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Abstract. Chains of interacting non-Abelian anyons with local interactions
invariant under the action of the Drinfeld double of the dihedral group D3 are
constructed. Formulated as a spin chain the Hamiltonians are generated from
commuting transfer matrices of an integrable vertex model for periodic and
braided as well as open boundaries. A different anyonic model with the same
local Hamiltonian is obtained within the fusion path formulation. This model
is shown to be related to an integrable fusion interaction round the face model.
Bulk and surface properties of the anyon chain are computed from the Bethe
equations for the spin chain. The low-energy effective theories and operator
content of the models (in both the spin chain and fusion path formulation) are
identified from analytical and numerical studies of the finite-size spectra. For all
boundary conditions considered the continuum theory is found to be a product
of two conformal field theories. Depending on the coupling constants the factors
can be a Z4 parafermion or aM(5,6) minimal model.
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1. Introduction

In recent years there has been a surge of attention directed towards the understanding of many-
particle systems exhibiting topological order, i.e. phases that cannot be characterized by a local
order parameter. Possible realizations of such topological quantum liquids in condensed matter
physics are the fractional quantum Hall (FQH) states [44, 50] and certain two-dimensional
frustrated quantum magnets [6, 39, 49]. The excitations in these systems display anyonic
statistics and an understanding of their collective behaviour is essential for the classification
of topological phase transitions. Particularly interesting are non-Abelian anyons where the
interchange of two particles is described by non-trivial representations of the braid group
complemented by fusion rules for the decomposition of product states. The fact that these non-
Abelian anyons are protected by their topological charge has led to proposals for the use of such
systems in universal quantum computation [40, 51].

Some insight into the peculiar properties of many interacting anyons can be obtained in the
context of simple model systems: such models can be obtained by associating anyonic degrees
of freedom with each site of a lattice and defining interactions compatible with their braiding
and fusion rules [20]. The phase diagram of the resulting lattice models can be studied based
on the numerical computation of finite-size spectra. This approach is particularly powerful for
anyonic chains, i.e. one-dimensional lattices, where the numerical data can be compared against
predictions from conformal field theory (CFT). Another approach, also in one dimension, makes
use of the fact that the lattice model may become integrable for particular choices of coupling
constants. For the solution of such models, various analytical methods, e.g. in the framework
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of the quantum inverse scattering method (QISM), have been established which allow the study
of the spectrum of their low-energy excitations, their thermodynamical properties including the
long-distance asymptotics of correlation functions and even form factors [41, 42].

So far much of the work on such lattice models has been focused on systems of the non-
Abelian Ising or Fibonacci anyons related to the quasi-particles in certain FQH states and their
generalizations appearing in su(2)k Chern–Simons theories [5, 20, 31, 45, 59, 60]. These anyons
have relatively simple fusion rules which allows for tractable computation of systems with
nearest and next-nearest-neighbour interactions. Integrable points within the one-dimensional
versions of these models have been identified as restricted solid-on-solid (RSOS) or interaction
round the face (IRF) models constructed from representations of Temperley–Lieb algebras
[20, 36, 37]. An alternative method to define an anyonic theory is via the Drinfeld doubles of a
finite group algebra, D(G), and its representations [15]. The quasi-particles in these systems are
irreducible representations (irreps) of D(G) labelled by their flux, i.e. an element of h ∈ G, and
their topological charge determined by the transformation properties under the residual global
symmetry commuting with the flux h.

Being a quasi-triangular Hopf algebra with a Baxterised R-matrix, the quantum double
allows for a direct construction of integrable quantum chains with nearest-neighbour
interactions described by a local Hamiltonian which is invariant under the corresponding
symmetry [14, 21]: within the QISM one obtains quantum spin chains on a Hilbert space being
a tensor product of the finite-dimensional local spaces corresponding to a spin S, a qudit or
a more general n-state quantum system. On the other hand, it is already known that for any
given model whose local Hamiltonian has the symmetry of a quasi-triangular Hopf algebra
associated with an anyonic theory, it is possible to construct quantum chains using the fusion
path formalism [22]. Here the basis vectors are composed of sequences of anyons and we shall
refer to this as a fusion path chain. The local Hamiltonian is formally identical in the spin and
the fusion path formalism. Therefore, one should expect the bulk properties of the spin and the
fusion path model to be the same. The finite-size spectrum of low-energy excitations, however,
is known to depend on boundary conditions [4, 11] and therefore should differ between the two
realizations.

In this paper we study this problem for a specific one-dimensional anyon chain with
nearest-neighbour interactions. The underlying symmetry of the Hamiltonian is that of the
Drinfeld double of a dihedral group, specifically D(D3). In the following section, we define
this algebra and recall its irreps and the corresponding fusion rules. Then, using the spin basis,
integrable models are constructed subject to periodic, braided and open boundary conditions,
all of which being based on the usual QISM transfer matrix [24]. While for the fusion path
basis we construct a fusion IRF transfer matrix whose series expansion contains the global one-
dimensional Hamiltonian. In section 3 we compute the bulk and surface properties of the model
from the Bethe ansatz formulation of the spectral properties for the spin chain. The CFT and
operator content for the periodic spin chain version of the D(D3) model has been identified
previously [23]. In section 4 we expand this work providing more details on the analysis as
well as extending the study of the finite-size spectrum to the spin chain with braided and open
boundary conditions. In addition, we present results for the fusion path chain in support of the
expectation that the low-energy excitations of the D(D3)-anyon chain are described by the same
CFT for all types of boundary conditions studied here, namely products of Z4 parermion and
M(5,6) minimal models.
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2. The model and its symmetries

2.1. The D(D3) algebra

The model we consider in this paper has the underlying symmetry of the Drinfeld (or quantum)
double of a finite group algebra. The finite group we utilize is the dihedral group of order six,
D3, and is isomorphic to the group of permutations on three elements, S3. This group is based
upon the symmetries of an equilateral triangle and has the presentation

D3 = {σ, τ |σ 3
= τ 2

= στστ = e},

where e is the identity element of the group, σ is a rotation and τ is a flip. The Drinfeld double
of this group is defined as the vector space

D(D3) = C{gh∗
|g, h ∈ D3},

where ∗ denotes an element from the dual space of CD3. This space forms a quasi-triangular
Hopf algebra when equipped with the multiplication and coproduct,

g1h∗

1g2h∗

2 = δ
(g2h2)

(h1g2)
(g1g2)h

∗

2 and 1(gh∗) =

∑
k∈D3

g(k−1h)∗
⊗ gk∗.

The remaining structure is uniquely determined by these relations [12, 46]. This algebra has an
associated universal R-matrix i.e. an algebraic solution to the Yang–Baxter equation.

2.1.1. Representations. The representation theory of the Drinfeld doubles of finite group
algebras are well known [17, 33]. The irreps of D(D3) are classified by the conjugacy classes of
D3. For a given conjugacy class, a representative element is chosen and the representations of
the centralizer subgroup of this element are determined. An action on conjugacy class is defined
and then combined in prescribed manner with an irrep of the centralizer. This yields an irrep of
D(D3) labelled by both the representative element and the irrep of the centralizer. The irreps
associated with the conjugacy class {e} are:
π (e,±)(σ ) = 1, π (e,±)(τ ) = ±1, π (e,±)(g∗) = δe

g,

π (e,1)(σ ) =

(
ω0
0 ω−1

)
, π (e,1)(τ ) =

(
0 1
1 0

)
, π (e,1)(g∗) =

(
δe

g 0

0 δe
g

)
,

where ω = e
2iπ
3 . The irreps associated with the conjugacy class {σ, σ 2

} are:

π (σ,k)(σ ) =

(
ωk 0
0 ω−k

)
, π (σ,k)(τ ) =

(
0 1
1 0

)
, π (σ,k)(g∗) =

(
δσ

g 0
0 δσ 2

g

)
,

where k ∈ {0, 1, 2}. The irreps associated with the conjugacy class {τ, στ, σ 2τ } are:

π (τ,±)(σ ) =

0 0 1
1 0 0
0 1 0

 , π (τ,±)(τ ) = ±

1 0 0
0 0 1
0 1 0

 , π (τ,±)(g∗) =

δτ
g 0 0

0 δσ 2τ
g 0

0 0 δστ
g

 .

The anyonic theory corresponding with D(D3) associates an irrep with an anyon [15]. For
convenience, it is simpler to denote each irreps by a single letter, a, . . . , h. We equate

a= (e, +), b= (e, −), c= (e, 1), d= (σ, 0), e= (σ, 1), f= (σ, 2), g= (τ, +), h= (τ, −).

Properties of the anyons are inherited from their associated irreps, e.g. the dimension of an
anyon equals the dimension of its corresponding irrep.
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2.1.2. Fusion rules. Required for an anyonic theory are the fusion rules of particles. These
rules are defined by the tensor product decompositions of the associated irreps [33]:

πα
⊗ πβ

=

⊕
γ

N γ

αβπ
γ , where N γ

αβ =
1

6

∑
g,h,k

tr [πα(h∗g−1)] tr [πβ(g(k−1h)∗)] tr [πγ (gk∗)]

and tr is the trace. Applying the above formula yields the following fusion rules presented in
terms of the associated labels:

⊗ a b c d e f g h

a a b c d e f g h

b b a c d e f h g

c c c a⊕ b⊕ c e⊕ f d⊕ f d⊕ e g⊕ h g⊕ h

d d d e⊕ f a⊕ b⊕ d c⊕ f c⊕ e g⊕ h g⊕ h

e e e d⊕ f c⊕ f a⊕ b⊕ e c⊕ d g⊕ h g⊕ h

f f f d⊕ e c⊕ e c⊕ d a⊕ b⊕ f g⊕ h g⊕ h

g g h g⊕ h g⊕ h g⊕ h g⊕ h a⊕ c⊕ d⊕ e⊕ f b⊕ c⊕ d⊕ e⊕ f

h h g g⊕ h g⊕ h g⊕ h g⊕ h b⊕ c⊕ d⊕ e⊕ f a⊕ c⊕ d⊕ e⊕ f

2.2. Local spin Hamiltonians

The D(D3) model is constructed by taking a special case of the three-state Fateev–
Zamolodchikov model [19]. This limit yields the R-matrix, which can also be constructed from
the πg⊗ πg representation of D(D3) [21],

R(z1, z2) = N (z1, z2)

2∑
a,b,i, j=0

[
w(i− j)(a−b)W (z1|a)W (z−1

2 |b)
]

ei+a+b,i ⊗ e j+a+b, j , (1)

where ei, j represents a 3 × 3 matrix (whose indices are considered modulo three) with a one in
the i th row and j th column and zeros elsewhere,

W (z|l) =

[
z − 1

wz − w2

]1−δ0
l

and N (z1, z2) = −
1

3
(wz1 − w2)(w − w2z2).

