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Abstract
Wepresent amethod to verify themetrological usefulness of noisyDicke states of a particle ensemble
with only a few collectivemeasurements, without the need for a directmeasurement of the sensitivity.
Ourmethod determines the usefulness of the state for the usual protocol for estimating the angle of
rotationwithDicke states, which is based on themeasurement of the secondmoment of a total spin
component. It can also be used to detect entangled states that are useful for quantummetrology.We
apply ourmethod to recent experimental results.

1. Inroduction

Quantummetrology is concernedwithmetrological tasks inwhich the quantumness of the systemplays an
essential role [1–5]. A key goal of quantummetrology is identifying bounds for the highest precision achievable
in parameter estimation tasks in a quantum system, for example, by using the theory of quantumFisher
information [6–10]. Recently, there has been a large effort connecting quantummetrology to quantum
information science, in particular, to the theory of quantum entanglement [11]. It has turned out that, in linear
interferometers, entanglement is needed to surpass the shot-noise limit corresponding to product states [12].
It has been shown that fully entangledmultipartite quantum states are needed to reach themaximal precision
[13–15]. In particular, the quantumFisher information, a fundamental quantity inmetrology, can be used to
detectmultipartite entanglement.

After the theoreticalfindingsmentioned above, it is very interesting to knowhow large precision can be
achieved in realistic, noisy systems [16, 17]. Thus, another driving force behind the development of quantum
metrology are the recent experiments in quantumoptical systems, such as cold gases and cold trapped ions,
which have been possible due to the rapid technological advancement in the field [18–21].Quantummetrology
played a central role even in the recent experiments with the squeezed-light-enhanced gravitational wave
detectorGEO600 [22].

There have beenmany experiments with fully polarized atomic ensembles inwhich the collective spin of the
particles is rotated around an axis perpendicular to themean spin (for instance by a homogeneousmagnetic
field) and the angle of the rotation is estimated based on collectivemeasurements. It has also been verified
experimentally that spin squeezing can result in a better precision compared to fully polarized product states
(i.e., SU(2) coherent states) [20, 23–32] since spin-squeezed states are characterized by a reduced uncertainty in
a direction orthogonal to themean spin [33–36]. Amethod has been presented for detectingmetrologically
useful entanglement for spin-squeezed states based on collectivemeasurements [12].

Besides almost fully polarized states, there are also unpolarized states considered for quantummetrology.
Prime examples of such states are Greenberger–Horne–Zelinger states [37], which have already been realized
experimentallymany times [18, 38–44]. Recently, new types of unpolarized states have been considered for
metrology, such as singlet states [45, 46] and symmetric Dicke states realized in cold gases and photons [47–50].
In themetrological schemes withDicke states, the state is rotated around an axis in a linear interferometer and
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the rotation angle is estimated based on collectivemeasurements (see figure 1). For this case, a criterion to detect
themetrological usefulness of some of these states has been derived for symmetric systems [51]. There is another
criterion based on an improvedHeisenberg relation to bound the quantumFisher information close toDicke
states [52]. However, these criteria showmetrological usefulness allowing for arbitrarymeasurements using the
theory of the quantumFisher information, while itmight be interesting to showmetrological usefulness for the
measurements carried out in a particularmetrological scheme. For example, in a large ensemble, we can allow
for collectivemeasurements only.

In this paper, we present a condition formetrological usefulness for the case when the secondmoment of a
spin component of the state ismeasured to obtain an estimate for the rotation angle. Our findings are expected
to simplify the experimental determination ofmetrological sensitivity since the proposed set of a few collective
measurements ismuch easier to carry out than determining themetrological sensitivity directly. Ourmethod is
optimal in the sense that it gives the precision of the parameter estimation exactly, if certain operator expectation
values are provided. If not all relevant expectation values can bemeasured, it can still give useful bounds.We also
test our approach using data of a recent experiment realizing parameter estimationwith aDicke state [53]. Thus,
our paper is expected to be useful for similar experiments in the future. Since quantum states with ametrological
sensitivity larger than a certain bound are entangled [12], ourmethod can also be used to detectmetrologically
useful entanglement in the vicinity ofDicke states. Note, however, that ourwork is not related to the criterion
presented in [53], which detectsmultipartite entanglement in particle ensembles independently from
metrological applications.

