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Abstract
We theoretically explore atomic Bose–Einstein condensates (BECs) subject to position-dependent
spin–orbit coupling (SOC). This SOC can be produced by cyclically laser coupling four internal
atomic ground (ormetastable) states in an environment where the detuning from resonance depends
on position. The resulting spin–orbit coupled BEC (SOBEC) phase separates into domains, each of
which contain densitymodulations—stripes—aligned either along the x or y direction. In each
domain, the stripe orientation is determined by the sign of the local detuning.When these stripes have
mismatched spatial periods along domain boundaries, non-trivial topological spin textures form at
the interface, including skyrmions-like spin vortices and anti-vortices. In contrast to vortices present
in conventional rotating BECs, these spin-vortices are stable topological defects that are not present in
the corresponding homogenous stripe-phase SOBECs.

1. Introduction

Anumber of novel schemes have been proposed to create spin–orbit coupling (SOC) of Rashba–Dresselhaus
type for ultracold atoms by illuminating themwith laser fields [1–12] or by applying pulsedmagnetic field
gradients [13, 14]. SOC significantly enriches the system, for example leading to non-conventional Bose–
Einstein condensates (BECs) [8, 11, 15–18] or Fermi gases with altered pairing [19–22].Here we extend
current studies by focusing on pseudospin-1/2 BECs subject to spatially inhomogeneous SOC, and show
that these systems form strip-domains interrupted by non-trivial topological structures at the domain
boundaries.

In this article, we focus on real atomic systems fromwhichwe simultaneously identify a pseudospin-1/2
system, and induce SOCwith the desired spatial dependence. Thismust be achieved using terms naturally
entering into the bare atomicHamiltonian.Herewe show that thismay be realized by first creating SOCby
cyclically coupling together four ground (ormetastable) atomic states via two-photonRaman transitions, and
then by spatially varying the detuning from two-photonRaman resonance.We present an explicit construction
for Rb87 inwhich SOCand the desired spatial dependance coexist.We then explore the resulting equilibrated
pseudospin-1/2 spin–orbit coupled Bose–Einstein condensates (SOBECs) resulting from this construction.
These SOBECs contain domains of differently oriented stripe phases.When the stripe’s projection onto the
domain-boundaries are spatiallymismatched (see figure 1), arrays of non-trivial topological structures such as
vortices and anti-vortices in the spin degree of freedom—skyrmions—form.

The paper is organized as follows: in section 2we present a simple physical picture elucidating implications
of the position-dependent SOC; in section 3we formulate the light-atom interaction for the specific example of

Rb87 , and derive the associated position-dependent spin–orbit coupledHamiltonian for ground-state atoms;
and in section 4we use theGross–Pitaevskii equation (GPE) to study the ground state structure of these
inhomogeneous systems. Finally, section 5 summaries our findings.
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2. Physical picture

Before delving into a detailed discussion of specific atomic systems, wefirst discuss the qualitative physics
leading to the formation of topological defects in our system.Our focus is on spin-1 2 SOBECs containing
mostly Rashba-type SOC contaminated by a small tunable contribution ofDresselhaus-type SOC; together,
these are parametrized by a non-Abelian vector potential A, and are described by the single particleHamiltonian

κ ϵ σ ϵ σ= − = − − + 
k A A e eH

m

1

2
( ) , where

2
(1 ) (1 ) ,x

x
y

y
2 ⎡⎣ ⎤⎦

σ x y z, , are the Pauli operators, and I is the identity. Here,m is the atomicmass; k is themomentum; κ ⩾ 0 both
describes the Rashba SOC strength and defines the energy κ=κ E m22 2 ; and lastly, ϵκ describes the
Dresselhaus SOC strength. The eigenvalues of thisHamiltonian (shown infigure 1) are
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where the second equation is valid to linear order in ϵ. For ϵ = 0, these energies depend only on k , so the
ground state (minimumof lower energy band, − kE ( )) ismacroscopically degenerate on the ring κ∣ ∣ =k 1 2.
Figure 1(b) plots the energyminimumof radial cuts through SOCdispersion relations as a function of the polar