The R-matrix satisfies a Yang–Baxter equation in both the first and the second spectral
parameters

R12(x1, x2)R23(x1 y1, x2 y2)R12(y1, y2) = R23(y1, y2)R12(x1 y1, x2 y2)R23(x1, x2), (2)

and has the symmetry of D(D3), implying that the operator can be expressed in terms of
projection operators. The projection operators from πg⊗ πg to the irreps in its decomposition
are

p(a)
=

dim (a)

6

∑
g,h

tr [πa(h∗g−1)](πg⊗ πg)1(gh∗). (3)

In terms of these projection operators, the R-matrix is written as

R(z1, z2) = fa(z1, z2)p(a) + fc(z1, z2)p(c) + fd(z1, z2)p(d) + fe(z1, z2)p(e) + ff(z1, z2)p(f), (4)
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where

fa(z1, z2)p(a)
= R(z1, z2)p(a), a ∈ {a, c, d, e, f}.

This R-matrix allows us to construct integrable models subject to various boundary
conditions [24]. In the spin chain formulation each lattice site carries a representation πg of
D(D3). As a consequence of the dependence of the R-matrix on two spectral parameters,
there exist two local Hamiltonians describing the interaction between neighbouring spins in
the Hilbert space from πg⊗ πg representation. The local Hamiltonians are obtained in the usual
manner by taking derivatives of the R-matrix with respect to the spectral parameters:

h(k)
= i

d

dzk
R(z1, z2)

∣∣∣∣
z1=1,z2=1

− βk I ⊗ I,

where k ∈ {1, 2} and βk ∈ C is chosen such that the trace of the local Hamiltonians is zero. In
terms of the projectors (3) the local Hamiltonians are given by [23]

h(1)
=

2
√

3

3
p(a)

−

√
3

3
p(c)

−

√
3

3
p(d)

−

√
3

3
p(e) +

2
√

3

3
p(f),

h(2)
=

2
√

3

3
p(a)

−

√
3

3
p(c)

−

√
3

3
p(d) +

2
√

3

3
p(e)

−

√
3

3
p(f). (5)

It follows that the local Hamiltonians commute with each other and with the action of the
algebra: [

h(1), h(2)
]
= 0 and

[
(πg⊗ πg)1(a), h(k)

]
= 0,

for all a ∈ D(D3). Therefore they have the underlying symmetry of D(D3) as the R-matrix did.
From explicit calculation of h(1) and h(2), we find

h(1)
= 5h(2)5 =

[
h(2)

]∗
,

where 5 is usual two-site permutation operator and ∗ is, and herein reserved for, complex
conjugation. Both local Hamiltonians (5) are self-adjoint.

2.3. Global Hamiltonian

In the following we shall consider a variety of models with interactions described by the local
operators (5) but subject to different boundary conditions. As a consequence of the existence of
two distinct local Hamiltonians, the global Hamiltonian is comprised of two terms weighted by
a free coupling parameter θ ∈ [0, 2π ] as

Hθ = cos(θ)H(1) + sin(θ)H(2). (6)

For all boundary conditions considered below these models are integrable, thanks to the
existence of a commuting transfer matrix. Furthermore, the two components of the global
Hamiltonian will commute,[

H(1),H(2)
]
= 0. (7)

This commutativity will be particularly useful in the investigation of the models as it allows us
to study the spectra of H(1) and H(2) separately. Typically, the spectra of H(1) and H(2) will be
identical or of a related form.
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2.3.1. Periodic spin chain. We begin by considering the D(D3) model as a spin chain with
periodic boundary conditions: its global Hamiltonians are defined by

H(k)
= h(k)

L0 +
L−1∑
j=1

h(k)

j ( j+1),

for k ∈ {1, 2}. Note that the periodic closure by the term h(k)

L0 in the global Hamiltonian breaks
the D(D3) invariance of the model. Both of these Hamiltonians appear in the series expansion
of the commuting transfer matrix

t (z1, z2) = tr0

[
50LR0L(z1, z∗

2) · · · 501 R01(z1, z∗

2)
]
.

By construction this transfer matrix is a polynomial of degree L in the variables z1 and z∗

2. It
has been observed that this transfer matrix factorizes and that its eigenvalues are always of the
form [24]

3(z1, z2) = c
L∏

`=1

(z1 − z1,`)

L∏
`=1

(z2 − z2,`)
∗. (8)

Therefore, the eigenvalues can be conveniently described in terms of their zeros zk,` ≡ iωexk,` ,
for k = 1, 2 and ` = 1, . . . ,L. Furthermore, starting from the D(D3) fusion rules functional re-
lations satisfied by the transfer matrices (or equivalently their eigenvalues) can be derived [21]:

λ1(z1)3(z1, z2) = (ωz1 + 1)L3(ωz1, z2) + (z1 − 1)L3(ω−1z1, z2),

λ2(z2) [3(z1, z2)]
∗
= (ωz2 + 1)L [3(z1, ωz2)]

∗ + (z2 − 1)L
[
3(z1, ω

−1z2))
]∗

, (9)

where λk(z) are analytic functions. This implies that the two sets of parameters {xk,`}
L
`=1 must

independently satisfy the Bethe equations [24]

(−1)L+1

(
1 + (i/ω)exk, j

1 − iω exk, j

)L
=

L∏
l=1

exk,l − (1/ω)exk, j

exk,l − ω exk, j
, j = 1, . . . ,L. (10)

It is important to note that while there are exactly L Bethe roots in each set {xk,`}
L
`=1, they are

allowed to be at ±∞, but at most one at each. The energy eigenvalue of H(k) corresponding to
the set of Bethe roots {xk,`} is given by

E (k)
≡ E({xk,`}) = i

[
L∑

`=1

1

1 − iω exk,`
−

1

6

(
3 + i

√
3
)
L

]
. (11)

Here we have used the property that sets of Bethe roots are invariant under complex con-
jugations, {xk,`}

L
`=1 ≡ {x∗

k,`}
L
`=1 (mod 2iπ). Since the local Hamiltonians are Hermitian by

construction, the energies (11) must be real. This reality of the energy imposes an additional
physicality constraint on solutions to the Bethe equation (care must be taken to deal with
roots at ±∞ appropriately). We note that all the root configurations considered below in the
discussion of the spectrum of the system do satisfy this condition.

Let us remark that the Bethe equations (10) and the corresponding energies (11) of the
D(D3) spin chain of even length L coincide with those of the three-state Potts spin chain with
L/2 sites [3]. We shall use this equivalence below to identify some of the thermodynamical
properties of the D(D3) chain.
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The energy eigenvalues of the complete Hamiltonian are characterized by two solutions to
the Bethe equations (10). As a consequence of equations (6), (7) and along with (11) they are
given by

E = cos(θ) E (1) + sin(θ) E (2)
= cos(θ) E({x1,`}) + sin(θ) E({x2,`}), (12)

provided these energies (or the corresponding root configurations) pair. Specifically, levels are
said to pair if the two corresponding sets of Bethe roots form an eigenvalue of the transfer
matrix, see equation (8). As the two sets of Bethe roots need not correspond to a unique
eigenvalue of the transfer matrix, e.g. there may be two eigenvalues that differ by a constant
factor or an eigenvalue might be degenerate, we refer to the total number of eigenvalues,
including degeneracies, as the pairing multiplicity.

The total momentum of the corresponding state can also be given in terms of the two sets
of Bethe roots: at z1 = 1 = z2 the transfer matrix becomes a shift operator by one site. Therefore
the momentum operator is P = −i ln t (1, 1). By construction the eigenvalues of this operator
are real ( 2π/L times an integer for periodic boundary conditions considered here). Unlike for
the energy (11) it is not possible to identify partial momentum contribution from one of the
participating Bethe configurations uniquely [24]. Using the invariance of the sets of Bethe roots
under complex conjugation we use

P (k)
≡ P({xk,`}) = Re

[
1

i

L∑
`=1

ln(1 − iω exk,`)

]
=

1

2i

L∑
`=1

ln

(
1 − iω ex`

1 − (1/iω)ex`

)
(13)

as definition of the partial momenta P (k). For later use we note that the second expression is half
of the momentum of the three-state Potts spin chain [3]. Consistency with equation (8) implies
that the complete momentum is related to the partial ones as

P = P (1)
− P (2) + const. (14)

Again, roots xk,` = ±∞ have to be taken into account to ensure finite (partial) momentum. The
total momentum is given by the difference of partial momenta reflecting the fact H(2) is the
spatial inversion of H(1). The remaining constant represents a macroscopic effect, details of
which have been discussed in earlier works [24].

2.3.2. Braided chain. One closed chain proposed as an alternative to the periodic chain is the
braided chain [25, 34, 38]. In this model, translational invariance is replaced by invariance under
a global braiding operator. As a consequence the underlying symmetry of the model will not be
broken, i.e. it has the full global D(D3) symmetry. The global Hamiltonians for these boundary
conditions are defined by

H(k)
= Bh(k)

(L−1)LB−1 +
L−1∑
j=1

h(k)

j ( j+1), k ∈ {1, 2},

where

B = b12b23 . . . b(L−1)L, and b = lim
z→∞

[
1

z2
R(z, z)

]
.

There also exist different possible definitions for the braiding operator bi relating to other limits
of R(z1, z2) [21]. The integrability of the braided model is ensured by the existence of a transfer
matrix t (z1, z2), which can be found in [21]. Eigenstates of this model are again characterized
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by the Bethe equations (10). As in the periodic case there must be L Bethe roots, this time with
one Bethe root allowed at +∞ but none allowed at −∞.

