently large U a direct first-order
transition is expected between MI and DW.

2.3. Phase diagram of the disordered extended Bose–Hubbard model

The phase diagram of the extended Bose–Hubbard model in presence of uniform disorder has
been first studied in [31] by the study of correlation functions and gaps, and is illustrated
in figure 1. Among the phases of the pure system, the DW phase is unstable under
infinitesimal disorder according to the Imry–Ma argument [29], and thus disappears. The
MI and HI disappear at sufficiently strong disorder to leave a compressible, non-superfluid
Bose-glass phase [6, 7, 39]. An additional SF lobe is found at finite disorder as observed
in [40, 41] for V = 0, and corresponds to the regime where repulsions overcome localization
effects [6].

It is not easy to resolve numerically the behaviour of the critical MI–HI point for weak
disorder, and in particular whether the critical line remains stable or whether a Bose glass
intermediate region opens at 1= 0. To draw the phase diagram in this regime we use input
from bosonization and renormalization arguments (see section 3 below).

2.4. Phase diagram of the extended Bose–Hubbard model with quasiperiodic potential

For the case of a quasiperiodic potential the phase diagram (shown in figure 2) considerably
differs from the one with uniform disorder [31]. The main features are the presence of an
incommensurate density wave phase (ICDW), typical of the quasiperiodic potentials [44, 45],
adiabatically connected to the HI phase, and the persistence of a DW phase, due to the
intrinsically different nature of the quasiperiodic potential with respect to a truly random
potential [46].
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3. Bosonization approach at weak disorder

For sufficiently strong interactions, where number fluctuations on each site are relatively
small, we truncate the occupancy of each site to the values {0, 1, 2}. We then employ the
Holstein–Primakoff transformation Sz

i = δni = 1 − ni , S+
i =

√
2 − ni bi to map the extended

Bose–Hubbard model onto a spin-1 Hamiltonian with single-ion anisotropy:

H = −2t
∑

i

Sx
i Sx

i+1 + Sy
i Sy

i+1 + V
∑

i

Sz
i Sz

i+1 + U/2
∑

i

(Sz
i )

2. (2)

Following the early works of Timonen and Luther [47] and Schulz [48] we represent the spin-1
operators as the sum of two spin-1/2 operators, Sαi = σ αi,1 + σ αi,2. This brings the Hamiltonian (2)
into the one of two coupled spin chains. Furthermore, a Jordan–Wigner transformation
is employed to map the spin-1/2 operators onto fermions according to σ z

i,λ = a†
i,λaiλ −

1/2, σ +
i,λ = a†

i,λe
iπ

∑i−1
n=1a†

n,λan,λ, with λ= 1, 2. A continuum limit an,λ =
√

a
∑

p=±
ψλ

p(na)
where a is the lattice spacing and p stands for ±, depending on whether a left or right
mover is taken. Finally, one employs a low-energy description of each fermionic field,
ψλ

p(x)∼
1

2παeipkF xe−i(pφλ(x)−θλ(x)), where the fields θλ(x) and φλ(x) satisfy the canonical
commutation relations [φλ(x), ∂xθλ′(x ′)] = iπδλλ′δ(x − x ′). We have kF = π/(2a) when 〈Sz

〉 =

0, i.e. the filling is one boson per site. This leads to the Hamiltonionan of two coupled
Tomonaga–Luttinger fluids [22, 48, 53], which takes a simple form H = Ha + Ho once the
‘acoustical’ and ‘optical’ combinations are introduced φa = (φ1 +φ2)/

√
2, φo = (φ1 −φ2)/

√
2,

and similarly for the θλ fields,

Ha =
h̄ua

2π

∫
dx

[
Ka(∂xθa)

2 +
1

Ka
(∂xφa)

2

]
+

g1

(πa)2

∫
dx cos(

√
8φa), (3)

Ho =
h̄uo

2π

∫
dx

[
Ko(∂xθo)

2 +
1

Ko
(∂xφo)

2

]
+

g2

(πa)2

∫
dx cos(

√
8φo)+

g3

(πα)2

∫
dx cos(

√
2θo),

(4)

where g1 = g2 = (U − V )a and g3 = −2ta. Coupling between acoustical and optical sectors is
found at a higher order [16, 17] and is therefore less relevant than the terms listed here. The
weak-coupling expressions for the Luttinger parameters entering equations (3) and (4) read

ua = 2ta

√
1 +

U + 6V

2π ta
, Ka =

1√
1 + U+6V

2π ta

, (5)

uo = 2ta

√
1 −

U − V

2π ta
, Ko =

1√
1 −

U−V
2π ta

. (6)

Introducing the re-scaled fields θ+/− = θa/o/
√

2 and φ+/− =
√

2φa/o, the Hamiltonians in
equations (3) and (4) can be brought to the form used in [16, 17].

