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Abstract
We construct parent Hamiltonians involving only local 2-body interactions for a
broad class of projected entangled pair states (PEPS). Making use of perturba-
tion gadget techniques, we define a perturbative Hamiltonian acting on the
virtual PEPS space with a finite order low energy effective Hamiltonian that is a
gapped, frustration-free parent Hamiltonian for an encoded version of a desired
PEPS. For topologically ordered PEPS, the ground space of the low energy
effective Hamiltonian is shown to be in the same phase as the desired state to all
orders of perturbation theory. An encoded parent Hamiltonian for the double
semion string net ground state is explicitly constructed as a concrete example.

Keywords: projected entangled pair state, topological order, parent Hamiltonian

1. Introduction

Projected entangled pair states (PEPS) are a class of quantum states particularly well suited for
describing the ground states of interacting quantum many-body systems [1–6]. They are a form
of tensor network ansatz amenable to both numerical and analytical study, and encompass many
interesting classes of states. In particular, they offer exact analytical descriptions of such states
as the topologically ordered ground states of quantum double models [7] and string-net models
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[8], as well as resources for measurement-based quantum computation such as the cluster states
[9] and Affleck–Kennedy–Lieb–Tasaki states [1, 10, 11], among others.

For a given PEPS (representing the state of a quantum many-body system defined on a
graph), there is an associated parent Hamiltonian for which it is a ground state [12]. For certain
classes of PEPS, these Hamiltonians can be defined using only local interactions (i.e.,
interactions whose support lies only on qudits within some bounded size region) such that their
ground states are unique. Though these interactions act only within a finite sized region, there
will still generally be a large number of qudits within this region. For this reason these
interactions may be challenging to implement experimentally, and it may be preferable to find
an alternative parent Hamiltonian with interactions involving at most two neighbouring
quantum systems (2-local interactions), whose ground state is a desired PEPS.

In this paper, we construct such a parent Hamiltonian involving only 2-local interactions
for PEPS with certain properties. The strategy we use to show this is based on the perturbation
gadget [13–16] approach. Perturbation gadgets allow k-body interactions (those involving k
systems) to be approximated by 2-body interactions through the introduction of ancilla qudits
coupled perturbatively. Applied to infinite systems, a naive perturbation gadgets approach can
encounter a number of pitfalls. In particular, the resource cost of a general perturbation gadget
scheme scales poorly with the system complexity, and application of the technique can lead to
the energy gap scaling with the system size or the fidelity of target states [14, 17]. Additionally,
while interactions can be reduced to only 2-body, the nature of these interactions is in general
complicated and unnatural when viewed in terms of the target model. By taking advantage of
structure and tailoring the gadgets to a particular class of models, we can circumvent these
difficulties. Our construction involves interactions that are natural from the point of view of the
PEPS ansatz, and captures the structure of the standard PEPS parent Hamiltonian.

We present a perturbation gadget scheme that works by encoding the qudits of the model
in question in a quantum code, and weakly coupling neighbouring encoded qudits. The
encodings and couplings are directly inspired by the PEPS descriptions of the target ground
states. As such, our scheme is specifically suited to constructing 2-local Hamiltonians whose
ground space is (an encoded form of) a desired PEPS. This generalizes the ideas of [18] and
[19], where similar techniques were used to reproduce encoded forms of the cluster state and the
quantum double ground states, respectively, as the ground states of entirely 2-local
Hamiltonians, based on their PEPS descriptions. The model studied in this paper is not
precisely equivalent to those developed previously, which take advantage of structure that is not
generally available for all the PEPS we discuss here. As well as the quantum double and cluster
states, we expect our construction to apply to broad classes of topologically ordered states with
similar structure, such as the string-net ground states, isometric H-injective PEPS [20], and

ωG( , )-isometric PEPS [21]. In this direction, we argue that isometric MPO-injective PEPS [22]
with trivial so-called generalized inverse satisfy the requirements of our construction; this class
is known to include string-net ground states and ωG( , )-isometric PEPS. In fact, we conjecture
that our results extend to any PEPS that satisfy certain topological order conditions.

Our analysis proceeds in two parts. In the first part, we show that for a given PEPS
satisfying certain criteria there exists a finite-order low energy effective Hamiltonian for our
system which is a valid (gapped) parent Hamiltonian for the desired PEPS satisfying these
conditions. Our perturbation analysis is based on the Schrieffer–Wolff (SW) transformation
[23, 24]. In the second part of our analysis, we study the robustness of this effective
Hamiltonian to contributions from higher order terms in the perturbation expansion. In doing
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so, we prove that the effective Hamiltonian is in the same phase as the desired parent
Hamiltonian to arbitrary order.

We make use of stability results for topologically ordered states [25–28] to prove that the
ground space of our effective Hamiltonian remains in the same phase to arbitrarily high order of
perturbation theory. For this reason, our results apply only to states with parent Hamiltonians
satisfying the local topological quantum order conditions [27]. Note that these states need not be
topologically ordered in the more colloquial sense, and may have non-degenerate ground
spaces, for example.

As an explicit new example of our construction, we demonstrate our procedure for the
double semion string-net model [8], which has an exact PEPS description [29–31].

In section 2 we will introduce the PEPS formalism and define the class of PEPS to which
our construction applies. In section 3 we briefly outline our model and main results. Following
this, sections 4 and 5 are devoted to the proofs of our results. Section 6 contains a discussion of
our results and concluding remarks, followed by an explicit example of our construction in
section 7.

2. PEPS

PEPS is an ansatz for describing states of many-body quantum systems. For a given PEPS
satisfying certain criteria, we will exploit the structure of this ansatz in order to construct a 2-
local Hamiltonian whose ground state is in the same phase as the desired PEPS.

A PEPS is typically associated with a graph or lattice Λ, and can be defined constructively
by beginning with maximally entangled pairs of qudits of dimension D on each edge =e i j( , )
of the graph, such that one qudit from each pair is associated with each of the sites i and j. These

qudits are conventionally called virtual qudits. A linear map  →
⊗ ( ):s

D s ddeg( )
is then

applied to the sdeg( ) virtual qudits at each site s of the graph (with sdeg( ) the degree of s),
mapping the combined Hilbert spaces of all the virtual qudits at s to an encoded space of
dimension d. The space d is often called the physical space, but we will refer to it as the code
space, associated with an encoding of a d-dimensional qudit in the sdeg( ) D-dimensional virtual
qudits. The map s is often referred to as the projection map, though it need not be a projector in
the strict sense.

This structure of a PEPS is illustrated in figure 1. In general, the projection map and the
dimensions d and D can vary with location, but for notational simplicity we will restrict our
attention to the translation-invariant case (extension to the general case is straightforward). We
also take the graph Λ to have a bounded coordination number, i.e. sdeg( ) is finite. Because each
edge =e i j( , ) of the PEPS graph has an associated pair of virtual qudits, we define
Φ 〉 ≡ ∑ 〉 〉=

−e k k| ( ) | |D k
D

e i e j0
1

, , as the maximally entangled state on edge e, where 〉| · e i, refers to
the state of the virtual qudit at site i corresponding to edge e. With this in mind, we can write the
PEPS state (up to normalization) as

∏ ∏ψ Φ=  ( )e , (1)
c

s

s

e

D vPEPS

where e runs over edges of Λ, and s runs over sites of Λ. Note that ψ 〉| cPEPS is defined on the
code space, as opposed to the virtual qudits. We denote states and operators on the code qudits
and virtual qudits by subscript c and v, respectively.
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A parent Hamiltonian of a PEPS (or more generally any state or space) is a gapped local
Hamiltonian that has the desired state as its ground state. It is often conventional to also require
that a parent Hamiltonian is frustration-free, but we will still refer to a frustrated Hamiltonian as
a parent Hamiltonian so long as it is local and gapped. For any given PEPS, there is a special
class of parent Hamiltonians, canonical parent Hamiltonians [12], defined as follows.

A canonical parent Hamiltonian is specified by a set of regions R{ } on the PEPS lattice,
where R{ } must contain a region of a large enough size around each site of the lattice. We call
the largest required region size r*. This size r* generally depends on the details of the PEPS
under consideration, but in the cases we consider it can always be taken to be finite (see [12] for
details). For each R, we define the projector ϖR onto the support of ρ ψ ψ= 〉〈⧹Tr | |R R PEPS PEPS ,
the reduced state in region R. The associated canonical parent Hamiltonian is then

∑ϖ= −H . (2)c

R

Rcan,

This Hamiltonian will have the desired PEPS as a frustration-free ground state. The
Hamiltonian (2) acts on the code qudits of the model (as denoted by the subscript c), and the
virtual qudits are seen only as a mathematical tool used in the definition of the PEPS.

2.1. Virtual qudits and code qudits

A PEPS is a state defined on the code qudits as in equation (1). However, we will consider the
virtual qudits to be those that are manipulated in the laboratory and we regard the code qudits to
simply be encoded within a subspace of these virtual systems. This is the sense in which we will
recover an encoded form of the PEPS.

Generically in perturbation gadget approaches, ancilla qudits are required to mediate
effective many-body correlations. In standard approaches, these ancillae are introduced beside
the original qudits of the model being considered and simply mediate the interactions between
the model qudits. However, in our construction each qudit of the desired model is encoded into

Figure 1. PEPS construction on a square lattice. Virtual systems are shown in green,
while code qudits are shown in blue, encoded in the enclosed virtual qudits. Wavy lines
run along edges of the PEPS graph, and connect virtual qudits in maximally entangled
states.
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several ancilla qudits, and so the additional qudits are integrated into the structure of the model
itself. In this way we have aligned the structure of our perturbation gadgets with that of PEPS to
reproduce these states more naturally.

For clarity, for the bulk of our analysis the interactions we use will not generally be 2-local
on these virtual systems, but instead be 2-local on the collection of virtual qudits that encodes
each code qudit. We call this collection a code gadget. We stress this distinction between 2-
locality of an interaction with respect to the code gadgets as opposed to the virtual qudits as it is
a departure from previous similar work [18, 19]. We discuss in section 6.1 how to subsequently
construct Hamiltonians whose interactions involve at most two virtual qudits.

2.2. Types of PEPS

Because we take a perturbative approach in this work, we will construct a parent Hamiltonian
for a state within the same phase as a given PEPS, such that the ground state of our model can
be made arbitrarily close to the PEPS by taking the perturbation parameter to be small enough.
For this to be a sensible approach, we require parent Hamiltonians for the PEPS under
consideration to be gapped and stable (in an appropriate sense) with respect to small
perturbations. This criterion is formalized as topological order, and will be discussed in
section 2.5. As well as the topological order condition, our procedure will require the PEPS we
treat to possess additional structure as compared to the most general definition of PEPS. We are
interested in the broadest such structure that will allow us to demonstrate our result.

Apart from topologically ordered PEPS, there are two main subclasses of PEPS that we
will need to consider: isometric PEPS and quasi-injective PEPS. Isometric PEPS are a natural
and important subclass of PEPS, and are renormalization fixed points [32]. Quasi-injectivity is
the least natural of the classes we consider and is mainly a technical tool required in our
analysis. We argue that it is a generalization of several known classes of PEPS such as injective
PEPS [12] and G-injective PEPS [33], which have properties that make them amenable to our
construction.