As mentioned above, the Hamiltonian of this model is invariant under the action of the
global braiding operator. Specifically, we find that B can be realized by the transfer matrix of
the braided model as B = t (1, 1). Furthermore, the braiding operator is idempotent: from the
analysis of small systems we find that

Bn
= I when

{
n = 3L, L even,

n = 2L, L odd.
(15)

This allows us to define an analogue of the momentum operator as the generator of braiding
operations by Pb = −i ln B. The eigenvalues of Pb are restricted to integer multiples of either π

L
or 2π

3L depending on the parity of L.

2.3.3. Open boundary conditions. We also consider spin chains with open boundary
conditions. In this case integrable models are derived from representations of Sklyanin’s
reflection algebra [57]. c-number representations of this algebra define possible boundary terms.
For the present model, these K -matrices are found to be the same as have been determined for
the D(D3) one-parameter R-matrix [13]. The global Hamiltonians are

H(k)
= χ−

k B(k)−

1 + χ+
k B(k)+
L +

L−1∑
j=1

h(k)

j ( j+1).

Here, the boundary operators B(k)− (B(k)+) act on the first (last) site of the chain, respectively.
There exist three possible (independent) options for each of these operators, namely

B(1)−, (B(1)+)∗, (B(2)−)∗, B(2)+
∈


 0 ω2b ω2b2

ωb2 0 b
ωb b2 0

∣∣∣∣∣∣ b = 1, ω, ω2

 . (16)

The real boundary amplitudes where χ±

k , k ∈ {1, 2}, have to satisfy χ+
1 χ+

2 = χ−

1 χ−

2 = 0. Like
the periodic and braided models integrability is derived from the existence of a transfer matrix
(see [21, 24] for the open D(D3) transfer matrix) and the eigenstates of the Hamiltonian are
classified by sets of Bethe roots. The Bethe equations for the Hamiltonian H(k) are independent
of the choice of the boundary operators, B(k)±,
dk∏

l=1

(
exk,l − ω2 exk, j

exk,l − ω exk, j

)
= (−1)L+1

(
1 + ω e2xk, j

1 + ω2 e2xk, j

)(
1 − ω2 e2xk, j

1 − ω e2xk, j

)(
1 + iω2 exk, j

1 − iω exk, j

)2L

×8(xk, j , χ
−

k )8(xk, j , χ
+
k ) (17)

with Bethe roots always appearing in pairs of ±x and where

8(x, χ) =


1 for χ = 0, χ

√
3(1 − ω e2x) + iω2

(
1 + χ

√
3
)

ex

χ
√

3(1 − ω2 e2x) − iω
(

1 + χ
√

3
)

ex

 for χ 6= 0.

In addition to the explicit dependence of the Bethe equations on the boundary amplitudes χ±

k the
latter determine the number dk of Bethe roots xk, j : for the open chain with free ends, i.e. χ±

k = 0,
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there are dk = 2L Bethe roots with at most one pair of roots at ±∞ [24]. A non-zero boundary
term at one end of the chain, i.e. choosing one of either χ+

k or χ−

k non-zero, changes the number
of roots to dk = 2L+ 2, while for boundary terms at both ends there are dk = 2L+ 4 Bethe roots.
We refer to the extra pairs of roots appearing as compared to the free-ends case as boundary
roots2.

These boundary roots are finite for non-zero boundary amplitudes χ±

k but approach ±∞ in
the limit of free ends.

The energy of the open boundary Hamiltonian H(k) corresponding to a solution of
equations (17) is given by

E (k)({xk,`}) =
i

2

{
dk∑

l=1

[
1

1 − iω exk,l

]
−

(
1 − i

√
3

3

)
L− φ(χ+

k ) − φ(χ−

k )

}
,

where

φ(χ) =

{
0 for χ = 0,

1 + iχ for χ 6= 0.

Again we note that the energy eigenvalues are real as the global Hamiltonian is Hermitian.
Additionally, it is important to note that the presence of boundary interactions breaks the D(D3)

invariance of the model. Only for free ends the open model has this invariance.

2.4. Fusion path analogues

As the local Hamiltonians have the symmetry of D(D3) it is possible to create fusion path
analogues [22]. Depending on the boundary conditions imposed the global Hamiltonians may
or may not be equivalent to their spin formalism counterparts discussed above. The construction
of the analogous fusion path chains uses the Pasquier’s method of representation theory reliant
face-vertex correspondence [54]. This allows the fusion path analogues to be considered as the
Hamiltonian limits of RSOS models and proves their integrability. The connection between
fusion IRF models and many other physical systems has already been established [28].

We first define the fusion path basis. Basis vectors of the fusion path space are of the form

|a0a1 . . . aL〉 ,

where ai ∈ {a, b, c, d, e, f, g, h} and neighbouring labels satisfy the condition

aiai+1 ∈ {ab | Vb ⊂ Va ⊗ Vg}

= {ag, bh, cg, ch, dg, dh, eg, eh, fg, fh, ga, gc, gd, ge, gf, hb, hc, hd, he, hf}.

(18)

Thus ai+1 must appear in the fusion of ai and g. Diagrammatically, a basis vector corresponds to
the figure below, where the joining of two lines indicates fusion which occurs from left to right
and top to bottom;

g g g g g

a0 a1 a2 a3 aL−1
aL

2 It is important to note that for χ±

k small the presences of the boundary Bethe roots will not have a significant
effect on the configuration of the bulk Bethe roots.
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To construct local operators on this space we utilize F-moves (generalized 6–j symbols), which
allow the temporary recording of fusion,

b c

a
d

e =
∑

d′
(F abce )

d
d′

b c

a d′ e

In terms of these F-moves, we can define two-site projection operators which act non-trivially
on a single link i of the fusion path lattice3,

p̃(b)

i−1,i,i+1 =

∑
ai−1,ai ,a′

i ,ai+1

[(
Fai−1gg

ai+1

)a′

i

b

]∗ (
Fai−1gg

ai+1

)ai

b

∣∣..ai−1a′

iai+1..
〉
〈..ai−1aiai+1..| .

The unitary F-moves associated with D(D3) can be calculated explicitly from the representation
theory of D(D3) [56]. Below we shall consider local interactions defined analogously to the
nearest-neighbour spin chain ones, equation (5):

h̃(1)
=

2
√

3

3
p̃(a)

−

√
3

3
p̃(c)

−

√
3

3
p̃(d)

−

√
3

3
p̃(e) +

2
√

3

3
p̃(f),

h̃(2)
=

2
√

3

3
p̃(a)

−

√
3

3
p̃(c)

−

√
3

3
p̃(d) +

2
√

3

3
p̃(e)

−

√
3

3
p̃(f).

Note that these Hamiltonians act on three consecutive labels of the fusion path basis but only
can change the middle label.

As a consequence of the equivalence of the local interactions between the spin and
fusion path formalisms, the global models in the two formalisms may differ only by boundary
conditions. The open model with free ends and braided model both have D(D3) invariance
which means that the fusion path and spin versions of these chains are equivalent. This implies
that the energy spectra are identical and the degeneracies appearing in each formalism are
related via a mapping. For convenience we use the degeneracy of the spin chain formalism for
these choices of boundary conditions. For periodic boundary conditions, however, neither the
spin chain nor fusion path model has the complete D(D3) invariance and thus the two models,
while sharing bulk properties, are distinct [22].

To construct a periodic model in the fusion path basis, we need to consider the space
spanned by the basis vectors satisfying a0 = aL. As a consequence of the fusion rules, this
periodic closure is possible only for lattices of even length L. Furthermore, they lead to the
decomposition of the Hilbert space

Hilbert space = C {|a1 . . . aL〉 |a1 = g or a1 = h} ⊕C {|a1 . . . aL〉 |a2 = g or a2 = h} , (19)

where each of these subspaces has dimension 3L + 1. The global Hamiltonians are

H̃(k)
= h̃(k)

(L−1)L1 + h̃(k)

L12 +
L−1∑
j=2

h̃(k)

( j−1) j ( j+1), k ∈ {1, 2}.

The integrability of this model can be established based on the existence of an R-matrix
connected to an RSOS model whose heights correspond to the labels of the irreps of D(D3).

3 It is important for the reader to note that in this fusion path formalism the labels in the basis vectors do not
correspond to individual sites but rather bonds. The individual sites are still the g-anyons but now cannot be solely
acted on as this would break local D(D3) invariance.
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As the R-matrix of equation (4) is expressible in terms of the D(D3) projection operators, it
follows that there exists an equivalent operator in the fusion path basis [54],

R̃(z1, z2) = fa(z1, z2) p̃(a) + fc(z1, z2) p̃(c) + fd(z1, z2) p̃(d) + fe(z1, z2) p̃(e) + ff(z1, z2) p̃(f)

=

∑
a1,a2,a′

2,a3

B

(
a1 a′

2
a2 a3

∣∣∣∣ z1, z2

) ∣∣a1a′

2a3

〉
〈a1a2a3| , (20)

satisfying a face Yang–Baxter equation

R̃123(x1, x2)R̃234(x1 y1, x2 y2)R̃123(y1, y2) = R̃234(y1, y2)R̃123(x1 y1, x2 y2)R̃234(x1, x2).

The weights appearing in R̃(z1, z2) are used to construct the commuting transfer matrix [32]〈
a′

1 . . . a′

L

∣∣ t̃(z1, z2) |a1 . . . aL〉 =

L∏
j=1

B

(
a′

j a′

j+1

a j a j+1

∣∣∣∣ z1, z2

)
.

Once again this transfer matrix generates a family of commuting operators, including the global
Hamiltonians H̃(1) and H̃(2), implying integrability. Again, the dependence of the transfer matrix
on two spectral parameters guarantees commutativity of the two components[

H̃(1), H̃(2)
]

= 0.

Through the analysis of small finite-size systems we are able to make two important
observations. Firstly, we find that the eigenvalues 3̃(z1, z2) of the fusion path transfer
matrix factorize into two polynomials of degree L in the same manner as those in the spin
chain case (8). Secondly, we find that the eigenvalues satisfy functional relations similar to
equations (9), i.e.