angle γ, where γ γ= ∣ ∣ +( )k k e ecos sinx y ; the black line, independent of γ, indicates the degenerate ground
states of the RashbaHamiltonian. Thismassive degeneracy is liftedwhen ϵ ≠ 0. In this case, the dispersion is
two-fold degenerate withminima at κ ϵ= ∓ +±k e(1 ) 2y for ϵ > 0 (red curve in figure 1(b)) and

κ ϵ= ± −±k e(1 ) 2x for ϵ < 0 (blue curve infigure 1(b)). The correspondingminimumenergy eigenstates
have their pseudospin aligned along ±k .

Undermany realistic physical conditions, a SOBECwill Bose-condense into both of theseminima
simultaneously [18, 23], and the spatial interference between these two states, differing inmomentumby
δ κ≈k ,will generate stripes in the atomic spin density with spatial period π κ2 . These stripes are aligned parallel
to ex for ϵ > 0 and parallel to ey for ϵ < 0.

Here we study physical systemswhere themagnitude of theDresselhaus SOC κϵ varies linearly along a
direction in the −e ex y plane defined by the unit vector θ θ= +e e ecos sinx y. In the half-planewith ϵ > 0 we
expect horizontal stripes and in the half-planewith ϵ < 0 we expect vertical stripes (schematically shown in
figure 1(c)), andwe ask: how are these different patterns of stripes linked at the boundary line

θ θ= +x y0 cos sin delineating the two domains (gray line infigure 1(c)). This seemingly simple question is
nontrivial because the horizontal stripes (ϵ > 0) have period π κ θ= ∣ ∣+d 2 sin projected onto the delineating
line, while vertical stripes (ϵ < 0) have period π κ θ= ∣ ∣−d 2 cos along the delineating line (see figure 1(c)):

Figure 1. Spin–orbit coupled dispersion relations and spatial stripe patterns. (a) Pure Rashba dispersion plotted along the radial
direction κ∣ ∣k . (b) Energy at the radialminima of the SOCdispersion (i.e., κ∣ ∣ ≈k 1 2) plotted as a function of the polar angle γ for
ϵ = 1 8 (red), ϵ = 0 (black), and ϵ = −1 8 (blue). (c) Representative stripe pattern showingmismatched stripe periods as projected
onto the domain boundary, resulting from equal period stripes aligned along ex and ey .
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when θ θ∣ ∣ ≠ ∣ ∣cos sin stripesmust terminate or originate at the domain boundary, leading to the formation of
pinned topological defects.

3. Position-dependent SOC

3.1. The electronicHamiltonian and its eigenstates
Our inhomogeneous SOCmay be created using any atomwith four internal ground (ormetastable) states
∣ 〉 ∣ 〉 ∣ 〉 ∣ 〉{ 1 , 2 , 3 , 4 } that can be coupled in the cyclicmanner shown in figure 2(a). In Rb87 thesemight be the four
ground hyperfine states [5] illustrated infigure 2(c): ∣ = = − 〉f m1, 0, 1F and ∣ = = + 〉f m2, 0, 1F . In that case
the four states are Raman coupledwith the position-dependent couplings

Ω Ω ϕ= − −+{ }( )k k r˜ exp i · (2)j j j j j1
⎡⎣ ⎤⎦

with amplitude Ω j, recoilmomentum −+k kj j1 and phase shift ϕ j . Here

κ π π= + ={ }k e ej j jcos ( 2) sin ( 2) , 1, 2, 3, 4, (3)j x y

is thewave-vector of the jth Raman laser field, κ being its length. This coupling scheme can be realized using the
combination of π and σ polarized laser fields laid out in [5]. The linear Zeeman shift, from a biasingmagnetic
field =B eB z0 0 , is rendered position-dependent by virtue of an additionalmagnetic field gradient