2.3. Isometric PEPS

Definition 1 (Isometric PEPS [32, 33]). A PEPS is isometric if the projection maps s are
isometries

Notably, for isometric PEPS ≡  Ps s s
† is a (Hermitian, idempotent) projector acting on the

virtual qudit space.
Apart from being renormalization fixed-points, isometric PEPS also give a simpler form

for the parent Hamiltonian than the general case [33]. In this work, we will require all PEPS we
treat to be isometric, as we will make use of the additional structure of their parent Hamiltonians
in our analysis. For isometric PEPS, we can write a canonical parent Hamiltonian on the virtual
space as

= Λ Λ H H (3)v ccan,
†

can,

∑ ϖ= − Λ Λ  , (4)
R

R
†

5

New J. Phys. 16 (2014) 123056 C G Brell et al



where ∏=Λ Λ∈
 

s s. Explicitly, this Hamiltonian will be be a parent Hamiltonian for the
encoded PEPS state

∏ ∏ψ Φ= ( )P e (5)
v

s

s

e

D vPEPS

defined on the virtual space.

2.4. Quasi-injective PEPS

We will define a class of PEPS that we call quasi-injective PEPS, inspired by several known
classes of PEPS. The most fundamental of these known classes is injective PEPS [12], which
are technically defined as those PEPS whose projection maps have left inverses. Injectivity has
important consequences for properties of the parent Hamiltonian, and in particular injective
PEPS can be shown to be unique ground states of their canonical parent Hamiltonians, which
can be defined to be 2-local [12]. Broader classes of PEPS with similar structure have been
proposed, such as G-injective PEPS [33] for finite groups G, ωG( , )-injective PEPS [21] for a
finite group G and 3-cocycle ω, and H-injective PEPS [20] for finite-dimensional C* Hopf
algebras H. Recently, a notion of injectivity based on the use of a projection matrix product
operator (MPO) that includes many (perhaps all) of these previous classes has been developed
[22], known as MPO-injectivity. MPO-injective PEPS can describe a large class of
topologically ordered states including the ground states of string-net models [8]. In contrast
to injective PEPS, which represent unique ground states of local Hamiltonians, these other
classes typically represent the ground states of topologically ordered systems that would
generally have degenerate ground spaces.

For all of these classes of PEPS (injective, G-injective, etc), the canonical parent
Hamiltonians can be shown to have additional structure that is not present in the general case. In
particular, isometric PEPS that are also injective or G-injective have canonical parent
Hamiltonians (2) whose terms take a particularly simple form:

∏ϖ Φ Φ=
∈

 
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟e e· ( ) ( ) · . (6)R R

e R

D D v R
†

Importantly, the Hamiltonian (2) can be chosen to be both local and gapped for these PEPS
[12, 32, 33].

Our construction will, among other things, require the PEPS under consideration to have
canonical parent Hamiltonians that are local, gapped, and whose terms take the form of
equation (6). Injective or G-injective isometric PEPS have these properties, but we wish to be as
general as possible. We will therefore define the class of quasi-injective PEPS to be those that
satisfy the loosest such conditions that are sufficient to prove our main results. We believe that,
for isometric PEPS, our definition of quasi-injectivity generalizes the known classes of PEPS
mentioned earlier (injective, G-injective, ωG( , )-injective, H-injective, and MPO-injective).
Loosely speaking, the conditions we impose require that the PEPS is stabilized by a set of
operators Υ R R{ , }Pi Ei

defined below, in the sense that the PEPS is an eigenstate of each Υ R R{ , }Pi Ei

corresponding to its highest eigenvalue. Explicitly, these (Hermitian) operators take the form
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∏ ∏Υ Φ Φ=

× +

⋃
∈

⋃

⎛

⎝
⎜
⎜

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎞

⎠
⎟
⎟{ }

{ }

( ) ( ){ } P P e e

P

1
2

h.c ., (7)

R R R R
i

R
e R

D D v

R R

, ,

,

Pi Ei j P j E j P

Ei

j P j E j

i

where the R are connected regions of the graph and ∏=
∈

 PR s R s s
† . The set

= … …R R R R R R{ , } { , , , , , }P E P P E Ei i 1 2 1 2
is a set of regions, with ⋃ R R{ , }j P Ej j their union.

PEPS is a tensor network ansatz in the sense that the projection map can be defined by a
tensor with indices corresponding to each virtual and code qudit. In this picture, the operators
Υ R R{ , }Pi Ei

can be thought of as contractions of the tensors defining the PEPS projector in various
ways. This is because each Ps can be thought of as a tensor with input and output indices for
each virtual qudit, and Φ Φ〉〈e e| ( ) ( )|D D v acts to contract the relevant indices of these tensors on

the sites e connects. In particular, ∏Υ Φ Φ ϖ= 〉〈 =∅ ∈
 ( )P e e P| ( ) ( )|R R e R D D v R R R R{ , }

†

corresponds to the contraction of all of the pairs of indices of PR corresponding to edges in R.
Given these Υ R R{ , }Pi Ei

operators, we can explicitly define the quasi-injectivity condition as
follows:

Definition 2 (Quasi-injective PEPS). An isometric PEPS is quasi-injective if

Υ ψ η ψ={ } { } , (8)R R v R R v, PEPS , PEPSPi Ei Pi Ei

for η R R{ , }Pi Ei
the largest eigenvalue of Υ R R{ , }Pi Ei

.

Most significantly, isometric quasi-injective PEPS have the property that

∑ Υ= −
{ }

{ } { }H c , (9)v

R R

R R R Rpar,

,

, ,

Pi Ei

Pi Ei Pi Ei

is a valid frustration-free parent Hamiltonian for any choice of >c 0R R{ , }Pi Ei
. This is a direct

consequence of the condition (8). It is also clear from the fact that H vpar, contains all terms in the
canonical parent Hamiltonian that if (2) is gapped, the Hamiltonian (9) is also gapped.

We emphasize that the notion of quasi-injectivity is designed to be the loosest notion
required for our results to hold, and it is expected (in the isometric case) to encompass the broad
class of PEPS listed above, including injective, G-injective, ωG( , )-injective, H-injective, and
MPO-injective PEPS. To illustrate this, we provide a proof sketch that all MPO-injective PEPS
for which the ‘generalized inverse’ (defined in [22]) is the identity map are quasi-injective,
noting that this class includes injective, G-injective, ωG( , )-injective and string-net PEPS. For
isometric PEPS, as we consider in this paper, it is believed that all MPO-injective PEPS have a
generalized inverse equal to the identity. We also believe that quasi-injectivity captures the
relevant features of higher dimensional analogues of these classes, such as projected entangled
pair operator (PEPO)-injective PEPS that are the natural extension of MPO-injective PEPS. We
leave the development of a formal proof of the relationship between quasi-injectivity and other
forms of injectivity to future work. The close relationship between MPO-injective PEPS and
topologically ordered PEPS in two dimensions may also suggest a close relationship between
quasi-injective PEPS and topologically ordered PEPS in general.
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Proof sketch: consider the operator Υ R R{ , }Pi Ei
acting on an MPO-injective PEPS. Consider

each projection factor of Υ R R{ , }Pi Ei
as defined in equation 7 to be applied sequentially. As we

apply projectors on maximally-entangled states associated with some set of bonds on the lattice,
this acts to block sites. This is because for MPO-injective PEPS, the generalized inverse tensor
can be considered to be a blocking operation. For those MPO-injective PEPS with trivial
generalized inverse, this simply corresponds to a contraction of the relevant bond, which in our
context is implemented by the projection onto the maximally entangled state. Applying PEPS
projectors on some set of sites then removes these sites from any blocks. The pullthrough
condition of MPO-injective PEPS ensures that blocks with such sites removed indeed remain
blocks. Note that Υ R R{ , }Pi Ei

is composed of a sequence of such bond projections that block sites
followed by PEPS projectors that remove sites from blocks. At the conclusion of this sequence,
the state is described by blocks of sites (not necessarily geometrically local); however, applying
the PEPS projector at all sites restores the original PEPS state, thereby guaranteeing that the
PEPS is stabilized by all Υ R R{ , }Pi Ei

as required by quasi-injectivity.

2.5. Topological order

The quasi-injective and isometric conditions discussed above are specific to the PEPS
framework. In contrast, the topological order condition applies more generally to frustration-
free, gapped, local Hamiltonian systems. Systems with topological order have inherent stability
to quasi-local perturbations (defined below). Since we will be using a perturbative approach, we
must consider the effect of high order corrections in the perturbation expansion, and topological
stability results will be crucial to establishing the robustness of our results to these corrections.
In our context, the topological order condition will be applied to the family of canonical parent
Hamiltonians (2) for a given PEPS.

The following results have been developed in a sequence of works [25–27] on the
definition and stability of topologically ordered systems (see also related work on stability of
tensor network states [28, 34]). It is not our intention to provide a complete discussion of
topological order, and we will we will simply paraphrase the relevant definitions and results
here. We neglect several details (in particular, we restrict our discussion to infinite length
scales); interested readers should consult [27] for a more thorough treatment and for technical
details of these conditions.

Definition 3 (Local-TQO). Consider a gapped Hamiltonian = ∑ Λ∈H Lu u0 for some Lu
supported in local regions around site u of a graph Λ. Let P R( )0 be the projector to the ground
space of the restricted Hamiltonian = ∑ ∈H LR u R u for a region Λ⊆R . The system is said to
obey local-TQO iff for all operators XR acting on a finite region R, there exists a
superpolynomially decaying function f(r) such that

∥ − ∥ ⩽ ∥ ∥( ) ( ) ( )
( ) ( )P R X P R

P R X

P R
P R X f r

Tr

Tr
( ) (10)r R r

r R

r
r R0 0

0

0
0

for all finite r, where Rr is a region enclosing all points within distance r from R (including R
itself).
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Definition 4 (Local-Gap). Given a gapped, local Hamiltonian H0, we say that it obeys the local-
gap condition iff for each Λ⊆R and ⩾r 0, we have that HRr has gap at least g(r) for g a
function decaying at most polynomially in r.

The local-TQO condition formalizes the colloquial definition of a topologically ordered
system as one whose ground states cannot be distinguished by local operations. The local-gap
condition is required to prove the topological stability results below.

If at least one canonical parent Hamiltonian for the PEPS satisfies local-TQO and local-
gap, we say that the PEPS is topologically ordered. One might be concerned that in general
some special choices of canonical parent Hamiltonian will satisfy these conditions while the rest
will not. It can easily be seen that if one canonical parent Hamiltonian defined by a set of
regions R{ } satisfies the topological order conditions, then the family of canonical parent
Hamiltonians defined by region sets ′ ⊇R R{ } { } are also topologically ordered. Thus for large
enough sets of regions the local-TQO and local-gap conditions are universal properties of a
PEPS, rather than properties of a specific canonical parent Hamiltonian.