λ1(z1)3̃(z1, z2) = (ωz1 + 1)L3̃(ωz1, z2) ± (z1 − 1)L3̃(ω−1z1, z2),
(21)

λ2(z2)
[
3̃(z1, z2)

]∗

= (ωz2 + 1)L
[
3̃(z1, ωz2)

]∗

± (z2 − 1)L
[
3̃(z1, ω

−1z2))
]∗

.

Again, λk(z) are analytic functions. The ± sign depends upon the eigenvalue in question.
Preliminary calculations indicate that this relation can be obtained using the fusion procedure
for RSOS models [7, 43]. Like the periodic spin chain case these functional relations lead to
Bethe equations which have to be satisfied by the zeros of the transfer matrix eigenvalues

(−1)L+1

(
1 + (i/ω) exk, j

1 − iω exk, j

)L
= η

L∏
l=1

exk,l − (1/ω) exk, j

exk,l − ω exk, j
, j = 1, . . . ,L, (22)

where η = ±1 corresponds to the allowed signs in the functional relations (21). This sign
was not present in the Bethe equations for the spin chain (10) indicating the likely presence
of different excitations. As before, every set of roots {xk,`} solving the Bethe equations (22)
parametrizes an eigenvalue of the fusion path model. The energy eigenvalue of H̃(k) is again
given by equation (11).

In previous studies of anyonic fusion path models [20, 37], integrability was also observed
by relating them to transfer matrices associated with RSOS models. However, in these instances
the fusion path R-matrices corresponded to representations of the Temperley–Lieb algebra.
Every RSOS model can be naturally associated with a graph where nodes represent the labels
of anyons in the theory which are connected if they can appear next to each other in the
fusion path basis as given by equation (18), see [53]. For the D(D3) model considered here
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a b

c

d

e

f

g h

Figure 1. A graphical representation of allowed neighbouring labels in the fusion
path chain. The vertices/nodes of the graphs are the labels of anyons which are
connected via an edge if and only if the two anyon labels can appear next to each
as given by equation (18).

we obtain the graph given in figure 1. This graph is equivalent to McKay’s representation graph
for the representation πg of D(D3) [48]. We note that this graph shows that the D(D3) fusion
path model does not correspond to any of the known RSOS models associated with Dynkin
diagrams [52, 53, 55, 62]. It also does not appear among the more general graphs associated
with other RSOS models [16].

3. The Bethe equations and exact results for spin chains

As a consequence of equation (12) the ground state energy of the model is always obtained by
the following combinations (NB: provided that these states are allowed to pair) [24]:

E0 =



cos(θ)E (1)

l + sin(θ)E (2)

l , 06 θ < π

2 ,

cos(θ)E (1)

h + sin(θ)E (2)

l , π

2 6 θ < π,

cos(θ)E (1)

h + sin(θ)E (2)

h , π 6 θ < 3π

2 ,

cos(θ)E (1)

l + sin(θ)E (2)

h , 3π

2 6 θ < 2π.

(23)

Here E (k)

l is the lowest energy of the H(k) and E (k)

h is the highest. An immediate implication
of this form of the ground state energy is that there are level crossings for θ being integer
multiples of π

2 leading to first-order quantum phase transitions. Here we will use a different
consequence of (23): the complete spectrum of the model can be obtained from an analysis at
these particular points in combination with the implementation of the pairing rules [24]. An
additional simplification arises from the fact that the spectra of H(1) and H(2) are identical for
most boundary conditions considered in this paper: this allows us to restrict the analysis of
the low-energy spectrum to those of the Hamiltonians Hθ=0 =H(1) and Hθ=π = −H(1) whose
ground state energies are E (1)

l = E (2)

l and −E (1)

h = −E (2)

h , respectively. Only in the case of open
boundary conditions with D(D3)-symmetry breaking boundary fields, the spectra of ±H(1) and
±H(2) are independent.

3.1. Energy density in the thermodynamical limit

The study of the excitation spectrum of a model requires knowledge of the bulk properties.
As such we recall previously obtained results and present them here for completeness [24].
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In the thermodynamic limit L→ ∞ bulk properties of the system are independent of the
boundary conditions imposed. Therefore, we can compute the energy density from the Bethe
equations (10) for the periodic spin chain. To this end the solutions to the Bethe equations need
to be classified and the root configurations corresponding to the ground state and low-energy
excitations have to the identified. As mentioned above, the Bethe equations for the periodic
D(D3) spin chain arise also in the context of the three-state Potts model. For the latter, the
classification of solutions has been obtained by Albertini et al [2, 3], see also [24]. In particular,
numerical diagonalization of the transfer matrix shows that the lowest energy states of Hθ=π

consist of three different Bethe root (zl ≡ z1,l) types:

1. positive Bethe roots (+-string), zl = iω ex+
l , where x+

l ∈ R,

2. negative Bethe roots (−-string), zl = iω ex−

l +iπ , where x−

l ∈ R,

3. two-strings, where the Bethe roots come in pairs, zl = iω ex s
l + 2iπ

3 , zl+1 = iω ex s
l −

2iπ
3 with

x s
l ∈ R,

as well as a limited number of Bethe roots at ±∞. Letting N+, N− and N2 be the number of
+-strings, −-strings and two-strings, respectively, and setting n±∞ ∈ {0, 1} to be the number of
Bethe roots at ±∞ then we have the constraint

N+ + N− + 2Ns = L− n+∞ − n−∞.

In the three-states Potts model these root types were also identified, along with a few other
which we do not consider, with the additional constraint n+∞ = n−∞ [3].

Allowing combinations of these roots we then find that the for the periodic Hamiltonian we
can take the logarithm of the Bethe equations and define the following set of counting functions:

Z+(x) = −φ

(
x;

7

12

)
+

1

L

N+∑
l=1

φ

(
x − x+

l ;
1

3

)
+

1

L

N−∑
l=1

φ

(
x − x−

l ;
5

6

)
+

1

L

Ns∑
l=1

φ

(
x − x s

l ;
2

3

)
,

Z−(x) = −φ

(
x;

1

12

)
+

1

L

N+∑
l=1

φ

(
x − x+

l ;
5

6

)
+

1

L

N−∑
l=1

φ

(
x − x−

l ;
1

3

)
+

1

L

Ns∑
l=1

φ

(
x − x s

l ;
1

6

)
,

Zs(x) =

[
φ

(
x;

11

12

)
+ φ

(
x;

1

4

)]
−

1

L

N+∑
k=1

φ

(
x − x+

l ;
2

3

)
−

1

L

N−∑
l=1

φ

(
x − x−

l ;
1

6

)

−
1

L

Ns∑
l=1

φ

(
x − x s

l ;
1

3

)
,

where

φ(x; t) = −
1

π
tan−1

(
tanh( x

2 )

tan(tπ)

)
.

In the thermodynamical limit, we find that the ground state for Hθ=π consists entirely of two-
strings [3, 24]. For finite-size systems this configuration is only realized when L is even. The
lowest energy Bethe root configuration for odd L is given by L−1

2 two-strings and one ±-string.
Similarly, we find that the lowest energy states of Hθ=0 consist of the same three Bethe

root types and hence we have the same counting functions. In the thermodynamical limit the
Bethe root configuration of the ground state consists of only negative and positive Bethe roots
appearing in the ratio of three −-strings to one +-string. For finite-size systems this configuration
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is only realized when L is a multiple of four. The lowest energy Bethe root configuration
for the other chain lengths also consists of only negative and positive Bethe roots appearing
approximately in the ratio 3:1.

Based on these observations the root density formalism [63] can be applied to compute the
corresponding energy densities: the density of two-strings in the thermodynamic ground state
of Hθ=π and their dressed energies Hθ=π are determined by linear integral equations

ρ(x) =
1

π

(
1

4 cosh(x) − 2
√

3
−

1

2 cosh(x)

)
+

√
3

2π

∫
∞

−∞

dy
1

2 cosh(x − y) + 1
ρ(y),

(24)

ε(x) =
1

4 cosh(x) − 2
√

3
−

1

2 cosh(x)
+

√
3

2π

∫
∞

−∞

dy
1

2 cosh(x − y) + 1
ε(y).

These equations (and the corresponding ones forHθ=0) can be solved by Fourier transformation
giving the ground state energy densities [3, 24, 35]

1

L
Eθ=π = −

[
1

π
+

2
√

3

9

]
and

1

L
Eθ=0 = −

[
1

2π
−

2
√

3

9
+

3

4

]
. (25)

3.2. Fermi velocity

The low-energy excitations over these ground states have a linear dispersion and their Fermi
velocities have been computed within the root density formalism in the context of the three-state
Potts model [3]. As discussed above, it is possible to identify energy and momentum eigenvalues
of this model with those of the partial Hamiltonians H(k) (11) and corresponding momenta (13)
using the equivalence of the corresponding Bethe equations.

Noting that the contribution of a single two-string to the partial momentum can be
expressed in terms of their density in the thermodynamic limit

p(x) = π

∫ x

dy ρ(y), (26)

we can eliminate the rapidity x from equations (24) and (26) to obtain the dispersion relation
ε(p) of two-strings. Therefore, the Fermi velocity of low-lying excitations of Hθ=π is found
to be

vF =
∂ε(p)

∂p

∣∣∣∣
p=pF

=
1

π

ε ′(x)

ρ(x)

∣∣∣∣
x=−∞

= 3 (27)

in agreement with the finite-size analysis of the spectrum performed in [23].
Similarly we can compute the Fermi velocity of gapless excitations for the Hamiltonian

Hθ=0. Again the result is twice than what has been found for the three-state Potts chain [3],
i.e. vF =

3
2 .

3.3. Boundary fields

We can also determine the exact expressions for the surface energy, i.e. the L0 contributions
to the energy, for the open model with interacting boundary fields. Firstly, we find the ground
energy for the Hamiltonians Hθ=π and Hθ=0, and then extend this result to generic θ using
equation (23). Starting with the Bethe equations (17) we can apply the same method that was
used to calculate bulk energy density in section 3.1. For the open spin chain with free ends the

New Journal of Physics 15 (2013) 053035 (http://www.njp.org/)

http://www.njp.org/


16

surface energy has been computed previously [24]. Due to the symmetry of the Bethe equations
the general case can be studied in the context of the open chain with a single boundary field
present, e.g. χ+

1 6= 0 and all other boundary amplitudes vanishing, and compute the correction
to case of the free ends.