Our paper is organized as follows. In section 2, we discuss the basics of quantummetrology. In section 3, we
present our criterion. In section 4, we compare our criterion to the sensitivity bound obtained from the
quantumFisher information. In section 5, we showhow to apply our criterion to experimental results.

2. Basics of quantummetrology

In this section, we review the basics of quantummetrology.We discuss how the precision of the parameter
estimation can be calculated, and how it can be bounded by the quantumFisher information.We also discuss
how the precision is linked to the entanglement of the quantum state.

One of themost fundamental tasks in quantummetrology is the estimation of the small phase θ in the
unitary dynamics

e e , (1)H Hi iϱ ϱ=θ
θ θ− +

whereH is theHamiltonian of the dynamics, ϱ is the initial state, and ϱθ is thefinal state after the evolution. The
parameter θmust be estimated based onmeasuring an observableM on thefinal state.

Next, wewill discuss how to estimate the uncertainty of the parameter estimation. The variance of the
estimated parameter can be calculated by the error propagation formula as

M

M
( )

( )
. (2)2

2

2
Δθ

Δ=
∣∂ 〈 〉∣θ

One can interpret (2) as follows. The larger the variance of M, theworse the precision. On the other hand, the
larger the derivative of the expectation value of M, the better the precision.

Some operators are better than others for parameter estimationwith a certain quantum state. The quantum
Cramér-Rao inequality gives a lower bound on (2) that cannot be surpassed by any choice of M. In this paper, we
will usemany times theCramér-Rao inequality formulatedwith the reciprocal of ( )2Δθ as

Figure 1.Metrology with symmetric Dicke states on themultiparticle Bloch sphere. In a linear interferometer, the uncertainty ellipse
of the state is rotated around the y axis, while the rotation angle is estimated by collectivemeasurements.

2
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F H( ) [ , ], (3)Q
2Δθ ϱ⩽−

where FQ is the quantumFisher information [6–9]. It has been shown that the bound in (3) can be saturated by
somemeasurement, and there is even a formula tofind the optimal observable [8]. Note that all these are valid in
the limit of infinite repetitions of themeasurement, fromwhich the expectation values can be obtained exactly.
The case of finite number ofmeasurements ismore complicated [3, 4].

In certain situations, it is better to use (2) rather than (3) for calculating the best precision achievable, since it
gives theprecision for a particular operator to bemeasured in an experimental setup. This is reasonable since in a
typical experiment, only a restricted set of operators can bemeasured. In this article, wewill considermany-particle
systems inwhich theparticles cannot be addressed individually, andonly collective quantities canbemeasured. In
particular, in such amultiparticle system,we canmeasure the collective angularmomentumoperators

J j , (4)l

n

N

l
n

1

( )∑=
=

for l x y z, , ,= and j
1

2
,l lσ= where lσ are the Pauli spinmatrices.Moreover,N is the number of pseudo-spin-

1

2
particles.

Using collective angularmomentumoperators, it is even possible to connect themetrological precision to
quantum entanglement [54, 55]. Let us briefly review some notions of entanglement theory. Separable states are
mixtures ofmultiparticle products states. If a state is not separable then it is called entangled. Entangled states
can be used as a resource for several quantum information processing tasks [55]. It has turned out that certain
entangled states are also useful for quantummetrology. In particular, if a quantum state fullfils

F J N, , (5)Q l
⎡⎣ ⎤⎦ϱ >

then it is entangled [12]. As a consequence of (2), (3) and (5), if

M

M
N

( )
(6)

2

2Δ
∣∂ 〈 〉∣ >θ

holds, then the system is also entangled.Hence, entanglement is required for a largemetrological precision.
Finally, it is even possible tofind bounds for states with various forms ofmultipartite entanglement. Let us

review very briefly the definitions needed to characterizemultipartite entanglement. A pure state containing at
most k-particle entanglement is of the form