We will also require a notion of quasi-locality for operators. An operator X will be called
μJ( , )-quasi-local iff it has a local decomposition = ∑ ∑Λ∈X Xs r s r, for Xs r, with support only

within radius r of site s, and μ∥ ∥ ⩽X Js r
r

, for some μ < 1.
Given a PEPS that is topologically ordered, we can make use of the topological stability

theorem:

Theorem 5 (Topological stability [27]). Given a frustration-free Hamiltonian H0 with O (1)
gap, satisfying the local-TQO and local-gap conditions, there exists ε > 0 such that

ε= +H H V0 has spectral gap O (1) for quasi-local V.

Note that systems satisfying both local-TQO and local-gap conditions need not have
degenerate ground spaces as one might expect for a conventional notion of a topologically
ordered system. In particular, canonical parent Hamiltonians of injective PEPS as well as G-
injective PEPS, etc are topologically ordered by this definition. It seems natural to conjecture
that the appropriate definition of quasi-injectivity is really equivalent to (or at least implied by)
the topological order conditions. Unfortunately it is unclear to us how to prove this conjecture.

3. Overview of results

In this section we give an outline of our method and results. Given a suitable PEPS, our goal is
to construct a quantum spin model with 2-body interactions that is a parent Hamiltonian for a
state within the same phase as this PEPS. We will first describe the form of the Hamiltonian by
which we achieve this, before stating our main theorems. Sections 4 and 5 will be devoted to
proving these theorems.

3.1. Construction

Our strategy will be to use a perturbative Hamiltonian to simulate the different elements of the
PEPS construction. In contrast to a conventional PEPS parent Hamiltonian, our model acts on
the virtual qudit space, as opposed to the code qudit space. The unperturbed dynamics of our

9
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model will be such that the ground space of our system is an encoded form of the relevant PEPS
code space.

Our main tool is the code gadget [19], which can be understood as the collection of virtual
qudits at each site of the PEPS lattice, together with a Hamiltonian whose ground space is the
desired code space (i.e. an encoding of a physical qudit in the PEPS language). From this point
on all operators act on the virtual qudits unless otherwise stated, and so we will suppress v
subscripts on operators and states. The encoding of the d-dimensional code qudit in the virtual
space is given (up to 1-local unitaries) by the projection map s. The simplest way to achieve
this encoding in the ground space of a code gadget is by using the Hamiltonian

= −Q P1 (11)s s

with ≡  Ps s s
† the projector to the PEPS code space (for an isometric PEPS). Each of these

code gadgets therefore corresponds to a single code qudit.
Note that the Qs act on a single code gadget, but this corresponds to sdeg( ) virtual qudits.

Thus, in terms of the virtual qudits of the model, this is a sdeg( )-body interaction. We will
generally analyse this model as written, and in section 6.1 discuss how to reduce the interactions
from sdeg( )-body to 2-body on the virtual qudits if required.

We couple the code gadgets perturbatively according to the structure of the PEPS lattice Λ,
and this coupling will mediate the correlations present in the PEPS. For each edge e of the PEPS
lattice, we define a coupling term

Φ Φ=M e e( ) ( ) (12)e D D

with M the projector to the maximally entangled state of the relevant virtual space dimension D.
The Hamiltonian of our system is then given by

∑ ∑ε= −
Λ∈

H Q M , (13)
s

s

e

e

where ε ≪ 1. This is a 2-body Hamiltonian (considering each code gadget to be a single
particle), and we will show that it is a valid parent Hamiltonian for a state in the same phase as
the desired isometric, quasi-injective, topologically ordered PEPS.

A simple example of this construction is analysed in section 7. The analysis uses a
simplified formalism and is much more accessible than the main technical sections; some
readers may wish to read it before tackling the technical issues that are required to treat the
general case.

3.2. Results

Our analysis of the model described above proceeds in several stages. The main idea is to
compute a perturbation expansion in ε for a low-energy effective Hamiltonian of the system and
analyse its properties. To achieve this, we use the global SW perturbation method [23, 24] as
described in section 4. We find the following result:

Theorem 6. Given an isometric, quasi-injective PEPS with gapped canonical parent
Hamiltonian, there exists finite n* such that the global SW effective Hamiltonian for our
model to order n* in the perturbation parameter ε is a frustration-free parent Hamiltonian for
the PEPS and has gap εO ( )n* for sufficiently small ε > 0.
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This theorem is proved in section 4 and is the most crucial part of our analysis.
Beyond this result, we would like to demonstrate that the full Hamiltonian (13) is gapped

and has ground state in the same phase as the desired PEPS. In this direction, we analyse the
stability of the gap of the n∗th order effective Hamiltonian to the addition of higher order terms
in the perturbation expansion. Such stability would guarantee that the n∗th order effective
Hamiltonian is adiabatically connected to the full effective Hamiltonian at arbitrary order in
perturbation theory, and so their ground states are in the same phase.

In order to guarantee any kind of stability against the additional contribution from higher
order terms in the perturbation expansion, we appeal to known results for topologically ordered
systems [25, 27, 28]. If a given PEPS is topologically ordered as well as isometric and quasi-
injective, then we can use theorem (6) together with the local SW perturbation method [24, 35]
to demonstrate the following theorem:

Theorem 7. Given an isometric, quasi-injective, topologically ordered PEPS, there exists ε > 0
such that the effective Hamiltonian for our model to any order >k n* is in the same phase as
the n∗th order effective Hamiltonian.

Here we define two ground states of gapped quasi-local Hamiltonians H1 and H2 to be in
the same phase iff H1 can be connected to H2 by a quasi-local adiabatic evolution that does not
close the spectral gap. Theorems 6 and 7 straightforwardly imply the following theorem, which
is the main result of this paper.

Theorem 8. There exists ε > 0 such that the low-energy effective Hamiltonian corresponding
to the system (13) is a gapped parent Hamiltonian for a state in the same phase as the quasi-
injective, isometric, topologically ordered PEPS under consideration to any order >k n* of
perturbation theory.

Our proof of theorem 7 is given in section 5 and involves two stages. We first transform
the effective Hamiltonian derived from the global SW method to one defined by the related
local SW method [24, 35]. Although the global SW expansion has structure which allows for
the proof of theorem 6, the higher-order terms in its expansion cannot easily be bounded.
Conversely, the local SW expansion has explicit locality properties that allow us to analyse
higher-order terms, but does not allow for a direct proof of theorem 6. By transforming between
these two effective Hamiltonian expansions, we are able to make use of the convenient features
of both. This transformation between the global and local SW effective Hamiltonians can be
treated as a quasi-local perturbation, and is thus guaranteed to preserve the gap by the
topological stability theorem.

Once we have demonstrated that the local SW effective Hamiltonian is in the same phase
as the global SW effective Hamiltonian, we show that the higher order contributions to the local
SW effective Hamiltonian can also be treated as quasi-local perturbations on the n∗th order
Hamiltonian and so will not induce a phase transition. A caveat to this statement that will be
made clear in the analysis is that we use a slightly modified effective Hamiltonian as compared
to the standard definition of the local SW expansion. The composition of each of these results
defines an adiabatic path from the n∗th order global SW effective Hamiltonian to our effective
Hamiltonian at arbitrary finite order, proving theorem 7.
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In addition, one would ideally like to show stability against contributions from the excited
space of the unperturbed Hamiltonian, which are neglected in the effective Hamiltonian. While
we expect that it may be possible to prove this kind of rigorous result using similar tools to
those used here, the bounds from [24] on the size of these additional high-energy terms are
insufficient for this purpose, and so a complete proof of stability against such terms is beyond
the scope of this paper. Our analysis demonstrates that the low energy effective Hamiltonian of
our model is a parent Hamiltonian for the desired state, but it does not prove that this effective
Hamiltonian is a good description of the low energy physics of our system (i.e., that
perturbation theory is accurate in this regime). While in principle, states from the excited space
of the unperturbed Hamiltonian could contribute to the low energy physics of our model, we do
not know of any examples for which such unusual behaviour occurs. We leave the investigation
of such breakdowns of perturbation theory to future work.

4. Perturbation analysis

4.1. Preliminaries

As in section 3.1, we define our system by a Hamiltonian of the form ε= +H H V0 with

∑ ∑= = −
Λ∈

H Q V M, , (14)
s

s

e

e0

where ε ≪ 1. The projector to the ground space of the unperturbed Hamiltonian H0 is defined as
= = ∏ΛP P Ps s0 , and = =P H H P 00 0 0 0 . It will also be convenient to define the projector to the

unperturbed excited space ≡ −Q P10 0. Let Δ0 be the gap of H0 and note that Δ = 10 . We
define Λ≡N | | to be the total number of sites of the PEPS graph.

We can motivate this choice of perturbative Hamiltonian by noticing that the low-energy
behaviour of the Hamiltonian (13) will involve projectors to maximally entangled states of
virtual qudits acting within the code space (or the unperturbed ground space), much as in the
terms of the canonical parent Hamiltonian (6). This will allow us to argue that the low-energy
effective Hamiltonian of our model is a valid parent Hamiltonian for a given PEPS, albeit in an
encoded form. We will revisit this intuitive picture before proceeding to the general analysis,
but first let us define our perturbation formalism.

4.2. Global SW perturbation expansion

We are interested in the low energy effective Hamiltonian of our system. To derive this
effective Hamiltonian, we will make use of the global SW perturbation expansion [23, 24]. We
give a brief review of some relevant properties of the global SW method here, following [24].
We will focus on the relevant case where the unperturbed Hamiltonian is 1-local and the
perturbation is 2-local on the lattice Λ, which has bounded degree.

The effective Hamiltonian derived from the global SW method is based on a
transformation −He eS S that block diagonalizes H with respect to the ground and excited spaces
of the unperturbed Hamiltonian H0. We define an anti-Hermitian operator S such that

= =− −P H Q Q H Pe e e e 0. (15)S S S S
0 0 0 0

That is, the transformed Hamiltonian −He eS S has vanishing block-off-diagonal components.
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Together with (15), the conditions = =P SP Q SQ 00 0 0 0 and ∥ ∥ < πS
2
uniquely define S.

We will expand S in a Taylor series in ε and use this to compute an effective Hamiltonian
expansion, but before we proceed we will introduce some notations. Define

= − X
Q

H
XP P X

Q

H
( ) , (16)0

0
0 0

0

0

= +X P XP Q XQ , (17)d 0 0 0 0

= +X P XQ Q XP , (18)od 0 0 0 0

where we define Q

H
0

0
in the obvious way to vanish on the image of P0.

Without loss of generality, we set = =H P P H 00 0 0 0 , i.e., the unperturbed ground state
energy is set to zero. Because of this zero eigenvalue, we note that we can express Q

H
0

0
as Q g̃0

with

Δ= +g P
Q

H
˜ ˜ (19)0

0

0

for an arbitrary constant Δ̃. We will make extensive use of this identity, and the freedom to set
Δ̃, to prove our result.