For even L and χ+
1 not too large the Bethe root configuration corresponding to the ground

state of Hθ=π consists of L two-strings, distributed symmetrically around the imaginary axis
(just as in the free-ends case [24]) and, in addition two boundary Bethe roots. The latter are
found to be either ±-strings depending on the sign of χ+

1 . As the magnitude of χ+
1 is decreased

these boundary Bethe roots tend towards ±∞ to recover the Bethe configurations of the free-
ends model4. We find that the correction to surface energy for the Hamiltonian Hθ=π with one
interacting boundary field, compared to the free ends case, is

gθ=π(χ) = −
2χ2

√
3

1 + 2χ
√

3
−

18χ3
√

3

π(1 + 2χ
√

3)

√
1 + 2χ

√
3 − 9χ2


arccosh

(
−

1
2 −

1
2χ

√
3

)
, χ < 0,

0, χ = 0,

arccosh
(

1
2 + 1

2χ
√

3

)
, χ > 0.

Similarly, we find the surface energy correction for Hθ=0,

gθ=0(χ)=
2χ2

√
3

1 + 2χ
√

3
−



−9χ
√

−χ

2(1 + 2χ
√

3)

√
√

3 − 3χ

+
9χ 3

√
3 arccosh

(
−

1
2 −

1
2χ

√
3

)
π(1 + 2χ

√
3)

√
1 + 2χ

√
3 − 9χ2

, χ < 0,

0, χ = 0,

9χ
√

χ

2
√

√
3 + 9χ

+
9χ3

√
3 arccosh

(
1
2 + 1

2χ
√

3

)
π(1 + 2χ

√
3)

√
1 + 2χ

√
3 − 9χ2

, χ > 0.

Formally, the calculation of these corrections requires −
1

3
√

3
< χ < 1

√
3
. The restriction to this

interval is due to the change in the analytical behaviour of the Bethe equations which is reflected
by the presence of poles in the above expressions.

Putting these results together we are able to determine the ground state energies of Hθ=π

and Hθ=0 up to order L0

Eθ=π(χ+
1 , χ−

1 ) = −

[
1

π
+

2
√

3

9

]
L+

[
3

2
−

2
√

3

3

]
+ gθ=π(χ+

1 ) + gθ=π(χ−

1 ) + o(L0),

Eθ=0(χ
+
1 , χ−

1 ) = −

[
1

2π
−

2
√

3

9
+

3

4

]
L+

[
−

3

4
+

2
√

3

3

]
+ gθ=0(χ

+
1 ) + gθ=0(χ

−

1 ) + o(L0). (28)

In figure 2 we plot the predicted functions gθ=π(χ) and gθ=0(χ) compared to the equivalent
numerical values obtained by solving the Bethe equations (with χ−

1 = χ±

2 = 0).
Although the numerical values have been obtained for only 100 sites, we clearly see that

values match the analytically predicted results, both inside and outside the region −
1

3
√

3
< χ <

1
√

3
. The numerical solution of the Bethe equations for larger boundary amplitudes is limited by

numerical instabilities resulting from, e.g. boundary Bethe roots passing the other Bethe roots.

4 On a technical note, it was observed that the magnitude of the boundary Bethe roots will also increase as L
increases for fixed χ . We assume that as L goes to ∞ the boundary Bethe roots tend to ±∞ for fixed boundary
amplitudes χ±

k . This is important when considering the thermodynamical limit.
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Figure 2. Numerical values of the correction to the surface energies for the
Hamiltonians (a) Hθ=π and (b) Hθ=0 as a function of the boundary amplitude
χ obtained solving the Bethe equations for a system of 100 sites compared to the
analytical predictions gθ=π(χ) and gθ=0(χ), respectively. Dashed lines indicate
the range, − 1

3
√

3
< χ < 1

√
3
, where the former expressions were formally derived.

The asymptotic behaviour of the surface energy corrections for large χ does, however, coincide
with what is expected from the corresponding eigenvalues of the boundary operators B(k)± (16),
i.e. −1 and 2. This leads us to conjecture that the energies are analytically correct for all values
of χ±

k ∈ R.
Using equation (23) along with the relations,

E (k)

h = −Eθ=π(χ+
k , χ−

k ) and E (k)

l = Eθ=0(χ
+
k , χ−

k ),

we are able to determine the ground state energy of Hθ for generic θ . We should again recall
that we have the constraint χ+

1 χ+
2 = χ−

1 χ−

2 = 0 and that the interacting boundary terms break
the D(D3) invariance of the model.

4. Excitations and conformal field theories

The presence of a coupling parameter makes the identification of a CFT a difficult task. Every
energy level of the Hamiltonian depends on the coupling parameter θ , moreover which of the
energies is the lowest will change with θ . This implies that the model cannot be described
by a single CFT but rather but multiple ones. To simplify the issue we first study the model
at the level crossings, i.e. for coupling parameters being integer multiples of π

2 . As discussed
above the energy spectrum at these points is that of the partial Hamiltonians Hθ=0 =H(1) and
Hθ=π = −H(1) (up to degeneracies). For these we can use powerful machinery to accurately
describe the model at these special points. It turns out that the low-energy effective theories of
the partial models are given by minimal models.

Once the critical theories at these special couplings have been identified it is a relatively
straightforward, albeit non-trivial, task to obtain the conformal operator content of the complete
model for general coupling θ : the main difficulties come with identifying the previously
mentioned pairing rules and connecting them with some conserved quantity of the model.
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To make the presentation self-contained we begin by presenting our results on the low-
energy spectrum of the periodic spin chain reported previously [23, 24] with an extended
discussion of the residual D(D3) symmetry under these boundary conditions and the pairing
rules. This section is followed by new results of our studies of the critical properties of the
periodic fusion path chain and the models with braided and open boundary conditions.

4.1. Periodic spin chain

As discussed above the spectrum at the level crossings is expected to be described by a single
CFT. As a consequence of conformal invariance, the scaling behaviour of the ground state
energy is predicted to be [1, 9]

E = ε∞L− (c vF) ×
π

6L
+ o(L−1),

where c is the central charge of the underlying Virasoro algebra. For a given realization of the
CFT its operator content is constrained by modular invariance of the partition function and the
particular choice of boundary conditions [10, 11]. Further constraints are imposed by locality
of the physical fields. The primary fields present in the critical model determine the finite-size
energies and partial momenta of the excitated states:

E(L) − E0(L) =
2πvF

L
(X + n + n̄) , P(L) − P0(L) =

2π

L
(s + n − n̄) + const. (29)

This allows us to determine the scaling dimensions X = h + h̄ and conformal spins s = h − h̄
of the primary fields (n, n̄ are non-negative integers) from numerical finite-size data obtained
by solution to the Bethe equations along with equations (11) and (13). Note that due to the
massive degeneracies appearing in the spectrum for couplings θ being integer multiples of π/2
the complete momenta are not unique. The partial ones entering (29), however, are. This allows
the use of finite-size data at the level crossings for the identification of the critical theory.

4.1.1. Spectrum of Hθ=π . The ground state energy of Hθ=π is known to be [3, 24]

E0 = −

[
1

π
+

2
√

3

9

]
L−

12

5
×

π

6L
+ o(L−1). (30)

Using the Fermi-velocity (27) computed before the central charge of the effective field theory
for the low energy degrees of freedom in Hθ=π is identified to be c = 4/5. Hence, this sector of
the model is in the universality class of the minimal modelM(5,6) and the conformal weights h,
h̄ of the primary fields can take the rational values from the Kac table

h, h̄ ∈

{
(6p − 5q)2

− 1

120

∣∣∣∣ 16 q 6 p < 5

}
=

{
0,

1

40
,

1

15
,

1

8
,

2

5
,

21

40
,

2

3
,

7

5
,

13

8
, 3

}
.

To identify the operator content of the periodic spin chain we have solved the Bethe
equations (10) for lattice sizes up to a minimum of L= 40, although over 100 sites
were considered whenever possible. The sequence of finite-size estimations for the scaling
dimensions

X num
θ (L) =

L
2πvF

(E(L) − E0(L))
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Table 1. Scaling dimensions Xπ extrapolated from the finite-size behaviour of
the ground state and low-energy excitations ofHθ=π (periodic) for even L. (h, h̄)

are the predictions from theM(5,6) minimal model. We have also indicated the
D(D3) sector in which the state appears and its conjectured degeneracy. The
operator content of the sector πd is obtained from that of πc by interchanging h
and h̄.

D(D3) X ext.
π (h, h̄) Spin Degeneracy

πa⊕ πb 0.000 000(1) (0, 0) 0 1 × 3
L
2 −1

0.801(3) ( 2
5 , 2

5 ) 0 1 × 3
L
2 −1

1.80(1) ( 2
5 , 7

5 ), ( 7
5 , 2

5 ) ±1 1 × 3
L
2 −1

πc 0.4668(2) ( 1
15 , 2

5 ) −
1
3 2 × 3

L
2 −1

0.666 666(1) ( 2
3 , 0) 2

3 2 × 3
L
2 −1

πe⊕ πf 0.133 34(6) ( 1
15 , 1

15 ) 0 4 × 3
L
2 −1

1.333 33(3) ( 2
3 , 2

3 ) 0 4 × 3
L
2 −1

has then be extrapolated to get a numerical approximation X ext.
θ to the scaling dimension which

can then be identified with a pair (h, h̄) of conformal weights from the Kac table. In table 1 we
present our data for the low-lying excitations appearing in the θ = π sector of the periodic spin
chain for even chain lengths.

For the analysis of the finite-size spectrum, it is convenient to classify excitations of the
model in terms of symmetry sectors. For even L the Hilbert space of the spin chain can be
decomposed as

π⊗L
g =

1
2(3

L−2 + 1)πa⊕
1
2(3

L−2
− 1)πb⊕ 3L−2

[
πc⊕ πd⊕ πe⊕ πf

]
.

However, as periodic closure of the system breaks the D(D3) invariance of the model we can
no longer use this decomposition directly. Instead, we find it useful to define four residual
symmetry sectors, i.e. πa⊕ πb, πc, πd and πe⊕ πf. Here, the symmetry sector πa⊕ πb is defined
to be the subspace of π⊗L

g composed of all one-dimensional irreps (πa and πb) appearing in its
decomposition, likewise for the other sectors. Under this definition we find that all of these
(non-intersecting) symmetry sectors are invariant under the action of global Hamiltonian of the
periodic spin chain with generic θ .