, (7)k Mparticle ent. 1 2Ψ ψ ψ ψ= ⊗ ⊗ ⋯ ⊗−

where kψ∣ 〉 are quantum states of atmost k qubits. Amixed state containing atmost k-particle entanglement is a
mixture of pure states of the form (7) [35, 56, 57]. Recently, it has been shown that if

F J kN, (8)Q l
⎡⎣ ⎤⎦ϱ >

holds for a quantum state, then it is at least k( 1)+ -particle entangled [13, 14]5. Another formulation is saying
that the entanglement depth of the state is at least k( 1)+ [35]. Similarly to the previous paragraph, it follows
that a quantum state is at least k( 1)+ -particle entangled if

M

M
kN

( )
(9)

2

2Δ
∣∂ 〈 〉∣ >θ

holds.
Based on this section, one can see the advantages of using the quantity ( ) 2Δθ − rather than ( )2Δθ in our

discussion. It can be directly compared to the quantumFisher information (see (3)).Moreover, N( ) 2Δθ −

directly leads to a lower bound on the entanglement depth. Note the relation of ( ) 2Δθ − to the precision: it is large
for a high precision and small for a low precision.

3.MetrologywithDicke states

In this section, wewill considermetrologywith symmetric Dicke states [58]. In particular, wewill consider
symmetric states that are the eigenstates of Jzwith a zero eigenvalue. Themetrological setup is the following. The
Dicke state is rotated around the y axis of themultiparticle Bloch sphere. Then, we estimate the rotation angle by
collectivemeasurements. Such an experiment has already been carried out in cold gases [47]. It was found that

5
Equation (8) is valid if k is a divisor of N . The general formula is somewhatmore complicated than (8) [13, 14]. Equation (8) can also be

used if k N ,≪ since in this case the difference between (8) and the general formula is small. Note that k N≪ is fulfilled in practice inmany
experiments.

3
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for noisy states, the optimal angle for parameter estimation is not 0.θ = Thus, (2)was recorded formany
different values of .θ The phase estimation uncertainty was then plotted as a function of the rotation angle ,θ and
the best precision could be identified. In this section, wewill show that the optimal angle can be obtained easily
as a closed formula.We evenfind a closed formula for themaximal parameter estimation precision, as a function
of a few expectation values. In this way, one can verify themetrological usefulness of the state without directly
probing the phase estimation uncertainty formany phases.

Next, let us define theDicke states, and examine theirmetrological properties. AN-qubit symmetric Dicke
state is given as

( )N

m
D 1 0 , (10)N

m

k

k
m N m( )

1
2 ( )⎜ ⎟⎛

⎝
⎞
⎠ ∑= ∣ 〉 ⊗ ∣ 〉

−
⊗ ⊗ −

where the summation is over all the different permutations of the product state havingm particles in the 1∣ 〉 state
and N m( )− particles in the 0∣ 〉 state.One of such states is theW-state for which m 1,= which has been
preparedwith photons, ions, and neutral atoms [59–61].

From the point of view ofmetrology, we are interestedmostly in the symmetricDicke state for evenN and

m
N

2
.= This state is known to be highly entangled [62, 63] and allows forHeisenberg-limited interferometry

[64]. In the following, wewill omit the superscript giving the number of 1∣ 〉ʼs and use the notation

( )D D . (11)N N

N
2∣ 〉∣ 〉 ≡

Symmetric Dicke states of the type (11) have been created in photonic systems [49, 50, 65–67], in cold gases
[47, 48, 53] and recently in trapped cold ions [68], and theirmetrological properties have also been verified
experimentally [47, 49].