Equipped with these notations, and following [24], we expand ε= ∑ =
∞S Sj

j
j1 as a series

of anti-Hermitian operators = −S Sj j
†, finding

= S V( ), (20)1

∑= + >−
=

−

−

 ⎡⎣ ⎤⎦
⎢⎣ ⎥⎦

( ) ( )S S V a W j, for 1 (21)j j

i

i i
j

1 d

1

2 2
( 1)

j 1
2

for =ai
B

i

2

!

i
i with Bi the Bernoulli numbers, and

∑= ⋯ ⋯
… ⩾

+⋯+ =

⎡
⎣⎢

⎡
⎣⎢

⎡⎣ ⎡⎣ ⎤⎦ ⎤⎦
⎤
⎦⎥

⎤
⎦⎥W S S S V, , , , . (22)m

k

j j

j j k

j j j
( )

, , 1
od

m

m

m

1

1

1 2

This yields an effective Hamiltonian to order n of the form

∑ε= +
=

−H P H P P V P , (23)n

j

n
j j

eff 0 0 0

1

0
( 1)

0

where

=V V , (24)(0)

∑= >−

=
− −

−

⎢⎣ ⎥⎦
V b W j, 1 (25)j

i

i i
j( 1)

1

2 1 2 1
( 1)

j
2

with =−
−

b i
B

i2 1
2(2 1)

(2 ) !

i
i

2
2 .

The terms in equation (23) can be systematically calculated through a diagrammatic
technique [24], but for our purposes, we will not need to calculate the exact expansion of the
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effective Hamiltonian for a general PEPS to arbitrary order. It will suffice for us to note that
each term P V Pj

0
( )

0 in (23) can be written as a linear combination of operators of the form

∏Γ … =
=

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( )q q P Vg VP, , (26)j

i

j

q1 0

1

0
i

for integers qi with ∑ =q j| |i i , and where gq is defined by

=g P , (27)0 0

Δ= = + ⩾g g P
Q

H
q˜ ˜ for 1, (28)q

q q
q0
0

0

Δ= = ⩽ −g P g P q˜ ˜ for 1. (29)q
q q

0 0

This can be seen by the application of equations (20)–(25) and making use of the identities
= Q g̃

Q

H 0
0

0
, = −Q P10 0, and = =H P P H 00 0 0 0 .

We will also make use of the fact that the effective Hamiltonian equation (23) obeys the
linked cluster theorem, which loosely states that all terms in the perturbative expansion at order
n are O(n)-local.

4.3. Ground space of the effective Hamiltonian

In this section, we prove theorem 6. That is, we will show that to some finite order n*, the
effective Hamiltonian expansion of equation (13) is a gapped parent Hamiltonian for the desired
quasi-injective, isometric PEPS. Before we begin the proof in earnest, let us briefly attempt to
give some intuition for our construction.

The effective Hamiltonian (23) can be written as a linear combination of Γ …q q( , , )j1

operators as defined in equation (26). Imagine for the moment that we were able to neglect the
gq terms in these operators (i.e. neglect the dependence on the spectrum of H0). These operators
would then reduce to +P V Pj

0
1

0, and for isometric, quasi-injective PEPS the effective
Hamiltonian would take the form

∑ ∑ε∼ −
=

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ( )H P M P gneglecting constants and factors (30)n

j

n
n

e

e

j

qeff
0

0 0

∑ ϖ∼ − Λ Λ  , (31)
R

R
†

where R runs over all regions containing at most n edges.
Equation (31) is precisely the encoded parent Hamiltonian (4), and so for ∼n O r( *) will

have the desired PEPS as its ground state. (Recall from section 2 that r* is the maximum
required region size to guarantee the canonical parent Hamiltonian has the correct ground
space.) The following sections will be devoted to giving this simple intuition a level of rigor.

4.3.1. Analysis. In order to analyse the ground space of the effective Hamiltonian (23), it will
be useful to split it into two parts: = +〈 〉 〈 〉

H H H˜ ˜n n
eff eff else, where

〈 〉
H̃

n
eff contains all Γ …q q( , , )j1

terms with all qi positive, and H̃else contains the terms with at least one ⩽q 0i . The motivation
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for this split is that gq for ⩽q 0 are proportional to P0, while those with >q 0 are not. This
distinction will prove crucial in the analysis.

The constraint ∑ =q j| |i i implies that the only Γ terms with all positive qi have all qi = 1. It

is straightforward to demonstrate that
〈 〉

H̃
n

eff can be written as

∑ ε Γ= + − …
=

H P H P P P˜ ( 1) (1, 1, 1, 1) , (32)
n

j

n
j j

eff 0 0 0

1

0 0

where we have made use of the fact that =b1
1

2
. The behavior of equation (32) actually depends

on the value of Δ̃, in contrast to the complete effective Hamiltonian (23) which is independent
of Δ̃. This is because we have neglected some terms which would otherwise cancel out the
effect of Δ̃ in the Hamiltonian.

Our proof of theorem 6 will proceed in two parts. In the first, we will expand the restricted
Hamiltonian

〈 〉
H̃

n
eff of equation (32) to some finite order ∼n r* *, and show that this is a valid

parent Hamiltonian for a given (quasi-injective, isometric) PEPS for sufficiently large Δ̃. This
may seem suspicious at first glance, as our proof only holds for sufficiently large values of an
unphysical parameter. However, taking ∼r O* (1), Δ̃ should be understood as a placeholder for
some O (1) (i.e. intensive) constant that will be important in the subsequent analysis. Although
the value of Δ̃ chosen does not affect the behavior of the effective Hamiltonian (23), the value
of Δ̃ required to demonstrate this result captures the magnitude of a relevant energy scale in the
problem.

In the second part of the proof, we will restore the neglected terms H̃else to analyse the
complete effective Hamiltonian (23) at order n*. We will show that there exists sufficiently
small ε that the physics of (23) is dominated by

〈 〉
H̃

n
eff . That is, the additional contributions from

H̃else do not affect the ground space nor gappedness of the Hamiltonian. The required value of ε
will be set in part by the value of Δ̃. The neglected terms that we restore in this part of the
analysis have some properties that will be quite useful. Recall that every neglected term has at
least one <q 1i , and ∝g Pq 0 for all <q 1. This allows us to decompose any such term into a
product of Γ …(1, 1, , 1, 1) terms. Putting our Hamiltonian into this form (i.e. a sum of
products of Γ …(1, 1, , 1, 1) terms) will allow us to analyse it effectively.

We now prove theorem 6, beginning with the following lemma.

Lemma 9. There exists O (1) (i.e. intensive) constants Δ̃ and =n n* such that
〈 〉

H̃
n

eff is a valid
parent Hamiltonian for a given quasi-injective, isometric PEPS with ground state energy <0.

Proof. Consider one of the terms in the restricted effective Hamiltonian of equation (32):

∏Γ− … = −
=

−⎛
⎝
⎜⎜

⎞
⎠
⎟⎟P Vg VP( 1) (1, 1, 1, 1) ( 1) ˜ (33)j j

i

j

0

1

1

0

∏ ∑ ∑= −
=

−⎛
⎝
⎜⎜

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟P M g M P˜ . (34)

i

j

e

e

e

e0

1

1

0
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Similarly to equation (31), if we could ignore the g̃ terms, this would become a sum of
ϖΛ Λ R

† operators. Thus we begin our analysis by expanding the operator g̃ as follows:

Δ Δ Λ
Δ

Λ
Δ

Λ
Δ

Λ= + = + + + ⋯ +g P
Q

H
P P P

N
P˜ ˜ ˜ ( )

1
( )

1
2

( )
1

( ) (35)N0
0

0
0

0
1

0
2

0

for ΛP ( )i the projector to the ith excited space of H0. This follows from the equally spaced
spectrum of the unperturbed Hamiltonian H0. In fact, we will be interested only in the effect of
g̃ on local regions R, and so we will generally need only consider excited states up to energy

ΔR| | 0. Define the restricted operator

Δ
Δ Δ Δ

= + + + ⋯ +g R P R P R P R
R

P R˜ ( ) ˜ ( )
1

( )
1

2
( )

1
( ), (36)R0

0
1

0
2

0

where the P R( )i involve only states with excitations localized within R.
Since H0 is a sum of commuting projectors Qs, we can easily enumerate all possible states

with i excitations localized within a region R. The corresponding projectors P R( )i can each be
expanded as

∑ ∏ ∏= Λ⧹
′⊆ ′ = ′∈ ′

′
∈ ⧹ ′

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟P R P Q P( ) (37)i R

R R R i s R
s

s R R
s

:

∑ ∑ ∏= − − −
Λ⧹

= ″⊆ ″ = − ∈ ⧹ ″

⎜ ⎟
⎛

⎝
⎜
⎜

⎛
⎝

⎞
⎠

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎞

⎠
⎟
⎟P

R i k
k

P( 1)
( )

, (38)R

k

i

R R R i k

k

s R R
s

0 : ( )

where ⧹R R1 2 contains the sites of R1 that are not in R2, and we have expanded the = −Q P1s s

on the second line. Noting that ∑ ∏ = ∑″⊆ ″ = ∈ ⧹ ″ ′⊆ ′ = − ′P PR R R j s R R s R R R R j R:| | :| | | | , we find

∑

∑ ∑

Δ
Δ

= + −

+ ∑ − −
Δ Λ

=

=
=

−

+
′⊆ ′ = −

′ ⧹⎜ ⎟

⎜ ⎟
⎛
⎝
⎜⎜

⎛
⎝

⎞
⎠

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎛
⎝

⎞
⎠

⎞
⎠
⎟⎟

g R
i

R
i

P

R j

k
P P

˜ ( ) ˜ ( 1)
1

·

( 1) · . (39)

i

R
i

j
R

k

R j
k

j k
R R R R j

R R

1 0
0

1
0

1

( )
:

0

The sums over k can be evaluated explicitly, and yields the result

∑ ∑Δ
Δ

= − + Λ
=

−

′⊆ ′ = −
′ ⧹

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟g R h P j

R
j

P P˜ ( ) ˜ 1
· (40)R

j

R

R R R R j

R R
0

0

1

1

:

for = ∑ =h R j
R

j| | 1
| | 1 . We can guarantee that the first term in this expression is positive by

choosing Δ >
Δ

h˜ R
1

| |
0

, while it is clear that
−

⎜ ⎟
⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟j

R
j

| |
1

is positive for all >j 0. It is clear that as

long as R| | is finite, we can also choose Δ̃ finite.
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Now returning to Γ …(1, 1, 1, 1), we notice that

∏ ∑ ∑Γ− … = −
=

−⎛
⎝
⎜⎜

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟P M g M P( 1) (1, 1, 1, 1) ˜ (41)j

i

j

e

e

e

e0

1

1

0

∑ ∑ Υ= −

∑ =

{ } { }
{ } { }c P P (42)

R

R j

R

R R R R, 0 , 0

Ei

i Ei

Pi

Ei Pi Ei Pi

for some constants c, recalling the definitions of Υ R R{ , }Ei Pi
presented in (7) as part of our

definition of quasi-injectivity, and using g R˜ ( ) for g̃ as appropriate. We have also used the fact
that the global SW effective Hamiltonian obeys the linked cluster theorem so that all terms in

〈 〉
H̃

n
eff act within regions of size O (n). Further, we can see by comparison with equation (40) that

for sufficiently large Δ̃, the constants c will all be positive.
Thus, the restricted effective Hamiltonian at nth order can be expressed as

∑ ∑ ∑ε Υ= −
=

∑ =

{ } { }
{ } { }H c P P˜ . (43)

n

j

n
j

R

R j

R

R R R Reff
0

, 0 , 0

Ei

i Ei

Pi

Ei Pi Ei Pi

This Hamiltonian takes the form of equation (9), and so as demonstrated in section 2.2 it
will be a valid parent Hamiltonian for a quasi-injective isometric PEPS for sufficiently large n.
We can always find some finite order ∼n O r* ( *) that will contain all regions in the canonical
parent Hamiltonian (2).