Apart from fixing transformation properties of the excited states their classification
according to symmetry counting arguments can be used to conjecture the degeneracy of each
excitation for large finite systems based on the finite-size spectra, also shown in table 1.
Furthermore, it has been noticed [23] that the symmetry of the eigenstates is connected to the
number of Bethe roots at ±∞, see table 2. Finally, we observe that every excitation (h, h̄)

appearing in the sector πc can be related to an excitation (h̄, h) appearing in sector πd via a
mapping of Bethe roots, {x j} → {−x j}.

The excitations appearing here for even L coincide with those from the self-dual
ferromagnetic three-state Potts quantum chain subjected to either periodic of twisted boundary
conditions [61]. This stems from both models being constructed from the same set of solutions
to the star-triangle equation [19], albeit with different limits applied. The excitations in the
πa⊕ πb and πe⊕ πf sectors have been observed in the charge Q = 0 and 1 sector of the periodic
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Table 2. The classification of symmetry sectors of the periodic spin chain in
terms of the number of finite and infinite Bethe roots for chains of even length.

Symmetry sector N− + N+ + 2Ns n−∞ n+∞

πa⊕ πb L 0 0
πc L− 1 0 1
πd L− 1 1 0

πe⊕ πf L− 2 1 1

Table 3. As table 1 for Hθ=π (periodic) when is L odd. Symmetry is classified
by the action of the D3 rotation σ .

σ X ext.
π (h, h̄) Spin Degeneracy

1 0.125 000(5) (0, 1
8 ) −

1
8 1 × 3

L−1
2

0.425 02(2) ( 2
5 , 1

40 ) 3
8 1 × 3

L−1
2

0.924 90(6) ( 2
5 , 21

40 ) −
1
8 1 × 3

L−1
2

1.625 000(1) (0, 13
8 ) −

13
8 1 × 3

L−1
2

ω, ω−1 0.091 665(2) ( 1
15 , 1

40 ) 1
24 2 × 3

L−1
2

0.591 68(7) ( 1
15 , 21

40 ) −
11
24 2 × 3

L−1
2

0.791 667(1) ( 2
3 , 1

8 ) 13
24 2 × 3

L−1
2

Table 4. The symmetry sectors of the periodic spin chain classified in terms of
the number of finite and infinite Bethe roots for chains of odd length.

Symmetry sector N− + N+ + 2Ns n−∞ n+∞

1 L 0 0
ω, ω−1 L− 1 0 1

three-state Potts chain, respectively. The excitations in the πc and πd sectors correspond to the
three-state Potts chain with twisted boundary conditions allowing for the non-half-integer spins
observed. The excitations appearing in the periodic Potts chain have also been determined using
Bethe ansatz methods by Albertini et al [3].

We have also determined the excitations for chains of odd length. In this case the states can
be classified by the eigenvalue of the state under the D3 rotation operator, σ . The excitations are
given in table 3.

These excitations are not present in the three-state Potts model since the equivalence to this
model is restricted to L even. We were able to again classify the symmetry sectors in terms of
Bethe roots as presented in table 4. We found that n−∞ = 0 in the case of odd length chains.

4.1.2. Spectrum of Hθ=0. The ground state energy is known to be [3, 24]

E0 = −

[
1

2π
−

2
√

3

9
+

3

4

]
L−

3

2
×

π

6L
+ o(L−1). (31)
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Table 5. Scaling dimensions X0 extrapolated from the finite-size behaviour of the
ground state and low energy excitations of Hθ=0 (periodic) for L= 0 (mod 4)

(the error of the extrapolation is smaller than the last displayed digit). (h, h̄)

are the predictions from the Z4 parafermionic CFT. For the other columns, see
table 1.

D(D3) X ext.
0 (h, h̄) Spin Degeneracy

πa⊕ πb 0.000 000 (0, 0) 0 1 × 3
L
2 −1

πc 0.333 332 (0, 1
3 ) −

1
3 2 × 3

L
2 −1

πe⊕ πf 0.166 667 ( 1
12 , 1

12 ) 0 4 × 3
L
2 −1

0.666 667 ( 1
3 , 1

3 ) 0 4 × 3
L
2 −1

Table 6. As table 5 for Hθ=0 (periodic) when L= 1 (mod 4). The excitations
for chains with length L= 3 (mod 4) have the same exponents but the opposite
spin. Symmetry is classified by the action of the D3 rotation σ .

σ X ext.
0 (h, h̄) Spin Degeneracy

1 0.062 500 ( 1
16 , 0) 1

16 1 × 3
L−1

2

0.562 500 ( 9
16 , 0) 9

16 1 × 3
L−1

2

0.812 500 ( 1
16 , 3

4 ) −
11
16 1 × 3

L−1
2

ω, ω−1 0.145 833 ( 1
16 , 1

12 ) −
1

48 2 × 3
L−1

2

0.395 833 ( 1
16 , 1

3 ) −
13
48 2 × 3

L−1
2

0.645 833 ( 9
16 , 1

12 ) 23
48 2 × 3

L−1
2

Using the Fermi velocity we find that the central charge is 1, which does not uniquely define a
CFT. The field content of the theory is obtained from the finite-size spectrum. One method of
determining the finite-size spectrum is using the dressed charge formalism (see the appendix)
leading to the identification of the Z4 parafermion theory [29, 64] coinciding with the anti-
ferromagnetic three-state Potts model. The allowed conformal weights for this theory are
[29, 47]

h, h̄ ∈

{
l(l + 2)

24
−

m2

16

∣∣∣∣ 06 m 6 l 6 4, l ≡ m (mod 2)

}
=

{
0,

1

16
,

1

12
,

1

3
,

9

16
,

3

4
, 1

}
.

Alternately, we can solve the Bethe equations directly and determine the scaling behaviour of the
low-lying excitations. Here we must consider L= 0, 1, 2, 3 (mod 4) separately, see tables 5–7
below. In particular, we find that the finite-size gap of the lowest states for ` = L (mod 4) 6= 0 is
determined by an (anti-)chiral Zk=4 spin field with conformal weight h` = `(k − `)/(2k(k + 2)).

As with the previous case we again can partition the excitations according to the residual
symmetry sectors. These sectors are still characterized by the number of Bethe roots at ±∞ as
described in table 2.
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Table 7. As table 5 but for Hθ=0 (periodic) when L= 2 (mod 4).

D(D3) X ext.
0 (h, h̄) Spin Degeneracy

πa⊕ πb 0.750 000 (0, 3
4 ) × 2, ±

3
4 1 × 3

L
2 −1

( 3
4 , 0) × 2

πc 0.083 333 (0, 1
12 ) −

1
12 2 × 3

L
2 −1

1.083 333 ( 3
4 , 1

3 ) 5
12 2 × 3

L
2 −1

πe⊕ πf 0.416 667 ( 1
12 , 1

3 ), ( 1
3 , 1

12 ) ±
1
4 4 × 3

L
2 −1

Table 8. The pairing multiplicities, m p, of the periodic spin chain for any two
energies ofH(1) andH(2) that belong to the same symmetry sector. If the energies
do not belong to the same symmetry sector then they do not pair, i.e. the pairing
multiplicity is zero.

L= 0 (mod 2) L= 1 (mod 2)

Sector πa⊕ πb πc πd πe⊕ πf 1 w, w−1

m p 1 2 2 4 1 2

Comparing these excitations to the anti-ferromagnetic three-state Potts chain [3, 47] (for
L even), we find that the excitations in the πa⊕ πb and πe⊕ πf were previously identified and
restricted to the n+∞ = n−∞ case. We were unable to find any literature dealing with the anti-
ferromagnetic end of the twisted three-Potts model. We expect, however, that the excitations in
that case to match those appearing in the πc and πd sectors. Similarly the excitations for odd L
have not previously been studied.

4.1.3. Pairing rules and discussion. The results on the low-energy spectra Hθ for θ = 0, π

completely determine the critical behaviour (up to degeneracies) of the periodic D(D3) spin
chain at all the level crossings, i.e. when θ is a multiple of π

2 : this is a consequence of the fact
that the partial energies, i.e. eigenvalues (11) ofH(1) andH(2), and momenta (13) corresponding
to a given Bethe root configuration are identical (although the partial momenta enter in the
definition of the total momentum (14) with opposite signs).

For generic values of θ the energy eigenvalues of the periodic spin chain are given
by (12) in terms of two root configurations of the Bethe equations (10) provided that these
configurations pair. Based on studies of small system sizes, it has been observed that two sets
of Bethe roots pair to form an eigenvalue of the transfer matrix, equation (8), if and only if
they have matching number of roots at ±∞ [24]. As a consequence of the classification of
excitations according to their symmetry above, see tables 2 and 4, this is equivalent to saying
Bethe root configurations (and their corresponding energies) pair if and only if they belong to the
same symmetry sector. Furthermore, we have observed that within a symmetry sector pairing is
uniform in the sense that every two sets of Bethe root configurations within a symmetry sector
pair the same number of times, a quantity referred to as the pairing multiplicity. The relationship
between pairing multiplicity and symmetry sectors is documented in table 8.

This information, along with equations (12) and (29) and the relevant tables, is sufficient
to determine the energies and degeneracies of the ground state and low-lying excitations
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cos(θ)

sin(θ)

Z4

M(5,6)

Z4

M(5,6)

III

IVIII

Figure 3. CFT description of the periodic integrable D(D3) symmetric model
for generic θ . Level crossing are described by minimal models, either Z4

parafermions orM(5,6), while the regions in between are described by a product
of the theories of the two adjacent level crossings. Therefore regions I and
IV correspond to a Z4 ⊗M(5,6) theory, while regions II and III correspond,
respectively, to Z4 ⊗ Z4 andM(5,6) ⊗M(5,6) theories.

of the model for generic θ . The resulting spectrum is that of a direct product of two
conformal field theories. The physical fields appearing in the combined theory are composite
operators with scaling dimension X tot = X (1) + X (2)

=
∑2

k=1(h
(k) + h̄(k)) with (h(k), h̄(k)) being

the conformal weights from the two components. Similarly, the total spin of an excitation can be
calculated from equations (14) and (29) giving stot = s(1)

− s(2)
= h(1)

− h̄(1)
− h(2) + h̄(2). Note

that application of the pairing rules to the conformal dimensions identified for the periodic spin
chain above ensure that this total spin is always either an integer or half-integer which guarantees
locality of the physical fields.