How canwe dometrologywith a DN∣ 〉 state, taking into account even the practical case of a nonideal Dicke
state?Wewill consider a general initial state ,ϱ rather than the special case of aDicke state.Wewill study a
scheme inwhich the state is rotated around the y axis, corresponding to a unitary evolution under the
Hamiltonian

H J . (12)yD =

Then, wemeasure Jz
2〈 〉 to obtain an estimate for the angle of rotation. The error propagation formula (2) gives us

the variance of the parameter estimation as

( )J

J
( ) . (13)

z

z

2

2 2

2 2
Δθ

Δ
=

∂θ

Next, we calculate the quantites in (13) one after the other. For that, we need to use the dynamics of Jz given in
theHeisenberg picture as

J J( ) e e . (14)z
J

z
Ji iy yθ = θ θ−

In the following, all operators evolve according to theHeisenberg picture and all expectation values are
calculated for the initial state .ϱ

Before continuing our calculations, we need tomake an important simplifying assumption.Wewill assume
that for all θ

J J

J J

( ) ( ) ,

( ) ( ) (15)
z z

z z

2 2

4 4

θ θ
θ θ

〈 〉 = 〈 − 〉
〈 〉 = 〈 − 〉

holds. Equation (15) implies that the two expectation valuesmust be even functions of ,θ and that we can omit
the terms that are odd in .θ In section 5, wewill see that unitary dynamics starting from the experimentally
prepared state have the property (15).

Let us now continue computing the precision given by (13). First, let us calculate the numerator of (13).
Using (14) to obtain the dynamics, andwith our simplifying assumptions (15) we arrive at

( ){ } { }

J J J

J J J

J J J J

( ) cos sin ,

( ) cos sin

, , cos sin , (16)

z z x

z z x

z x z x

2 2 2 2 2

4 4 4 4 4

2 2 2 2 2

θ θ θ

θ θ θ

θ θ

= +

= +

+ +

where X Y XY XY{ , } = + is the anticommutator ofX and Y .Then, we calculate the denominator of (13).
Using the dynamics of J ( )z

2 θ〈 〉given in (16) and the assumption in (15), we obtain the derivative as

4
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( )J J J2 cos sin . (17)z x z
2 2 2 θ θ∂ = −θ

The details of our calculations are given in appendix A.
Substituting (16) and (17) into the error propagation formula (13), after straightforward algebra, we arrive

at a simple expression for the parameter variance

( )
( )

( )J f J J J J J J J

J J
( )

( ) 4 3 2 1 6

4
, (18)

x x y z x z x z

x z

2

2 2 2 2 2 2 2

2 2 2
Δθ

Δ θ
=

+ − − + +

−

where

( )
( )

f
J

J
( ):

1

tan
tan . (19)

z

x

2 2

2 2 2
2

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥θ

Δ

Δ θ
θ= +

For the details of the calculation, see appendix B.
Next, we determine the optimal angle θ thatminimizes the parameter variance (18). It is easy to see that the

optimal angle has tominimize also (19). The angleminimizing (19) is given by

( )
( )

J

J
tan . (20)

z

x

2
opt

2 2

2 2
θ

Δ

Δ
=

Equation (20)makes it possible to plan an experiment for the verification of themaximal accuracy such that we
do not need tomeasure the sensitivity for a large range of θʼs, but can target the parameter values close to the
optimal angle.

Remarkably, we can even use (20) to obtain an explicit formula from (18) for theminimal parameter
variance achievable by the setup as

( )
( )

( ) ( )J J J J J J J J J

J J
( )

2 4 3 2 1 6

4
. (21)

z x x y z x z x z

x z

opt
2

2 2 2 2 2 2 2 2 2

2 2 2
Δθ

Δ Δ
=

+ − − + +

−

For the evaluation of (21), we do not need tomake a directmeasurement of the sensitivity for some range of θ in
the vicinity of .optθ Weneed tomeasure only the expectation values J ,x

2〈 〉 J ,y
2〈 〉 J ,z

2〈 〉 J ,x
4〈 〉 J ,z

4〈 〉 and J J Jz x z
2〈 〉of the

initial state (i.e., at 0θ = ), which couldmake the experimentsmuch easier. Later, wewill discuss how to avoid
measuring J J J ,z x z

2〈 〉 and even avoidingmeasuring the fourth ordermoments.
Finally, let us demonstrate the correctness of our formula (21) for the pureDicke state D .N∣ 〉 For this

purpose, wewill summarize the expectation values of the relevantmoments of some collective observables for
the state.OurDicke state is an eigenstate of Jzwith an eigenvalue zero.Hence, it immediately follows that