Additionally, because all the terms in (43) are negative semi-definite, the ground space
energy of

〈 〉
H̃

n
eff cannot be higher than that of

〈 − 〉
H̃

n
eff

1
, and so cannot be higher than 0. □

The proof of lemma 9 is the main part of our analysis that depends explicitly on the
spectrum of H0. If one were interested in analysing a modified construction with an alternative
unperturbed Hamiltonian (14) that is 2-body on the virtual qudits as well as the code qudits (as
discussed in section 6.1), then the analogue of lemma 9 may need alternative proof techniques.

We have thus far considered the restricted Hamiltonian (32). Now we will restore terms
from H̃else to analyse the complete effective Hamiltonian (23). We will demonstrate that there
exists sufficiently small but non-zero ε such that the ground spaces of these two Hamiltonians
coincide.

The terms neglected in
〈 〉

H̃
n

eff are linear combinations of the terms Γ …q q( , , )j1 where there

exists some i such that <q 1i . Since ∝g g( )q q
2 for <q 1, these Γ …q q( , , )j1 can be rewritten as

Γ Γ… …− +q q q q( , , ) ( , , )i i j1 1 1 up to constant factors. By making use of the decomposition (40)
we can expand any Γ …q q( , , )j1 into linear combinations of Υ terms. Decomposing each Γ in
this way, we can rearrange the effective Hamiltonian into sums of terms acting on each region
of the lattice. The linked-cluster theorem (together with the guarantee that the degree of Λ is
bounded) guarantees that for finite n only a finite number of terms act on each region. Thus
there exist finite constants >c 0i and ∈c̃i such that
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∑∑ ∑ ∑ ∑ ∑ ε Υ

ε Υ ε Υ Υ

= −

+ +

∑ ∑

= =

−

=

′

′ =

+

′

′ ′ ′ ′ ′ ′ ′ ′

(

)

{ } { }{ } { }
{ } { }

{ } { } { } { } { } { }

H c P P

c P P c P P˜ , (44)

n

j

n

k

n j

REi

i

REi j

R RE

i

RE k

R

j
R R R R

k
R R R R

j k
R R R R R R R R

eff
0 0

, 0 , 0

, 0 , 0 , , , 0 , , 0

Pi i

i

P

Ei Pi Ei Pi

E P E P Ei Pi E P Ei Pi E P

i

i i i i i i i i

where =′ ′c̃ 0R R R R{ , },{ , }Ei Pi E Pi i
if =R| | 0Ei

or =′R| | 0Ei
. If we could also guarantee that all >c̃ 0i ,

then the proof that 〈 〉H n
eff is a parent Hamiltonian would be immediate. Unfortunately this will

not be the case in general, but noting that ε ε ε⩾
ε

+,j k j k1 for terms with non-vanishing c̃, we

use following simple lemma (given without proof) to show that the ground spaces of 〈 〉H n
eff and

〈 〉
H̃

n
eff coincide for sufficiently small ε.

Lemma 10. Consider Hermitian operators A B, with eigenvalues η η η⩾ ⩾ … ⩾A A A( ) ( ) ( )n1 2
and η η η⩾ ⩾ … ⩾B B B( ) ( ) ( )n1 2 . If A and B share a common eigenspace  with eigenvalues
η A( )1 and η B( )1 respectively, then  is also an eigenspace of

λ= −C A B (45)

corresponding to the largest eigenvalue of C, for λ λ< = Δ
c B2 || ||

A , with Δ η η= −A A( ) ( )A 1 2 .
Furthermore, C has a finite gap Δ λ λ> −B2|| ||( )C c between largest and second largest
eigenvectors.

Since ε ε ε⩾
ε

+,j k j k1 , we can immediately apply lemma 10 to conclude that there exists ε > 0
such that each bracketed term has the same ground space as if all c̃ were zero (since we are
guaranteed that an isometric, quasi-injective PEPS state corresponds to the highest eigenvalue of
any Υ operator). Immediately we can conclude that 〈 〉H n

eff has the same ground space as
〈 〉

H̃
n

eff . If we
consider each bracketed term as a (local) operator, this Hamiltonian is also frustration-free. Since the
c and c̃ were implicitly functions of Δ̃, the critical value of ε will similarly be set in part by the value
of Δ̃.

Finally, to complete the proof of theorem 6, we note that because all of the c c, ˜ coefficients
in equation (44) are O (1), the gap of the effective Hamiltonian for our system must be at least

εO ( )n . Additionally, we can similarly see that ε can be chosen small enough that 〈 〉H n
eff has

ground space energy no greater than 〈 〉Heff
0 . Because the energy of any state in the image of Q0 is

0, and the ground state energy of 〈 〉Heff
0 is 0, at least one ground state of 〈 〉H n

eff must be in the
support of P0. This means that it is sensible to discuss the restriction of equation (44) to P0. In
particular, this is useful because (44) in its general form is not a sum of local terms (note that P0

is a highly non-local operator, having support on the entire lattice), while it does have this
feature after being restricted to P0.

5. Stability of effective Hamiltonian

Having proved theorem 6, we will now show that the ground space of 〈 〉H n
eff does not change

dramatically (i.e., will remain in the same phase) as we include additional contributions from
higher order terms in the perturbation expansion, as detailed in theorem 7. In this context, we
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will say that 〈 〉H n
eff is stable to these additional terms. To prove theorem 7, we will require that

the canonical parent Hamiltonian of the PEPS under consideration obeys the local-TQO and
local-gap conditions, and so the PEPS is topologically ordered. This will allow us to use the
results on stability of topologically ordered systems under quasi-local perturbations [25, 27].

Let us outline the proof strategy, which proceeds in two stages. In order to analyse the
stability of the effective Hamiltonian, it will be convenient to make use of the local SW
perturbation method in contrast to the global SW method used in section 4. The local SW
method produces an effective Hamiltonian expansion with locality properties that we will
exploit to prove our stability results. With this in mind, the first stage of our proof will be to
transform the global SW effective Hamiltonian derived in the previous section into the
corresponding local SW effective Hamiltonian and showing that the properties of the ground
space are preserved under this transformation. This is captured by the following lemma.

Lemma 11. For a quasi-injective, isometric, topologically ordered PEPS, the global SW
effective Hamiltonian of our model at order n* is in the same phase as the local SW effective
Hamiltonian at order n* for sufficiently small ε > 0.

In order to prove this lemma, we will show that the transformation between the global and
local effective Hamiltonians can be achieved by the addition of a sufficiently small quasi-local
operator. This allows us to use the topological stability theorem to argue that the two
Hamiltonians are in the same phase. We also give a lemma showing that if the global SW
effective Hamiltonian is topologically stable, then so is the local SW effective Hamiltonian.

At this point in the analysis we will simply have demonstrated that the ground space of one
finite order effective Hamiltonian is in the same phase as the ground space of another finite
order effective Hamiltonian. For the second stage of our proof, we will use the structure of the
local SW perturbation expansion to argue that the higher-order contributions to the local SW
Hamiltonian are both small and quasi-local. This will allow us to again apply the topological
stability theorem and prove the following:

Lemma 12. For a quasi-injective, isometric, topologically ordered PEPS, the local SW
Hamiltonian of our model at order n* is in the same phase as our effective Hamiltonian at any
order ⩾k n*, for sufficiently small ε > 0.

The two lemmas 11–12 constitute a proof of theorem 7.
Throughout the following analysis, we will make use of the fact that both n* and the

maximum coordination number of Λ are O (1) constants in N and ε. We will also often use
locality properties of operators in this section. Although the majority of the Hamiltonians and
operators we consider in this section are highly non-local (e.g., the unperturbed ground space
projector P0), we will often use the fact that these operators are local when restricted to the
image of P0. We will often loosely refer to an operator as local or quasi-local, when in fact it is
clear from context that this is only true after the restriction to the unperturbed ground space.

5.1. Transformation to local SW effective Hamiltonian

To analyse the stability properties of the effective Hamiltonian (23), we will consider a related
effective Hamiltonian derived from the local SW method [24, 35]. (The previous method has
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been referred to as the global SW method to avoid confusion.) As with the global SW method,
the local SW method is based on a transformation that block diagonalizes the Hamiltonian with
respect to the ground space and excited space of the unperturbed Hamiltonian. In contrast to the
global SW transformation, the local SW transformation does not achieve this block
diagonalization exactly, but only up to corrections of order ε +O ( )n 1 for a given order n.
However, it is constructed in a manifestly local way, which allows us to analyse some
properties of this expansion much more directly.

5.1.1. Local SW transformation. Before proceeding, we will briefly define and review some
relevant properties of the local SW method, following [24]. At a given order n we construct a
sequence of anti-Hermitian operators

∑ε=
=

T T (46)n

q

n
q

q

1

such that all Tq are +q( 1)-local and

ε+ ⩽− − +( )P H Q Q H P O Ne e e e (47)T T T T n
0 0 0 0

1n n n n

for sufficiently small ε. We can decompose the transformed Hamiltonian into a block-
diagonalized part and a ‘garbage’ part as

= +−H H He e , (48)T T n
loc garbage

n n

where = =〈 〉 〈 〉Q H P P H Q 0n n
0 loc 0 0 loc 0 . We use the subscript ‘loc’ to denote operators derived from

the local SW method where there may be confusion with similar operators from the global SW
method. Because 〈 〉H n

loc is block-diagonal, equation (47) implies that ∥ ∥Hgarbage is ε +O N( )n 1 .

The effective Hamiltonian at order n is defined as the restriction of 〈 〉H n
loc to the ground

space of the unperturbed Hamiltonian H0:

=H P H P . (49)n n
eff, loc 0 loc 0

In order to explicitly compute 〈 〉H n
loc , we first define a series of Hermitian operators

∑ ∑

∑ ∑

= ⋯ ⋯

+ ⋯ ⋯

=

+

⩽ … ⩽

+⋯+ = +

= ⩽ … ⩽
+⋯+ =

⎡
⎣⎢

⎡
⎣⎢

⎡
⎣⎢

⎡⎣ ⎤⎦
⎤
⎦⎥

⎤
⎦⎥

⎤
⎦⎥

⎡
⎣⎢

⎡
⎣⎢

⎡
⎣⎢

⎡⎣ ⎤⎦
⎤
⎦⎥

⎤
⎦⎥

⎤
⎦⎥

V
q

T T T H

q
T T T V

1
!

, , , ,

1
!