The phase diagram of the complete model can be summarized by figure 3.

4.2. Periodic fusion path chain

By construction this chain differs from the periodic spin chain discussed in the previous section
only through boundary conditions. Therefore, the two models share their bulk properties,
including energy per unit lattice site, Fermi velocity and central charge. To identify the operator
content of the low-energy effective theory for the fusion path model, we have computed the
complete spectrum of the Hamiltonian numerically for up to L= 10 sites. We find that part of
the spectrum coincides (numerically exact) with eigenvalues of the periodic spin chain (although
the corresponding degeneracies in the different formalisms do not match). Specifically, this
applies to the energies that have been associated with the πa⊕ πb and πe⊕ πf symmetry sectors
above (we emphasize that the periodic fusion path model can only be constructed for L even).
In addition, we have diagonalized the transfer matrix for up to L= 8 sites. From these results
we find that the transfer matrix eigenvalues factorize into two polynomials as in (8). The
corresponding roots of these polynomials can be used to parametrize the eigenvalues and are
conjectured to be given by the Bethe equations (22).

We have verified this conjecture by comparing the energies obtained from the Bethe
equations with those obtained by numerical diagonalization. The eigenvalues appearing in
both the spin chain and the fusion path formalism are described by root configurations
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Table 9. Scaling dimensions Xπ extrapolated from the finite-size behaviour
of the ground state and low-energy excitations of H̃θ=π (fusion path) for
L= 0 (mod 2). From the numerical diagonalization of the Hamiltonian for
finite-size systems, we conjecture the degeneracy of each pair of conformal
weights, (h, h̄). The value η is from the Bethe equations (22).

X ext.
π (h, h̄) Spin Degeneracy η

0.000 000(1) (0, 0) 0 1
2 (3

L
2 + 1) +1

0.050 04(5) ( 1
40 , 1

40 ) 0 1
2 (3

L
2 + 1) −1

0.133 34(4) ( 1
15 , 1

15 ) 0 3
L
2 +1

0.250 01(3) ( 1
8 , 1

8 ) 0 1
2 (3

L
2 + 1) −1

0.549(2) ( 1
40 , 21

40 ), ( 21
40 , 1

40 ) ±
1
2

1
2 (3

L
2 − 1) −1

0.801(3) ( 2
5 , 2

5 ) 0 1
2 (3

L
2 + 1) +1

1.06(2) ( 21
40 , 21

40 ) 0 1
2 (3

L
2 + 1) −1

1.333 33(3) ( 2
3 , 2

3 ) 0 3
L
2 +1

1.80(1) ( 2
5 , 7

5 ), ( 7
5 , 2

5 ) ±1 1
2 (3

L
2 − 1) +1

solving (22) with η = +1. This includes the ground states of Hθ=π and Hθ=0 with energies
given by equations (30) and (31), respectively. Generally, we find that each set of Bethe roots
corresponding to an eigenvalue of the periodic fusion path chain contains either only finite roots
or, for η = +1, exactly two roots at +∞ and −∞.

4.2.1. Spectrum of H̃θ=π . As this model shares bulk properties with the periodic spin chain this
model lies in the M(5,6) universality class with central charge c =

4
5 . From the diagonalization

of the transfer matrix we can associate root configurations to the ground state and low-lying
excitations of H̃θ=π which consist of ≈

1
2L two-strings and a few ±-strings. Solving the

conjectured Bethe equations for systems of up to 100 sites, we have found the excitations given
in table 9.

Note that the new excitations corresponding to roots of the Bethe equations (22) with
η = −1 do not correspond to excitations of the three-state Potts chains subject to the boundary
conditions studied previously [61]. Moreover, because the formulation of this chain is reliant
on D(D3) symmetry, which is not present in the usual three-state Potts local Hamiltonian, it
is reasonable to expect that these excitations will not appear for any other formulation of the
three-state Potts model.

4.2.2. Spectrum of H̃θ=0. Using similar methods we can determine the low-energy excitations
of the fusion path model for θ = 0. This is done for even L where, as in the spin chain case, we
have to discuss the cases of L2 even or odd separately. The conformal dimensions identified from
the low-lying excitations are shown in table 10.

As was the case with the H̃θ=π model we find new excitations, again characterized by
η = −1, which do not appear in three-state Potts chains subject to the boundary conditions
studied previously. Due to commensurability conditions the spectra can only be compared for
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Table 10. Scaling dimensions X0 extrapolated from the finite-size behaviour
of the ground state and low-energy excitations of H̃θ=0 (fusion path) for
L= 0, 2 (mod 4). We have omitted the column regarding the degeneracy of the
excitation due to a lack of data. The error of the extrapolation is smaller than the
last displayed digit. The association of a ×2 with a pair of conformal weights
implies that there are two excitations with those conformal weights that have
distinct energies for finite-size systems.

L mod 4 X ext.
0 (h, h̄) Spin η

0 0.000 000 (0, 0) 0 +1

0.125 000 ( 1
16 , 1

16 ) 0 −1

0.166 667 ( 1
12 , 1

12 ) 0 +1

0.625 000 ( 9
16 , 1

16 ) × 2, ±
1
2 −1

( 1
16 , 9

16 ) × 2

0.666 667 ( 1
3 , 1

3 ) 0 +1

2 0.125 000 ( 1
16 , 1

16 ) × 2 0 −1

0.416 667 ( 1
3 , 1

12 ), ( 1
12 , 1

3 ) ±
1
4 +1

0.625 000 ( 9
16 , 1

16 ) × 2, ±
1
2 −1

( 1
16 , 9

16 ) × 2

0.750 000 (0, 3
4 ) × 2, ±

3
4 +1

( 3
4 , 0) × 2

lattices with lengths differing by multiples of 4. Therefore, we do not have sufficient numerical
data from exact diagonalization of the Hamiltonian to present any conjectures concerning the
degeneracy of the excitations.

4.2.3. Pairing rules and discussion. In contrast to the periodic spin formulation the pairing
rules for the periodic fusion path chain could not be easily determined. The residual
symmetry sectors used in the previous section are no longer present. It is possible, however,
to define a conserved topological charge for the fusion path model based on the D(D3)

F-moves aforementioned [20, 30]. This charge allows us to differentiate between different
topological sectors which are labelled by the irreps of D(D3). A better understanding of these
topological symmetry sectors will be necessary to gain insight into the pairing rules for this
model.

Finally, we want to stress that while the computation of scaling dimensions is based on
the solution of the Bethe equations (22), which can be achieved for relatively large L, the
identification of allowed Bethe root configurations still relied upon the explicit diagonalization
of the transfer matrices of small systems. Thus while we have a high level of confidence
in the accuracy of the scaling dimension it is not clear whether all primary excitations have
been identified. In particular, the existence of additional primary operators with larger scaling
dimensions cannot be ruled out.
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4.3. Braided chain

As discussed above, the D(D3) quantum chains in the spin chain and the fusion path formalism
are equivalent for braided and open boundary conditions. Therefore we discuss their critical
properties in the former.

4.3.1. Spectrum of Hθ=π . The full spectrum of the Hθ=π braided chain is a subset of the
spectrum of the Hθ=π periodic spin chain. In particular we find that, for the choice of the
braiding operator used in this work, the energies present are those that appeared in the symmetry
sectors πa⊕ πb and πc of the periodic chain for even L and in the σ = 1 for odd L. As a
consequence, only Bethe root configurations with n−∞ = 0 for even length chains (n±∞ = 0
for odd length chains) correspond to eigenvalues of the braided model. Therefore, the low-lying
excitations for the braided chain can be deduced from tables 1 and 3:

(h, h̄) ∈

{{
(0, 0), (2

5 ,
2
5), (

2
5 ,

7
5), (

7
5 ,

2
5), (

1
15 ,

2
5), (

2
3 , 0)

}
, L even,{

(0, 1
8), (

2
5 ,

1
40), (

2
5 ,

21
40), (0, 13

8 )
}
, L odd.

Since the braided chain has the full D(D3) symmetry it would be possible to classify all
eigenstates of this model in terms of the irreps. We find, however, that the enlarged symmetry
gives rise to additional degeneracies in the spectrum which extend across multiple symmetry
sectors of the braided spin chain. This implies that for these boundary conditions a classification
of symmetry sectors based on the presence of infinite Bethe roots is no longer possible. In
particular, this leads to higher degeneracies in the spectrum of the braided spin chain model as
compared to the periodic one.

4.3.2. Spectrum ofHθ=0. AsHθ=0 = −Hθ=π we can again use our results for the periodic spin
chain to discuss the low-energy spectrum of the braided one. Just as for θ = π the excitations
appearing in the braided chain are those present in the πa⊕ πb and πc sectors of the periodic
chain for even L and in the σ = 1 sector for odd L. Thus, we can deduce the excitations
appearing in the braided model from tables 5–7:

(h, h̄) ∈



{
(0, 0), (0, 1

3)
}
, L≡ 0 mod 4,{

( 1
16 , 0), ( 9

16 , 0), ( 1
16 ,

3
4)
}
, L≡ 1 mod 4,{

(0, 3
4), (

3
4 , 0), (0, 1

12), (
3
4 ,

1
3)
}
, L≡ 2 mod 4,{

( 1
16 , 0), ( 9

16 , 0), ( 1
16 ,

3
4)
}
, L≡ 3 mod 4.