′ = ′B r e eB ( · ) z , linearly varying in the ex−ey plane along the direction θ θ= +e e ecos sinx y. The
combination + ′B B0 provides a controllable detuning δ δ δ= + ′ r e( · )0 fromRaman resonance to the states
∣ 〉2 and ∣ 〉4 , seefigure 2(c). Physically this can be realized by using atomicmagnetic levels shown infigure 2(c)
where one pair of states isfield insensitive and the other pair share essentially the same μ= ∣ ∣E g mBF FZ B

Zeeman shift, where μB is the Bohrmagneton and gF is the Landé g-factor (opposite in sign for the f=1 and f=2
mailfolds).

The scheme of cyclically coupled states, shown infigure 2, is formally equivalent to a four-site lattice with
periodic boundary conditions, i.e., ∣ 〉 ≡ ∣ 〉5 1 . In terms of the position-dependent states

∣ 〉 ≡ ∣ 〉 = − ∣ 〉( )r k rj j j˜ ˜( ) exp i ·j , theHamiltonian describing the internal atomic degrees of freedom is

∑ ∑δ δ Ω= + − − + +ϕ

= =

−


H
I j j j j

ˆ
˜ ˜( 1) ˜ ˜ e ˜ 1 h.c. , (4)e

j

j

j

j

1

4

1

4
i j⎡⎣ ⎤⎦

where the contribution from the atom-light detuning is represented in terms of the overall shift of the energy
zero δĨ and an alternating detuning δ −(̃ 1) j , where δ δ=˜ 2. This corresponds exactly to the experimental
situation illustrated in figure 2(c), where the levels ∣ 〉2 and ∣ 〉4 are shifted by δ2 ˜, whereas the levels ∣ 〉1 and ∣ 〉3 are
unaffected. Because δ̃ depends on position, the energy offset δ̃ cannot be removed by globally shifting the zero of
energy, as in [5]. Instead the local energy shift from δ r˜( ) is implicitly incorporated into the trapping potentialV

Figure 2.Proposed four level coupling scheme. (a) Coupling diagram showing our four cyclically coupled internal atomic states. (b)
Spatial geometry of the coupling laser beams driving the two-photonRaman transitions. (c) Realization of the closed loop scheme in

Rb87 usingRaman transitions betweenmagnetic sub-levels of the f=1 and f=2hyperfinemanifolds. Here δ μ= g BF B 0 is the
detuning of the atomic levels ∣ 〉2 and ∣ 〉4 from two-photonRaman resonance due to an inhomogeneousmagneticfield. Each line or
curve connecting the bare states depicts a two-photonRaman transition.
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(r) featured in equation (16): our linearly varying detuning simply shifts the location of the harmonic potential’s
minimum.

The phases of the laserfields are taken such that ϕ π∑ =j j , implying that an atom acquires a π phase shift
upon traversing the closed-loop ∣ 〉 → ∣ 〉 → ∣ 〉 → ∣ 〉 → ∣ 〉1 2 3 4 1 in state space. For zero detuning (δ =˜ 0) and
equal Rabi frequencies (Ω Ω=j ) the eigenfunctions and corresponding eigenvalues are

∑χ ε Ω π= = − − ∈ …π
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p q q
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In the χ∣ 〉{ }q basis, the internalHamiltonian
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labeled by the pseudospin index ↑ ↓, and by their energies δ Ω± + ˜ 22 2 , where
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3.2. Adiabaticmotion and SOC