, , , , , (50)

j

q

j

j jq n

j jq j

j j j

q

j

j jq n

j jq j

j j j

loc
( )

2

1

1 1, ,

1 1

0

1 1 1, ,

1

q

q

1 2

1 2

where =V Vloc
(0) . We represent each of these operators as a sum of local terms

∑=
Λ⊆

V V , (51)j

R
R

j
loc
( )

, loc
( )

where each VR
j
, loc

( ) is Hermitian and acts non-trivially only on spins within region R. This

decomposition is chosen as the expansion of V j
loc
( ) in some orthogonal operator basis. Is can be

shown [24] that V j
loc
( ) is +j( 2)-local, so we can guarantee that this local decomposition need
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only consider +j( 2)-local regions R. Each of the Tj operators take the form

∑= −
Λ⊆

− −
⎛
⎝⎜

⎞
⎠⎟T

Q

H
V P P V

Q

H
, (52)j

R

R

R
R

j
R R R

j R

R
, loc

( 1)
, loc

( 1)

where ≡ ∏ ∈P PR s R s, ≡ −Q P1R R, and ≡ ∑ ∈H QR s R s. Equations (50) and (52) can be solved
recursively. Given this solution, we find

∑ ∑ε= + +
Λ= ⊆

− −( )H H P V P Q V Q . (53)n

j

n
j

R

R R
j

R R R
j

Rloc 0

1
, loc

( 1)
, loc

( 1)

5.1.2. Properties of the local SW transformation. Here we will state a number of known
properties of the local SW transformation that will be useful in our analysis [24].

Although equations (50) and (52) define V j
loc
( ) for arbitrary (positive, integral) j, only those

V j
loc
( ) with <j n appear in 〈 〉H n

loc . The remaining terms can be used to write Hgarbage as

∑ ε=
= +

∞
−H V . (54)

j n

j j
garbage

1
loc
( 1)

As would be expected, V j
loc
( ) is independent of n for <j n, while it is implicitly dependent on n

for ⩾ +j n 1. For sufficiently small ε, the norm of Hgarbage can be bounded as

Δ ε∥ ∥ ⩽ +H c N n
garbage 0

1 for a constant c that depends on n.
The local SW method obeys the linked-cluster theorem, and so we can guarantee that

〈 〉H n
eff, loc is O (n)-local. It is also the case that at a fixed order n, the effective Hamiltonians found

by the global and local SW methods can be related by a transformation 〈 〉K n up to an error

δ− ≡−H He e ˆ (55)n K n K
eff, glob eff, loc

n n

with δ ε∥ ∥ ⩽ +O Nˆ ( | | )n 1 for a system with N sites and ε <| | 1, and where 〈 〉K n is O(n)-local.
This is shown in [24, lemma 4.4]. We denote the global SW effective Hamiltonian by 〈 〉H n

eff, glob

and the local SW effective Hamiltonian by 〈 〉H n
eff, loc to avoid confusion. In the following analysis,

we will prove that δ̂ is quasi-local with favourable decay parameters. In doing so, we will prove
lemma 11.

Because 〈 〉H n
eff, glob,

〈 〉H n
eff, loc and 〈 〉K n are all O(n)-local, we can decompose them into

operators acting non-trivially only on connected regions of Λ with bounded size. Denote such a
decomposition of an operator X as = ∑X XR R. We now define a bound on the strength of an
operator as

∑∥ ∥ = ∥ ∥
Λ∈ ∋

X Xmax . (56)
s

R s

Rmax

It can be shown that ε∥ ∥ =〈 〉K O (| |)n
max [24]. In fact, we can expand 〈 〉K n as a Taylor

series in ε as

∑ε=
=

K K (57)n

j

n
j

j

1

for some O(j)-local, block-diagonal Kj with ∥ ∥ ∼K O (1)j max .
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5.1.3. Transforming from global to local SW effective Hamiltonians. Given the properties of the
local SW transformation noted above, we now demonstrate that δ̂ of equation (55), the operator
that relates the local and global SW effective Hamiltonians, is quasi-local. This quasi-locality
will allow us to argue that 〈 〉H n

eff, glob is stable under addition of δ̂ , and thus the gap does not close

along a path from 〈 〉H n
eff, glob to 〈 〉H n

eff, loc.

Lemma 13. δ̂ is εO O( (1), ( ))O (1) -quasi-local when restricted to the space P0.

Proof. Recall from our definition of quasi-locality in section 2, a μJ( , )-quasi-local operator has
interaction strength that decays with radius r as μJ r. In order to show that δ̂ is quasi-local, we
will explicitly construct a local decomposition for it. For this purpose it will be convenient to
introduce operators

∑Θ =
=

⎡⎣ ⎤⎦k
j

K H( )
1
!

, · (58)R

j

k
n j

R
n

0
eff, loc,

for = ∑〈 〉 〈 〉H Hn
R R

n
eff, loc eff, loc, an O(n)-local decomposition of 〈 〉H n

eff, loc with ∥ ∥ =〈 〉H O (1)R
n

eff, loc, ,

and where A B[ , · ] j is the j-fold nested commutator of A and B, e.g. =A B B[ , · ]0 ,
=A B A B[ , · ] [ , ]1 , =A B A A B[ , · ] [ , [ , ]]2 , etc.

Note that Θ ∞ = 〈 〉 −〈 〉 〈 〉
H( ) e eR

K
R

n K
eff, loc,

n n
. Because 〈 〉K n and 〈 〉H R

n
eff, loc, are both O(n)-local

(when restricted to the image of P0), this leads us to consider Θ k( )R to be a O(kn)-local

truncation of 〈 〉 −〈 〉 〈 〉
He eK

R
n K

eff, loc,
n n

. To relate this new operator to δ̂ , it is convenient to rewrite the
global SW effective Hamiltonian as [24]

∑ ∑ ε= … − …
= ⩽ … ⩽

+⋯+ ⩽

+⋯+ −⎡
⎣⎢

⎡
⎣⎢

⎡
⎣⎢

⎤
⎦⎥

⎤
⎦⎥

⎤
⎦⎥H

j
K K K H H

1
!

, , , . (59)n

j

n

q q q n

q q n

q q
q q q

q q
eff, glob

01 , , ,
eff, loc eff, loc

1

j

j

j
j

0 1

0

0
1 2

0 0

Because we are interested in the local decomposition of δ̂ , we also define

∑ ∑ ε= … − …
= ⩽ … ⩽

+⋯+ ⩽

+⋯+ −⎡
⎣⎢

⎡
⎣⎢

⎡
⎣⎢

⎤
⎦⎥

⎤
⎦⎥

⎤
⎦⎥H

j
K K K H H

1
!

, , , , (60)R
n

j

n

q q q n

q q n

q q
q q q R

q
R

q
eff, glob,

01 , , ,
eff, loc, eff, loc,

1

j

j

j
j

0 1

0

0
1 2

0 0

where we note that 〈 〉H R
n

eff, glob, need not act only within R, even when restricted to the P0

subspace (though it is local). It is then straightforward to see that the difference between
〈 〉H R
n

eff, glob, and Θ n( )R consists only of those terms in the sum with ∑ >q ni i , i.e.

∑

∑

Θ

ε

− = −

× … − …

=

⩽ … ⩽
+⋯+ >

+⋯+ −⎡
⎣⎢

⎡
⎣⎢

⎡
⎣⎢

⎤
⎦⎥

⎤
⎦⎥

⎤
⎦⎥

H n
j

K K K H H

( )
1
!

, , , . (61)

R
n

R

j

n

q q q j n

q q j n

q q
q q q R

q
R

q

eff, glob,
0

1 0, 1, ,

0

eff, loc, eff, loc,
1

j
j

0
1 2

0 0
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The norm of this difference is

Θ ε∥ − ∥ ∼ +( )H n O( ) (62)R
n

R
n

eff, glob,
1

for sufficiently small ε, since each 〈 〉H R
q

eff, loc,
0 fails to commute with at most a constant number of

local terms in each Kq.
We now define a local decomposition of δ̂ making use of these Θ n( )R operators. This

decomposition is not unique, and we may choose it as convenient so long as it has the property
that δ δ= ∑ˆ ˆ

s r s r, , for δ̂s r, acting only within a region of radius r around site s. For our purposes,

we are interested mainly in decay of δ̂ on long length scales, and so we simply collect all the
terms with radius smaller than some critical length scale κ. Specifically, we choose κ ∼ n2 as the
maximum radius of operators Θ−〈 〉H n( )R

n
Reff, glob, over all R. With this in mind, for all s we

define

δ κ= <rˆ 0 for , (63)s r,

δ Θ= −κ H nˆ ( ), (64)s R
n

R, eff, glob, s s

where the regions Rs here have been put into one-to-one correspondence with the sites s in some
canonical way.

In a similar spirit, we need not define δ̂s r, for all r. Instead, we will only define it for some
set of radii rk for each >k n, as follows

δ Θ Θ= − + >k k k nˆ ( ) ( 1) for (65)s r R R, k s s

such that δ̂s r, k
acts within radius rk of site s as required. Since Θ k( )R is O(kn)-local, this implies

that ∼r O kn( )k . It can clearly be seen that δ δ∑ =ˆ ˆ
s r s r, , . Given the facts that δ ε∥ ∥ ∼κ

+Oˆ ( )s
n

,
1

and (since ε∥ ∥ ∼〈 〉K O ( )n and ∥ ∥ =〈 〉n H O, (1)R
n

eff, loc, )

δ ε∥ ∥ ⩽ ∥ ∥ ⩽
+ +⎡⎣ ⎤⎦ ( )K H Oˆ , · (66)s r

n k

R
n k

,
1

eff, loc,
1

k s

we conclude that δ̂ is ε( )O O(1), ( )O (1) -quasi-local (when acting on the space P0) as
claimed. □

Now we can make use of the fact that δ ε∥ ∥ ⩽ +Oˆ ( )s r
n

,
1 for all s r, to provide some

alternative quasi-local parameters for δ̂ . Consider the following lemma (presented without
proof).

Lemma 14. Consider a function f(r) where ⩽f r ab( ) r and ⩽f r c( ) for < <b0 1 and
>a c, 0. Then ⩽ λ λ λ−f r c a b( ) r1 for all λ< <0 1.

This implies that δ̂ is ε ελ λ+ −O O( ( ), ( ))n O( 1)(1 ) (1) -quasi-local for any choice of λ< <0 1.
Particularly, let us choose λ < +n

1

1
. Importantly, this means that by choosing ε sufficiently

small, we can make the first parameter of the quasi-local decay arbitrarily small compared to the
εO ( )n gap of 〈 〉H n

eff, glob, and the second parameter can be made arbitrarily small simultaneously
by decreasing ε.

Because 〈 〉H n
eff, glob* is frustration free, satisfies local-TQO and local-gap by assumption, and

has a gap of εO ( )n* , we can apply the topological stability theorem of [27] for sufficiently small
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ε to show that the gap of 〈 〉H n
eff, glob* remains εO ( )n* along a path to 〈 〉 −〈 〉 〈 〉

He eK n K
eff, loc*

n n* * . In

particular, this shows that 〈 〉 −〈 〉 〈 〉
He eK n K

eff, loc*
n n* * is in the same phase as 〈 〉H n

eff, glob* .
To complete the proof of lemma 11, we appeal to the following lemma, as proven in [36].