4.3.3. Pairing rules and discussion. Like the periodic case the results for the braided chain
at θ = 0, π determine the low-energy spectrum at all of the level crossings. Again, the full
spectrum for generic θ is given by (12) in terms of two Bethe root configurations provided that
these configurations pair. For the braided model it has been observed previously that any two
solutions to the Bethe equations can be paired to form an eigenvalue of the transfer matrix given
by equation (8) [24]. This is consistent with statement above, that a given root configuration
corresponds to eigenstates in multiple symmetry sectors. Another difference to the periodic spin
chain is that the assignment of a root configuration to a particular symmetry sector of the braided
chain is different for H(1) or H(2). Despite these technical differences we find that the pairing
multiplicities, i.e. the number of times two solutions to the Bethe equations pair, depends solely
on the symmetry sector the eigenvalue of the transfer matrix lies in and is defined by table 8.
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Table 11. Conformal weights h extrapolated from the finite-size behaviour of
the ground state and low-energy excitations of Hθ=π (open) for different chain
lengths. The expression for the degeneracy of the energy is written for easy
comparison to table 1.

L mod 2 hext. h Degeneracy

0 0.000 000(1) 0 3 × 3
L
2 −1

0.666(1) 2
3 6 × 3

L
2 −1

1 0.125(2) 1
8 3 × 3

L−1
2

1.624(3) 13
8 3 × 3

L−1
2

As before, pairing determines the physical fields appearing in the low-energy effective
theory of the braided spin chain. Their scaling dimensions and total spin of these composite
operators are related to the ones of their components as before. We note, however, that the
total momentum in the braided model is not a multiple of 2π/L but instead constrained by
equation (15).

4.4. Open chain

As in the case of braided boundary conditions it is sufficient to discuss the low-energy behaviour
of the open chain in the spin chain formulation. At level crossings conformal invariance predicts
that the lowest energies of the open chain with free ends, i.e. χ±

1 = χ±

2 = 0, have the scaling
behaviour given by [9]

E = ε∞L+ f0 +
πvF

L

(
−

c

24
+ h + n

)
+ o(L−1),

where c is the central charge, vF is the Fermi-velocity, h is a conformal weight and n is a non-
negative integer.

4.4.1. Spectrum of Hθ=π . The ground state energy for θ = π [24] is

E0 = −

[
1

π
+

2
√

3

9

]
L+

[
3

2
−

2
√

3

3

]
−

12

5
×

π

24L
+ o(L−1).

As is the case with the periodic chain we have that vF = 3 and c =
4
5 , yielding the same CFT as

expected. Using an analogous method to that outlined in section 4.1.1 to calculate X ext. we can
extrapolate values for the conformal weights, hext.. The values are presented in table 11.

4.4.2. Spectrum of Hθ=0. The ground state of the open chain for θ = 0 [24] is

E0 = −

[
1

2π
−

2
√

3

9
+

3

4

]
L+

[
−

3

4
+

2
√

3

3

]
−

3

2
×

π

24L
+ o(L−1),

which gives vF =
3
2 and c = 1, in agreement with the periodic chain. As with the previous section

we numerically approximate the conformal weights by solving the Bethe equations. The results
are summarized in table 12.
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Table 12. Conformal weights h extrapolated from the finite-size behaviour of
the ground state and low-energy excitations of Hθ=0 (open) for different chain
lengths. The conformal weights appearing when L= 3 (mod 4) have been
omitted as they are identical to the L= 1 (mod 4) case. As was the case with
table 5 the error of the extrapolation is smaller than the last displayed digit.

L mod 4 hext. h Degeneracy

0 0.000 000 0 3 × 3
L
2 −1

0.333 333 1
3 6 × 3

L
2 −1

1.000 000 1 3 × 3
L
2 −1

1 0.062 500 1
16 3 × 3

L−1
2

0.562 500 9
16 3 × 3

L−1
2

2 0.083 333 1
12 6 × 3

L
2 −1

0.750 000 3
4 3 × 3

L
2 −1

0.750 000 3
4 3 × 3

L
2 −1

We should remark that we have listed the conformal weight h =
3
4 twice in table 12

to emphasize that there are two different Bethe root configurations with different finite-size
energies extrapolating to this conformal dimension for L mod 4 = 2.

4.4.3. Pairing rules and discussion. This model is similar to the braided version and has the
full global symmetry of the algebra D(D3). Every pair of solutions to the Bethe equations pair
which again implies that conformal weights will appear in multiple symmetry sectors and the
number of times they pair depends solely on the symmetry sector the eigenvalue of the transfer
matrix lies in, table 8.

5. Discussion

In this paper we have analysed the low-energy spectrum of the integrable D(D3) symmetric
chain subject to various boundary conditions. In the spin chain formulation the Hamiltonian
derives from a commuting two-parameter transfer matrix of a vertex model and the eigenvalues
can be obtained by Bethe ansatz methods. We have constructed a related class of models with
local D(D3) symmetry using the fusion path formulation: these models, too, are integrable as
they can be obtained from a solution to the Yang–Baxter equation for a face (or RSOS) model.
For open and braided boundary conditions the two formulations of the model are equivalent. For
periodic closure, however, the fusion path chain differs from the spin chain by boundary terms.
Based on studies of small systems, we have proposed a set of Bethe equations whose solutions
determine the eigenvalues of the fusion path chain.

From a finite-size analysis of the spectrum of these models, we have identified the
conformal field theories providing an effective description of the low-energy modes to contain
two sectors from—depending on the parameter θ—the minimal model M(5,6) (the three-state
Potts model) and the Z4 parafermion. The physical fields are products of operators from these
sectors. The individual factors can carry fractional (non-integer or non-(para)fermionic) spins
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implying the appearance of Virasoro characters in the partition function of the model which
have not been discussed in the context ofM(5,6) or Z4 alone.

The locality of physical fields in the model is guaranteed by pairing rules. This situation
is similar to other models with several gapless modes propagating with different Fermi
velocities [8, 26, 27]. We have to emphasize, however, that in the present models this
factorization of different modes is exact already for finite chains and on all energy scales,
unlike in say the separation of spin and charge degrees of freedom observed within the low-
energy spectrum of the one-dimensional Hubbard model where the coupling between the
sectors becomes manifest in subleading corrections to scaling and at higher energies. Another
difference for the model studied here is that the two sectors of the effective theory are not
related to subalgebras of the global symmetry of the model. Therefore, to establish the pairing
rules and corresponding multiplicities we have resorted to numerical studies of small systems
together with counting arguments for the total number of states of the system. For the spin
chain formulation we found that the pairing is determined by the boundary conditions and
can be related to the residual symmetry of a given eigenstate. It is also reflected by the
appearance of infinite roots appearing in the configurations solving the Bethe equations of
the model. The spectrum of the periodic D(D3) model in the fusion path formulation also
shows pairing on all energy scales. Unlike in the spin chain formulation, however, the pairing
is not transitive and cannot be described based on residual symmetries as in the spin chain. The
identification of the pairing rules and as to whether these rules are connected to topological
invariants involving the D(D3) F-moves remains an interesting open problem for this
model.

As a first step to address this problem, numerical methods could be used to form
conjectures. Ultimately, however, it would be desirable to obtain the complete picture starting
from the integrable structures underlying this model. For the topological invariants this requires
to relate them to elements of the RSOS Yang–Baxter algebra. For the solution of the spectral
problem of the anyon chain, the functional relations (21) have to be established using the fusion
procedure for RSOS transfer matrices. We shall address these questions in future work.
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Appendix. Dressed charge formalism

Following [8, 18, 27, 58] the finite-size energy gaps of Hθ=0 for periodic boundary conditions
are

1E(1N±, Q±) =
2π

L
vF

(1

4
(1N+, 1N−)(4>4) −1(1N+, 1N−)

+(Q+, Q−)(4>4)(Q+, Q−) +N
)

+ o(L−1). (A.1)
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Table A.1. The lowest excitations of H0 in terms of the quantities 1N± and Q±

for different chain lengths.

L mod 4 X s 1N+ 1N− 1Q+ 1Q−

0 0 0 0 0 0 0
1
3 −

1
3 0 −1 −

1
3 + 2

3
2
3 0 0 −2 0 0
1
6 0 −1 −1 0 0

1 1
16

1
16 −

1
4 + 1

4 + 1
4 −

1
4

7
48 −

1
48 −

1
4 −

3
4 −

5
12 + 1

12
19
48 −

13
48 −

1
4 −

3
4 + 7

12 −
11
12

2 1
12 −

1
12 −

1
2 −

1
2 −

1
6 −

1
6

5
12 −

1
4 −

1
2 −

3
2 −

1
2 + 1

2

(N being a non-negative integer). Taking into account that only ±-strings are present in the
ground state the 2 × 2 dressed charge matrix 4 = ξ(x)|x=∞ is obtained from the linear integral
equation

ξ(x) =

(
1 0
0 1

)
−

1

2π

∫
∞

−∞

dy ξ(y)K (y − x),

(A.2)

K (x) =

(
k(x, 1

3) k(x, 5
6)

k(x, 5
6) k(x, 1

3)

)
, k(x, t) =

sin(2π t)

cosh(x) − cos(2π t)
.

Using Wiener Hopf techniques the dressed charge matrix can be expressed in terms of the
Fourier transform of the kernel matrix giving

4>4 =
(
1 − K̃ (ω = 0)

)−1
=

(
1 1

2
1
2 1

)
. (A.3)

Hence the scaling dimensions and conformal spins of primary operators in the effective
field theory for Hθ=0 in terms of the quantum numbers 1N± and Q± characterizing the
corresponding excitation (29) are

X =
1
3

(
(1N+)

2
− 1N+1N− + (1N−)2

)
+
(
(Q+)

2 + Q+ Q− + (Q−)2
)
,

(A.4)
s = −

1
2 (Q+1N+ + Q−1N−) .

The 1N± ≡ N± −
L
2 ±

L
4 correspond to the change in number of ±-strings (subject to the

condition that the total number of roots is L) as compared to the thermodynamic ground state
while the Q± determine the momentum of the excitation. For a configuration with n± Bethe
roots at ±∞ they can take discrete values

Q± ≡
1
3(n+∞ − n−∞) (mod 1).

For a given solution {x±

k } of the Bethe equations the Q± can also be determined numerically
using the counting functions defined above:

Q± =
1

N±

N±∑
k=1

Z±(x±

k ).
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Due to the discrete set of possible values for Q± the data for systems with L6 10 are
sufficient to identify the quantum numbers for the lowest finite-size gaps of Hθ=0, see in
table A.1. The observed dimensions support our identification of the critical theory with a Z4

parafermion.
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