Weare interested in the situationwhere the separation energy δ Ω+2 ˜ 22 2 between the pairs of dressed states
greatly exceeds the kinetic energy of the atomicmotion. In that case the atoms adiabaticallymove aboutwithin
each two-fold degeneratemanifold of pseudospin states. Such adiabaticmotion is affected by thematrix-valued
geometric vector and scalar potentials ±A( ) and Φ ±( ) which result from the position-dependence of the atomic
internal dressed states [6, 12]. Here the ± signs denote to the ground or excited adiabaticmanifold. Thematrix
elements of the gauge potentials are
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where ′ ∈ ↑ ↓s s, { , }. Using equation (7) for the dressed states ↑ ↓ −, ; , one arrives at the explicit result for the
gauge potentials in the ground-statemanifold
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Since the detuning δ̃ varies slowly over the optical wavelength, the spatial derivatives of the detuning can be
neglected in equation (11), giving

Φ η κ=− 
m

I
4

. (13)( )
2 2

When the detuning ismuch smaller than theRabi frequency, δ Ω≪˜ , the lowest order in δ̃ contribution to
the gauge potentials ≡ −A A( ) and Φ Φ≡ −( ) are linear and quadratic respectively
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Φ κ δ
Ω

≈ −
m
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The effective scalar potentialΦ, resulting from the adiabatic elimination of the excited states, is proportional
to the unitmatrix and hence provides only an additional state-independent trapping potential.

Thematrix-valued vector potential can be equivalently understood as SOCwith spatially-dependence
appearing via the position dependent detuning δ δ≡ r˜ (̃ ). For zero detuning, the vector potential is proportional
to σ σ−e ex

x
y

y, so the SOC is cylindrically symmetric. For non-zero detuning the cylindrical symmetry is lost,
leading to the formation of the stripe phases in the SOCBEC along ex or ey aswas discussed in section 2.

4. BECwith position-dependent SOC

4.1. Equations ofmotion
Having now shownhow to create inhomogeneous SOC,we shift our focus to its effects on ground state
properties of BECs. At zero temperature, themean-field energy functional of a spin-1/2 BECwith SOC is

∫Ψ Ψ Ψ Ψ Ψ Φ Ψ Ψ μ Ψ=
−

+ + + −r
p A

rE
m

V r
g

*, d *
( )

2
( ) ( )

2
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2
2 2 4 2⎡⎣ ⎤⎦

⎡
⎣⎢

⎤
⎦⎥

where Ψ ψ ψ= ↓ ↑( , )T is the spinor (vectorial) order parameter, ω=V r m r( ) 22 2 is the trapping potential and g
is the nonlinear interaction strength. The synthetic vector and scalar gauge potentials A andΦ (equations (10),
(13)) depend on the linearly varying detuning

δ δ θ θ= ′ +x y˜ ˜ ( cos sin ) (17)

introduced in section 3.1.Herewe assume that rV ( ) embodies all external potentials including that resulting
from the spatially-dependent energy offset in equation (4).

The spinor time-dependent GPE can be derived via theHartree variational principle ψ δ δψ∂ = Ei t j j
*

giving
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where ρ ψ ψ= ∣ ∣ + ∣ ∣↓ ↑
2 2 is the total density. Equation (18) governs the dynamics of the BECswith position-

dependent SOC, at themean-field level.

4.2. Ground-state phases of the SOBEC
In section 2, we discussed the single particle properties expected in ourmixedRashba–Dresselhaus spin–orbit
coupled system and noted that when ϵ ≠ 0 the spectrum is two-fold degenerate at points

κ ϵ= ± +±k e(1 ) 2y for ϵ > 0 and κ ϵ= ± −±k e(1 ) 2x for ϵ < 0.Whenweak repulsive interactions are
included, the bosons can condense either in: (1) a plane-wave phase inwhich one of +k or −k ismacroscopically
occupied; or in (2) a standingwave phase (SW, sometimes called a striped phase) inwhich the bosons condense
into a coherent superposition of +k and −k .We focus on the casewhere the inter- and intra- spin interactions
are identical, for which the ground state is in the SWphase [18, 23].