Lemma 15 ([36]). Given a gapped quasi-local Hamiltonian H and local Hamiltonian X, the
ground states of −He eX Xi i are in the same phase as those of H.

Because 〈 〉Ki n can be regarded as a local Hamiltonian, the proof of lemma 11 is an
immediate corollary to lemma 15. That is, the local SW effective Hamiltonian at order n* has
the desired quasi-injective, isometric, topologically ordered PEPS as its ground state. This is the
main result of this section.

Before we proceed, it will be useful to demonstrate an additional property of the effective
Hamiltonian 〈 〉H n

eff, loc* . In the following sections, we would like to apply the topological stability

theorem (theorem 5) to demonstrate that the ground space of 〈 〉H n
eff, loc* is stable against some

additional terms. Since the local-TQO property itself is stable against perturbations which do
not close the (local) gap [28], we can also argue that 〈 〉H n

eff, loc* satisfies local-TQO and local-gap.

Unfortunately we have not shown that 〈 〉H n
eff, loc is frustration-free, and so we cannot directly

apply theorem 5. However, the following lemma will allow us to leverage the topological
stability of 〈 〉H n

eff, glob* to prove topological stability of 〈 〉H n
eff, loc* .

Lemma 16. Consider a Hamiltonian HTO satisfying the assumptions of theorem 5. That is, for
any quasi-local perturbation V there exists some ε < 0 such that ε+H VTO is in the same
phase as HTO. Then for each Hamiltonian ′H in the same phase as HTO, there exists some
ε′ < 0 such that ε′ + ′H V is in the same phase as ′H .

Proof. Define a smooth, invertible, linear quasi-local transformation  that relates HTO and ′H ,
i.e. = ′ H H( )TO . We are guaranteed that such a transformation exists from the fact that ′H and
HTO are in the same phase. This implies that ≡ ′− V V( )1 is quasi-local and

ε ε′ + ′ = + ′ ′− H V H V( )1
TO . Because there exists some ε′ such that ε+ ′ ′H VTO is in the

same phase as HTO, this also implies that ε′ + ′H V is in the same phase as ′H . □

5.2. Stability to higher order contributions

Now that we have shown that 〈 〉H n
eff, loc* is in the same phase as 〈 〉H n

eff, glob* , we can make use of the
explicit locality structure of the local SW transformation to bound the effect of higher order
contributions to the effective Hamiltonian. The main technical result we will derive here is the
fact that Hgarbage is quasi-local, and so the ground state and gap of 〈 〉H n

eff, loc* are stable under
addition of this garbage term. Following this, we can define a sequence of effective
Hamiltonians to arbitrary order (very similar to the local SW effective Hamiltonians) that are in
the same phase as 〈 〉H n

eff, loc* to arbitrary finite order, completing the proof of lemma 12.

Our analysis is based on the fact that 〈 〉H n
loc obeys the linked cluster theorem. This follows

directly from the fact that −V j
loc
( 1) is +j( 1)-local. Any non-local term arising in the expansion of

V j
loc
( ) must vanish. Defining = ∑ ∋V Vs

j
R s R

j
, loc
( )

, loc
( ) , we can also bound the strength of V j

loc
( ) as
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α
Δ β

∥ ∥ = ∥ ∥ ⩽
Λ∈

⎛
⎝⎜

⎞
⎠⎟V V

n
max (67)j

s
s

j
j

loc
( )

max , loc
( )

2

0

for some constants α β >, 0 [24].
Now, because VR

j
, loc

( ) are components of V j
loc
( ) in an orthogonal operator basis, removing

some set of them fromVs
j
, loc
( ) cannot increase∥ ∥Vs

j
, loc
( ) . That is,∥∑ ∥ ⩽ ∥ ∥′⊆ ∋ ′V VR R R s R

j
s

j
{ : } , loc

( )
, loc
( ) .

This allows us to define a decomposition of Hgarbage (recall equation (54)) into terms acting
within a region of radius r around each site s. These will be operators of the form
ε ∑−

′⊆ ∋ ′
−Vr

R R R s R
r1

{ : } , loc
( 2) . For a fixed n, we then have that for ε < Δ β

n

0

2
we can bound the norms of

these operators by the exponential decay

∑ε
αΔ β

ε
ε
Δ β

∥ ∥ ⩽−

′⊆ ∋
′

−
⎛
⎝
⎜

⎞
⎠
⎟⎛

⎝⎜
⎞
⎠⎟V

n

n
. (68)r

R R R s
R

r
r

1

{ : }
, loc

( 2) 0
2 2

4

2

0

Therefore, Hgarbage is ε ε−( )O O( ), ( )1 -quasi-local.

Because we also know that∥ ∥Hgarbage does not include terms −V r( 2) for ⩽ +r n 1, we can
give an alternative bound on the decay parameters of Hgarbage. Making use of lemma 14, we find

that Hgarbage is also ε ελ λ+ − +( )O O( ), ( )n n1 ( 2) -quasi-local. Importantly, for λ < +n

1

2
, the first of

these parameters is ε δ+O ( )n for δ > 0, and both parameters can be made arbitrarily small by
decreasing ε. This is convenient as it allows us to use the topological stability theorem to
analyse the stability of 〈 〉H n

eff, loc to contributions from Hgarbage.

As the gap of 〈 〉H n
eff, loc* is εO ( )n* , by making ε small enough, we can make the strength of

Hgarbage arbitrarily small compared to the gap for λ < +n

1

* 2
. By the topologically stability

theorem, we can find ε > 0 such that +〈 〉H Hn
eff, loc* garbage is in the same phase as 〈 〉H n

eff, loc* and has a
gap of εO ( )n* .

Given this result, we can write a sequence of effective Hamiltonians of the form

≡+
−H P H Pe e (69)k T T

eff, loc 0 0
k k

= +H P H P , (70)k k
eff, loc 0 garbage 0

where we note that Hgarbage has previously been implicitly dependent on the order of
perturbation theory, and so we restore this explicit dependence here. Given the fact that

+〈 〉 〈 〉H Hn n
eff, loc* garbage* is in the same phase as 〈 〉H n

eff, loc* , we can now write for any ⩾k n*

= ++
− −( )H P H H Pe e e e (71)* *k T T n n T T

eff, loc 0 loc garbage 0
k n n k* *

= +− −( )P H H Pe e e e . (72)* *T T n n T T
0 eff, loc garbage 0

k n n k* *

Because 〈 〉Ti k are local Hamiltonians for any finite k, we can appeal to lemma 15 to show that

+
〈 〉H k
eff, loc and 〈 〉H n

eff, loc* are indeed in the same phase when restricted to P0, and because both
Hamiltonians act trivially outside of P0, this concludes the proof of both lemma 12 and
theorem 7.
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6. Discussion

Our construction yields a 2-body Hamiltonian described by equation (13) that is a gapped
parent Hamiltonian for a state in the same phase as a desired PEPS to all orders of perturbation
theory. We have made use of the fact that two ground states of gapped local Hamiltonians are in
the same phase if one Hamiltonian can be smoothly deformed into the other without closing the
gap. This also implies that expectation values of local observables deform smoothly along the
same path. Because in the limit ε → 0 both the global and local SW transformations tend to the
identity, our construction gives a parent Hamiltonian for a state which tends towards the desired
PEPS state as ε → 0. Expectation values of local observables can therefore be made arbitrarily
close to those of the PEPS under consideration by choosing ε arbitrarily small.

6.1. Locality on virtual qudits

Our model as defined in section 3.1 gives a 2-local Hamiltonian where the code gadgets of our
construction are considered as indivisible quantum systems. Instead of treating a code gadget as
a single quantum system, we could also be interested in implementing the virtual qudits as
distinct physical systems. The code gadget Hamiltonian as defined at a site s would then involve

sdeg( )-body interactions in general. There are two strategies that can be applied to also reduce
these interactions to 2-body terms on the virtual qudits. The first approach is more elegant but
less general, while the second is universally applicable.

The most important feature of a code gadget that we must preserve in a procedure like this
is its ground space. With this in mind, the first strategy involves simply finding an explicit 2-
body Hamiltonian whose ground space is identical to the code gadget Hamiltonian in
equation (14). This is the approach taken in [18] and [19]. When making use of this strategy, the
modification of the spectral structure of the code-gadget Hamiltonian means that our technical
proofs in section 4 are not immediately applicable (particularly lemma 9). However, it seems
reasonable to conjecture that the construction is insensitive to these details and similar results
could be found for any sensible choice of code gadget Hamiltonian.

The second strategy is to simply apply more conventional perturbation gadget techniques
to the code gadget Hamiltonian directly, reducing it to 2-body interactions using further
perturbative ancillae (for example following [16]). Because these perturbation gadgets could be
applied within each code gadget separately, they would be approximating systems involving
only a fixed finite number of qudits. For this reason, many of the difficulties with applying
general perturbation gadgets to infinite systems could be avoided. Additionally, because the
effective Hamiltonian of this system will be identical to equation (14), we expect that the proofs
in section 4 could be adapted to this situation (given an appropriately chosen perturbative
hierarchy). Although it could be applied to an arbitrary system, this is clearly the less elegant
option.

6.2. Symmetries of the model

In previously studied examples of these techniques [18, 19], the local symmetries of the states
were exactly captured by this construction. That is, for each local symmetry of these models, a
corresponding encoded symmetry can be found which commutes with the full Hamiltonian of
the system, including the perturbative couplings. In generic perturbative approaches one would
expect only to recover these symmetries approximately.
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Exactly capturing the local symmetries of the target states is not a feature of our
construction in general. There exist cases where some or all of the local symmetries are exactly
captured, but this does not seem to be generic. An example of this is shown in section 7, where
a subset of the full symmetries of the model are preserved exactly, and the rest only preserved
approximately.

6.3. Application to resonating valence bond (RVB) states

Constructing and analysing parent Hamiltonians for RVB states is of interest for modelling spin
liquids and other exotic quantum phases. Methods to construct such parent Hamiltonians for the
Kagome lattice require at least 12-body interactions [37]. Recently, an alternative construction
for parent Hamiltonians of these states has been proposed, based on a PEPS representation of
the RVB states on this lattice [38]. Canonical parent Hamiltonians for this PEPS require at least
19-body interactions.

Because the RVB PEPS is 2-injective [38], we anticipate that our analysis could be
applied to this case and as such a 2-body parent Hamiltonian of the form (13) may be obtained
for a state in the same phase as the RVB state (and in the limit that the perturbation parameter
vanishes, should reproduce the RVB state precisely). In this context, we remind the reader that
our construction yields an encoded version of the desired state. The dimension of the Hilbert
spaces associated with each site will be larger, and there will also be ancilla systems required to
mediate coupling between the sites (corresponding to tensors with no physical indices in the
description of [38]).