The phase diagram [48] can be deduced from (3) and (4). For Ka > 1 in (3), the cosine term
is irrelevant, and the ‘acoustic’ modes are gapless. For Ka < 1 the cosine term is relevant, and the
field φa is pinned either to 0 for g1 < 0 or to π/

√
8 for g1 > 0, the spectrum of Ha being always

gapped. Meanwhile in (4), at least one of the two cosines is relevant therefore the spectrum

New Journal of Physics 15 (2013) 045023 (http://www.njp.org/)

http://www.njp.org/


7

is always gapful. Depending on the parameters, either θo or φo is pinned. When φo (resp. θo)
is pinned, the correlation functions of its dual fields eiβθo (resp. eiβφo) decay exponentially.
Combining the different possibilities we obtain the two gapless SF phases (when Ka > 1 and
either φo or θo is pinned), the gapful DW phase (when both φa and φo are pinned), and two
phases with φa pinned and θo pinned. The phase with φa pinned to zero (i.e. g1 < 0) is the MI,
while the phase with φa pinned to π/

√
8 (i.e. g1 > 0) is the HI [16, 17].

In the following we focus on the parameter regime corresponding to the HI–MI transition
point at weak disorder. This regime is difficult to access numerically, but is amenable to a
perturbative renormalization group calculation. At the critical point g1 = 0 which separates
the Mott-insulating from the Haldane insulating phase, the system is in a Luttinger liquid
state [49–52] and the boson Green’s function decays as

〈b†(x)b(0)〉 = |C |
2

(
α

|x |

) 1
4Ka

. (7)

One kind of randomness that we are able to treat is the on-site disorder of the form∑
n εnb†

nbn, which for the spin-1 chain corresponds to the effect of a random field along the
z-axis [22, 53]. When dealing with the coupling to disorder, one has to bear in mind that the
bosonized expression of the boson field is a series which contains higher-order harmonics [54]
in the field φ1,2 from which the boson number operator can be written as

b†
nbn =

∞∑
m=1

Am cos(m
√

2φa − 2mkF x) cos (m
√

2φo), (8)

where x = na. The term of order one has been treated in [22] and it is relevant when
Ka + Ko < 3, while higher-order terms have been neglected. When the second-order term is
taken into account, A2 cos (2

√
2φa − 4kF x) cos (2

√
2φo), and performing a perturbation theory

in cos (2
√

2φo) at first order, an effective coupling to disorder is generated with the form

H z
eff = (ξ4kF (x)A2ei

√
8φa + h.c.), (9)

where ξ4kF (x) is a Gaussian random variable with ξ4kF (x)ξ
?
4kF
(x ′)= Deffδ(x − x ′). A renormal-

ization group treatment of such a term gives

dDeff

dl
= (3 − 4Ka)Deff, (10)

and Deff is relevant when Ka < 3/4. The terms with m > 2 in equation (8) become relevant for
lower values of Ka < 3/m2. Thus, along the critical line g?1 = 0 one expects a stable Luttinger
liquid line up to K ?

a = 3/4, and below it a Bose-glass phase between the Mott-insulating and
Haldane-insulating phase takes place.

Let us note that even in a model where only the m = 1 term is kept in the expansion (8),
the term (9) will be generated [53] by integrating over the fluctuations of the field θo. So the
condition of stability K ? > 3/4 is a generic one. As a consequence of this analysis, we expect
that the HI–MI transition point in the presence of disorder has a ‘Y’ shape for Ka > 3/4 and a
‘V’ shape for Ka < 3/4. The phase diagrams presented in figure 1 focus on both cases, where
for U/t = 5 we have Ka = 0.6 and hence we expect a ‘V’ case, while for U/t = 3 we have
Ka = 0.8, which corresponds to a ‘Y’ case. Within the error bars, the data shown in figure 1 are
compatible with those pictures.

New Journal of Physics 15 (2013) 045023 (http://www.njp.org/)

http://www.njp.org/


8

0 20 40 60 80
0

0.5

1

L
A

λ i

(a)

0 20 40 60 80
0

0.5

1

L
A

λ i

(b)

0 20 40 60 80
0

0.5

1

L
A

λ i

(c)

0 20 40 60 80
0

0.5

1

L
A

λ i
(e)

0 20 40 60 80
0

0.5

1

L
A

λ i

(f)

0 20 40 60 80
0

0.5

1

L
A

λ i

(d)

Figure 3. Entanglement spectrum of the extended Bose–Hubbard model under
a quasiperiodic potential: largest eigenvalues as a function of the partition along
the chain corresponding to (a) MI at V/t = 0.51/t = 0.2; (b) HI, at V/t = 3.3,
1/t = 0.2; (c) DW, at V/t = 3.6, 1/t = 0.2; (d) ICDW, at V/t = 1 1/t = 6;
(e) SF, at V/t = 0.5, 1/t = 3 and (f) BG, at V/t = 2, 1/t = 7.8.