The detuning δ̃ vanishes along the separatrix θ θ+ =x ycos sin 0 that delineates the regionswith δ >˜ 0
and δ <˜ 0. Since thewave vectors characterizing the two domains have differing projections onto the linewhere
δ =˜ 0, novel structures can form to heal the otherwise discontinuous strip patterns at opposite sides of the
separatrix. For example, for θ =tan 1and 2, we expect one-to one and two-to-one connections on the interface,
respectively.

We determined the ground state of the SOBEC—minimizing the energy functional in equation (16)—by
propagating equation (18)with differing degrees of imaginary time [24–27]: replacing ∂i t by ζ ∂iexp[i ] t in
equation (18), for ζ π∈ [0, 2].While simulations converged to the same solution for any non-negligible ζ, the
resulting dampedGPE convergesmuchmore rapidly for proper choice of ζ.We confirmed that the obtained
ground state by the absence of any time-dependance whenwe evolve in real time.We considered a 2D Rb87 BEC
confined in a harmonic potential with frequency ω π =2 100 Hz. For computational convenience, we adopt the
dimensionless units where the frequency and length are scaled in units of the trap frequency ω π2 and the

5
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oscillator length ω m , respectively.We employ the Fourier pseudospectralmethodwith = =N N 256x y

grid points.
Wefirst consider the parameters δ Ω′ =˜ 2, κ = 2, θ π= 4, and μ ω= 32 which corresponds to
= ≃↑ ↓gN gN 1500. In this case θ θ=cos sin and the horizontal and vertical stripes arematched one-to-one

at the boundary. The corresponding ground-state wave function is shown infigure 3. In this case, the interface
lies along the line + =x y 0 and the stripes align along ey for + <x y 0 and along ex for + >x y 0. Clearly,
the stripes in both domains are connected one-to-one across the interface.Moreover, the orientation of the
state along the Bloch sphere smoothly connects the two phases, as shown infigure 3(e). The ground-state
structure is consistent with the prediction of the noninteracting homogeneous systemwith our single particle
arguments.

These stripes are associatedwith the local spin vector

Ψ σ Ψ= =N n
N

N
, and orientation (19)

precessing on the Bloch sphere (figure 3(e)) either in the ex − ez plane (horizontal stripes) or the ‐e ey z plane
(vertical stripes). The changing orientation in these precession planes leads to a chain of vortices in the spin
degree of freedom: distorted skyrmions and anti-skyrmions.We quantify the location of these vortices in
figure 3(b)wherewe plot the local Berry’s curvature

 = −
∂ ∂ − ∂ ∂ n n n n

n2
(20)z

x x y y y x x y

z

⎛
⎝⎜

⎞
⎠⎟

which is peaked at the vortex centers. This clearly shows the ordered chain of skyrmions at the stripe-interface.
Next we investigate how the ground-state density and phase profiles vary over the interface region for the

mismatched conditionwhen two stripes in one domain are linked to a single stripe in the other. Specifically, we
consider θ =tan 1 2 and δ Ω′ =˜ 10 6, which gives a separatrix + =x y2 0. Keeping the same values of μ, κ
weused for θ π= 4 case, the ground state is shown infigure 4.We observe that, near the trap center, every two
adjacent stripes in the region of + >x y2 0 connect to one single stripe in the region of + <x y2 0. Unlike the
previous case with θ π= 4, where the density and phase profiles both vary smoothly across the interface, in the
current case the phases profile does not vary smoothly across the interface. In the spin-projections shown in
figure 4(e) we see that vortices form at the boundary. In this case, two stripesmustmerge—and also form an
excess vortex—before a single stripe crosses the domain boundary. The existence of an imbalanced number
vortices in the ground state results from themerging of stripes, and is clearly visible in the Berry’s curvature
(figure 4(b)) which now favors negative values at the interface. In conventional BECs, vortices are stabilized by
the application of artificialmagnetic fields. However in our spatially dependent SOCBEC, the ground state
supports vortices at the interface between two distinct SWphases. Similar defect formation at the interface of