7. Example: the double semion model

We now present an illustrative example of our construction. The double semion model is a
simple example of a string-net model [8], whose ground states are known to have exact PEPS
descriptions [30, 31]. In fact, the double semion model has a particularly simple PEPS
description [29, 30] that we can exploit to construct a 2-body system whose low energy
effective Hamiltonian is an encoded parent Hamiltonian for the double semion ground space.
These states are examples of both ωG( , )-injective PEPS and MPO-injective PEPS.

We will use the double semion model to demonstrate some of the features of our
construction. The analysis in this section should be understood as illustrative of the features of
the Hamiltonian (13) rather than as an example of the theorems proven in sections 4 and 5. As
such, we make use of a simplified formalism that sacrifices some rigor for clarity. The general
analysis as shown in sections 4 and 5 can be applied to this example to demonstrate the relevant
features more rigorously.

The double semion state is typically defined on a honeycomb lattice with qubits on the
edges, as in figure 2(a). It is conventionally defined as the ground state of the Hamiltonian [8]

∑ ∏ ∑ ∏ ∏σ σ= − +
∼ ∈ ∼

σ−
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟H i , (73)

v j v
j
z

p k p
k
x

m p

ds
m
z1

2

where v (p) are vertices (plaquettes) of the honeycomb lattice, σ are the Pauli matrices, ∼j v
runs over qubits incident to vertex v, ∈k p runs over edges bounding plaquette p, and ∼m p
runs over edges incident to p (i.e. edges sharing one vertex with p).
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We can represent the ground state of this Hamiltonian as a PEPS by placing two pairs of
maximally entangled pairs of qubits between each vertex of the honeycomb lattice, as shown in
figure 2(b), and applying a projection map s at each vertex to map from the 26-dimensional
virtual space to a four-dimensional code space. (Note this is a slightly different PEPS
representation for the double semion ground state as compared to those presented in [29–31].)
The correspondence between these code qudits and the qubits of the double semion model is not
obvious at this stage, but will become clear as we proceed. At this point we should emphasize
the distinction between the honeycomb lattice, on which the double semion model is typically
defined (figure 2(a)), and the PEPS lattice, whose edges correspond to maximally entangled
virtual pairs (figure 2(b)). In particular, we stress that the sites of the PEPS lattice (where s is
applied) correspond to vertices of the honeycomb lattice, and not edges.

For the most part of this analysis, we will neglect normalization for the sake of clarity.
With this in mind, and the labelling conventions of figure 2(c), we can write the projection map
s as:



∑ δ δ δ αβ βγ γα=
α β γ

αβγ α β β γ γ α
∈

= + = + = + T ijk· ; ; , (74)s

i j k

i j k c s
, , , , , 2

where the c subscript on the ket indicates that it is a code space state, addition is modulo 2, and
we have defined

α β γ
α β γ
α β γ

=
+ + =

+ + =
− + + =

αβγ

⎧
⎨⎪
⎩⎪

T
1 0, 3,
i 1,
i 2.

(75)

It should be clear that although there are in principle eight states that could be labelled by i,
j, and k, these variables are not independent. In fact, there are only four non-vanishing states of
this form, given explicitly by

Figure 2. (a) The double semion model is typically presented on a honeycomb lattice
with qubits (blue) on links. (b) The PEPS representation of the same region of the
lattice. At vertices of the honeycomb lattice, we place six virtual (orange) qubits, which
will be projected into a four-dimensional (yellow) code qudit. Solid lines here denote
edges of the PEPS graph, and so connect virtual qubits in maximally entangled states.
(c) Virtual qubit labels. For triangles oriented in the opposite direction, rotate these
definitions by π . States are labelled as αα ββ γγ′ ′ ′〉| ; ; .
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= + 000 00; 00; 00 11; 11; 11 , (76)c
†

= − 110 i 10; 01; 11 i 01; 10; 00 , (77)c
†

= − 101 i 01; 11; 10 i 10; 00; 01 , (78)c
†

= − 011 i 11; 10; 01 i 00; 01; 10 . (79)c
†

We call these values of ijk{ } the allowed values. The site projector is then
= ∑ 〉〈 P ijk ijk| |s ijk s c s s{ }

†
, , where the sum only runs over allowed values of ijk{ }.

The reason we use this redundant description of these states is that it allows us to identify
the states i, j, and k as the states of the qubits of the double semion model. That is, each variable
is associated with an edge of the honeycomb model. That some states (e.g. 〉|100 p) are not in the
image of s is a consequence of the fact that these states do not belong to the double semion
ground state, which is what this PEPS describes. One might also worry that we have two
variables labelling the state of each edge (one for each vertex on which the edge ends).
However, we will see that this is resolved in our analysis.

Our construction proceeds by simulating the projection maps with code gadgets, using a
Hamiltonian of the form of equation (13). Recall that the Hamiltonian for a code gadget is
simply = −Q P1s s. Because our virtual systems are qubits, each edge of the PEPS lattice has
an associated operator

= + + +M 00 00 11 11 00 11 11 00 . (80)e e e e e

The full Hamiltonian of our system is then given by

∑ ∑ε= −H Q M , (81)
s

s

e

e

where s (e) runs over the sites (edges) of the PEPS lattice.

7.1. Effective Hamiltonian

In this example, we will not use the more rigorous global SW perturbation method as in
sections 4.2 and 4.3. We instead use the simpler self-energy expansion as used in [19, 39]. This
amounts to neglecting the Γ …q q( , , )j1 terms in the global SW expansion with any ≠q| | 1i .

Given the Hamiltonian

ε= +H H V (82)0

the self-energy low energy effective Hamiltonian is given by

∑ε= +
−⎛

⎝⎜
⎞
⎠⎟H E P V

Q

H
V P , (83)

n

n
n

eff,SE 0 0
0

0

( 1)

0

where P0 is the projector to the ground space of H0 with energy 0, and
Q

H
0

0
is defined to vanish on

ground states of H0. In writing the effective Hamiltonian in this way, we have neglected the
dependence of the ground state energy on the perturbation. For our purposes,O (1) constants are
unimportant, so we will commonly neglect them in our analysis.

If we now explicitly evaluate the expansion (83) for the double semion model, we will see
that the terms arising will provide a parent Hamiltonian for the desired state. We have for the
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low energy effective Hamiltonian

∑ ∑ ∑ε= −
−⎛

⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎞
⎠
⎟⎟H P M

Q

H
M P . (84)

n

n

e

e

e

e

n

eff,ds 0
0

0

( 1)

0

We now evaluate this sum order by order. At 0th order, the effective Hamiltonian can
simply be taken to be

= −H P . (85)eff, ds
0

0

This term may seem trivial, but in fact it is not so if we consider it in terms of the qubits in the
double semion model. This term enforces the constraint that only allowed values of 〉ijk| p at
each vertex are in the ground space. Thinking about these variables i, j, and k as labels for the
states of the three qubits on the edges incident to any given vertex, this constraint plays the
same role as the term σ− ∏ ∼j v j

z in equation (73).
At 1st order, we find that the only terms to appear are also proportional to P0, and so we

can absorb them into constants of the 0th order Hamiltonian. At 2nd order, non-trivial terms can
appear corresponding to each edge of the honeycomb lattice. Neglecting O (1) constants, the
effective Hamiltonian will take the form

∑ε∼ − −
′∼

′H P P C P , (86)
s

s s

s seff, ds
2

0
2

0 , 0

∑ δ≡ ′ ′ ′ ′ ′ ′ ′′

′ ′ ′

′ ′ ′ ′ ′ ′ C s s ijk ijk i j k i j k( , ) · , (87)s s
i j k

i j k

s s i j k
ijk

s s s s,
, ,
, ,

,
†

,

where ′ ∼s s runs over all ′s neighbouring s (with s and ′s sites of the PEPS lattice). The
function δ ′′ ′ ′ s s( , )i j k

ijk takes the form of a Kronecker delta δ ′ii , δ ′jj , or δ ′kk for s and ′s connected by
an edge running northeast, northwest, or vertically respectively. These second order terms arise
from the product of Me on the two PEPS edges connecting s and ′s . Recalling that each site has
its own label for the state of the double semion qubit on incident edges of the honeycomb
lattice, the ′Cs s, terms can be interpreted as requiring that the two labels for the state (one each
from s and ′s ) are consistent. This resolves the apparent overcounting of degrees of freedom
present in the model.

If we continue expanding the effective Hamiltonian order by order, we will find that no
new terms (that are not products of 2nd order terms) arise until 6th order. At this order, a new
term will arise from the product of Me terms around the inside of a hexagonal plaquette. We can
write the effective Hamiltonian (neglecting products of 2nd order terms and constant factors) as

∑ ∑ε ε∼ − − −
′∼

′H P P C P P B P , (88)
s

s s

s s

p

peff, ds
6

0
2

0 , 0
6

0 0

where the action of Bp can be described as

∏∼ +
= ′ ∈

′ ′( )B 00 11 11 00 (89)p

e v v p
v v v v

( , )
, ,

with = ′e v v( , ) the edges of the PEPS lattice comprising the interior of the plaquette p (see
figure 3).
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We can more clearly examine the effect of Bp by restricting to the image of all ′P C Ps s0 , 0.

Call the projector to this subspace PC, and note that it is the ground space of 〈 〉Heff, ds
2 . Within this

subspace, we can unambiguously assign code space state labels to the edges of the honeycomb
lattice as in the standard definition of the double semion model. If we then evaluate P B PC p C, we
find that phases accumulate depending on the state of the edges leading out of the plaquette
under consideration (the legs of the plaquette). This is due to the asymmetry between the phase
factors defining the 〉ijk| p states of equations (76)–(79).

On the double semion model states (i.e. those associated with the honeycomb lattice), we
can describe this by

∏ ∏σ∼
∈ ∼

σ−
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟P B P i , (90)C p C

k p
k
x

m p

m
z1

2

where k runs over honeycomb lattice edges comprising p and m runs over edges incident to p,
precisely as in equation (73).

Given also that the P B Pp0 0 commute with the ′P C Ps s0 , 0, this completes the specification of
the ground space of this model. The effect of each type of term arising in the effective
Hamiltonian on the low energy space can be summarized as follows.

0th order: forbids disallowed vertex configurations (branching strings).

2nd order: enforces consistency between the two descriptions of the state on each edge of
the honeycomb lattice (only one qubit per edge).

6th order: gives rise to plaquette energetics of the double semion model.

Each of these types of term acts on a different characteristic energy scale, based on the
order of perturbation theory at which they arise. This gives the spectrum of our system as in
figure 4. The ground state can easily be identified as (an encoded form of) the double semion
ground state.

In previous examples of this kind of construction [18, 19], the local symmetries of the
target model were exact symmetries of the full Hamiltonian (including perturbation). However,
as discussed in section 6.2, this is not a general feature of our construction. In this double
semion example, note that the 2nd order terms correspond to exact symmetries of the model,
while the 6th order terms do not.

Figure 3. The Bp operator acts on the edges of the PEPS lattice closest to the centre of
the plaquette p. The affected qubits are shown here in red.
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The Hamiltonian we presented is 2-local if a code gadget is considered as one system.
However, if we consider the virtual qubits to be distinct particles, we would need to use further
perturbation gadgets techniques as outlined in section 6.1 to reduce the Hamiltonian interactions
to 2-local.
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