4. Entanglement spectra

The calculation of the entanglement spectrum is a novel approach to identify the quantum
phases in several models. It is particularly useful to bring insight into topological phases and
phases with non-local order parameter [55–58] and has been specifically analysed for the case
of the Bose–Hubbard model [37, 59, 60]. The entanglement spectrum is defined as the spectrum
−ln λi(L A) of the effective Hamiltonian −ln ρA, obtained by partitioning the system density
matrix into two parts A and B (of length L A + L B = L) and tracing over the B part. It has been
shown that the behaviour of the eigenvalues λi(L A) and their degeneracy differs in the various
phases of the clean extended Bose–Hubbard model [37], thus allowing us to infer the structure
of the phase diagram. We show here how the study of the entanglement spectrum can also give
useful information in the disordered and aperiodic case.

In order to obtain the phase diagram, we take the combination of the first four largest
eigenvalues ζ = λT

1 − λT
2 + λT

3 − λT
4 , where λT

i = (1/L)
∑L

L A=1 λi(L A). The result is illustrated
in figure 2. The alternating regions of small and large values of ζ have a very good
correspondence with the phases predicted from the study of correlation functions. This is
explained in the study of the behaviour of the largest eigenvalues λi(L A) in the various phases,
of which some examples are given in figure 3. In the MI phase in the clean case a degeneracy
is found between λT

2 and λT
3 , as well as between λT

4 and λT
5 while λT

1 is non-degenerate. This
feature is also found to persist in the quasiperiodic case and yields a large value for ζ . In the SF
phase, in contrast, the largest eigenvalues are almost equidistant; hence yielding a small ζ . In
the clean case, the HI phase is characterized by a double degeneracy of the largest eigenvalues,
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Figure 5. Entanglement spectrum of the extended Bose–Hubbard model in
a single realization of the uniform random disorder: largest eigenvalues as a
function of the partition along the chain corresponding to (a) MI at V/t = 0.5,
1/t = 0.2; (b) HI at V/t = 3.3, 1/t = 0.2; (c) BG (remnant of DW) at V/t =

3.6, 1/t = 0.2; (d) SF V/t = 0, 1/t = 3.2 and (e) BG at V/t = 3.1, 1/t = 2.
The onsite interaction is U/t = 5 and L = 89.

implying another region of vanishing ζ .7 Such degeneracy is gradually broken by increasing
the strength of the quasiperiodic potential. In the DW phase no degeneracy is found in the
clean case, thus allowing us to clearly distinguish this phase from the neighbouring HI; in the
presence of a quasiperiodic potential, this phase gradually disappears. A similar level structure

7 Since the simulation in figure 2(b) is done at integer filling the edge states cannot be eliminated, hence a small
breaking of the double degeneracy is found at vanishing disorder, as in [31].
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is found for the incommensurate DW. Finally, the BG phase displays a structure close to the
ICDW phase, with a few large non-degenerate eigenvalues.

Next we consider the case of a uniform disorder. In figure 4 we show the phase diagram
obtained from the entanglement spectrum. Some examples of the largest eigenvalues in the
various phases are given in figure 5 for a given disorder realization. The main features are
the same as in the quasiperiodic case: a unique large eigenvalue for the MI case and a few
equally spaced eigenvalues for the SF case, the BG being intermediate between the above
two configurations. We notice that although the DW disappears under finite-size scaling, some
remnants of this phase are still visible in the eigenvalues at very low disorder strength.

5. Conclusions and perspectives

In conclusion, we have studied the phase diagram of one-dimensional polar bosons described
by the extended Bose–Hubbard model in the presence of a uniform disorder or a quasiperiodic
potential which acts as a pseudo-disorder. The phase diagram is numerically obtained from
DMRG both by the analysis of correlation functions together with gap scaling, and by the
study of the entanglement spectrum of the system. While the former method identifies precisely
the transition lines, the study of the entanglement spectrum provides an independent check of
the nature and location of the various phases, thus demonstrating itself to be a useful tool for
exploring the various phases of correlated lattice bosons.

The phase diagrams obtained in the two cases are very different, due to the different nature
of the (pseudo) disorder. In the case of a quasiperiodic potential we find four insulating phases
(MI, HI, DW and incommensurate DW) and a SF phase, in addition to the Bose-glass phase. In
the case of uniform disorder only two insulating phases remain (MI, HI), together with the SF
and the Bose glass. In the latter case we focus on the boundary of the Haldane to Mott insulator
phases at weak disorder. This is studied analytically using a bosonization and renormalization
group approach. We predict that the shape of the phase diagram at the transition point depends
on the strength of the on-site interactions, which can be either a ‘Y’ shape at weaker interactions
or ‘V’ shape at stronger interactions. A scaling analysis of the DMRG data close to the transition
point is consistent with these predictions.

It would be interesting to further explore the nature of the various phase boundaries
[61, 62], as well as to understand how disorder affects the dynamical response in the various
phases [63], extending the work done in the case of the Bose–Hubbard model.
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