Figure 3.The ground state of a spatially dependent SOCBECwith a commensurate interface. This simulationwas performedwith
μ ω= 32 , δ Ω′ =˜ 2, κ = 2, and θ π= 4. (a)–(d) plot the density Ψ Ψ〈 ∣ ∣ 〉I , the Berry’s curvature z , and the densities in the spin
up and spin down components Ψ∣ ↑∣ ∣2, and Ψ∣ ↓∣ ∣2. Each of these quantities varies smoothly across the domain interface,
continuously connecting the the two SWphases. (e)Orientation of the local spin vector on the Bloch sphere. The colored background
gives the ez component, while the vector field plots the ex and ey components.
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two distinct ground state phases was studied for spin-1 BECswith tunable inter- and intra- species
interactions [28, 29].

Finally we examine the casewhere θ π= 2 and δ Ω′ =˜ 2 : here the interface coincides with the x-axis. In
this case the stripes for <y 0 are perpendicular to the interface while the stripes are parallel to the interface in
the region of >y 0. The result is shown infigure 5. The orthogonal stripes result in the formation of a vortex
chain on the interface that can be seen clearly in the spin-projections of figure 5(e) and in the Berry’s curvature in
figure 5(b). Our results indicate that the unconventional BEC ground state contains chains of vortices and anti-
vortices stabilized by the position-dependent SOC. Furthermore, the number of vortices is highly controllable
by tuning the size of condensate, the SOC strength κ, and the orientation of the interface.

Figure 4.The ground state of a spatially dependent SOCBECwith an incommensurate interface. This simulationwas performedwith
μ ω= 32 , δ Ω′ =˜ 10 6, κ = 2 and θ =tan 1 2. (a)–(d) plot the density Ψ Ψ〈 ∣ ∣ 〉I , the Berry’s curvature z , and the densities in
the spin up and spin down components Ψ∣ ↑∣ ∣2, and Ψ∣ ↓∣ ∣2. Because the projection of the stripe periods along the interface are
mismatched, defects form at the domain interface between the two SWphases. (e)Orientation of the local spin vector on the Bloch
sphere. The colored background gives the ez component, while the vector field plots the ex and ey components.

Figure 5.The ground state of a spatially dependent SOCBECwith orthogonal stripe patterns. This simulationwas performedwith
μ ω= 32 , δ Ω′ =˜ 2 , κ = 2 and θ π= 2. In this case, the boundary occurs at x=0. Panels (a)–(d) plot the density Ψ Ψ〈 ∣ ∣ 〉I , the
Berry’s curvature z , and the densities in the spin up and spin down components Ψ∣ ↑∣ ∣2, and Ψ∣ ↓∣ ∣2. A rowof vortices forms to
link the two completely incompatible SWpatterns. (e)Orientation of the local spin vector on the Bloch sphere. The colored
background gives the ez component, while the vector field plots the ex and ey components.
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5. Concluding remarks

Weproposed a new technique for creating position-dependent SOC for cold atomic BECs. This can be
implemented by combining a cyclic Raman coupling scheme [5] to induce SOC, alongwith amagnetic field
gradient [30, 31] to impart a spatial dependance.

Subject to this combination, wefind that aweakly interacting BECphase separates into two domainswith
orthogonally oriented stripes. Depending on axes of the domain boundary—set by the spatial direction of the
magnetic field gradient—the stripes from each domain can intersect the boundary withmatched ormismatched
spatial periods.We show that when the stripe patterns intersect with different spatial periods, a chain of
topological defects, including vortices and anti-vortices, form to link themismatched stripe patterns. In contrast
to vortices present in conventional rotating BECs, here the vortices are stable topological defects that are not
present in the homogenous phase (here the SWphase). These vortices can form in an ordered chainwhen the
relative periods at the domainwall are different, but commensurate, and they form a disordered chainwhen the
relative periods are incommensurate.
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