J J J J J0, 0, 0. (22)z z z x z
2 4 2〈 〉 = 〈 〉 = 〈 〉 =

Moreover we know that for every quantum state

J J J
N N( 2)

4
(23)x y z

2 2 2〈 〉 + 〈 〉 + 〈 〉 ⩽ +

holds, while symmetric quantum states, such as theDicke state D ,N∣ 〉 saturate the inequality. Based on (22) and
(23), and knowing that the rotational symmetry around the z axis implies J J ,x y

2 2〈 〉 = 〈 〉 we arrive at

J J
N N( 2)

8
. (24)x y

2 2〈 〉 = 〈 〉 = +

Somewhat technical, but straighforward algebra leads to

J J
N N N( 2)

8

3 ( 2)

16

1

2
, (25)x y

4 4 ⎛
⎝⎜

⎞
⎠⎟〈 〉 = 〈 〉 = + + −

whichwill be useful later in the article. Equations (22) and (24) are sufficient to evaluate (21), andwe obtain

N N
( )

2

( 2)
, (26)opt

2Δθ =
+

which reproduces the value given by the quantumFisher information [47].Hence, for this case theCramér-Rao
bound (3) is saturated, which alsomeans that Jz

2 is the optimal operator tomeasure for the ideal Dicke state. In
addition, (20) yields that the optimal angle for the ideal Dicke state (11) is 0.optθ =

5
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4. Testing our bound on concrete examples

In this section, we compare our formula (21) for ( )opt
2Δθ with the bound obtained from the quantumFisher

information.Wefind that the formula gives a good lower bound on the quantumFisher information using the
inequality F J( ) [ , ].Q yopt

2Δθ ϱ⩽− It has beenmentioned in the introduction that our formula yields the best

precision assuming that Jz
2〈 〉 ismeasured after the linear interferometer. If a different operator ismeasured, then

the precision can even be higher. The quantumFisher information gives us a bound on the precision if any
measurement is allowed.However, note that in the latter case the optimalmeasurementmight turn out to be
impractical.

Let us consider first the example of pure spin-squeezed states obtained as a ground state of the spin squeezing
Hamiltonian

H J J( ) , (27)z xsq
2λ λ= −

where λ is a real parameter. For 0,λ > the ground state is unique, and it is in the symmetric subspace.Hence, we
can use the SU(2) generators instead of the collective operators Jl defined in (4) [35].Wewill get the same result,
however, we canmodel larger systems this way. For ,λ → ∞ the ground state is the fully polarized state in the x-
direction. For 0,λ → + it is theDicke state (11). For intermediate λ values, the ground state is a state which is
polarized in the x-direction and spin squeezed in the z-direction.Wewill nowfind the best precision that can be
achievedwith this state if we consider estimating θ in the unitary dynamics

e e . (28)J Ji
0

iy yϱ ϱ=θ
θ θ− +

figure 2(a) compares the sensitivity we obtainedwith the optimumdefined by the quantumFisher information.
Our bound is close to the optimumwhen the state is well polarized. It also coincides with the bound in the

0λ → limit, when the ground state is close to aDicke state.
Our next example is a noisyDicke state of the form

T( ) e D D , (29)
m

N m N
T N

m
N
m

th
0

( 2)
( ) ( )

2

∑ϱ ∝
=

− −

whereN is even and DN
m( )∣ 〉 is defined in (10). From (29), we obtain theDicke state DN

N( 2)∣ 〉 forT 0.= For

T 0,> other symmetric Dicke states in the vicinity of the state DN
N( 2)∣ 〉 are also populated. The distribution of

Dicke states is Gaussian and (29) can be interpreted as a thermal state.We consider again estimating the
parameter θ in the dynamics (28). The results can be seen infigure 2(b). Again, our bound is quite close to
ultimate bound defined by the quantumFisher information.

Next, we verify that the dynamics fulfill the condition (15) for both cases considered in this section. In this
waywe demonstrate that it was justified to use the formula (21) to obtain the precision. Simple algebra shows
that if the states considered in our examples are used formetrology as initial states then

Figure 2. (a) The reciprocal of the parameter variance ( )opt
2Δθ given in (21) and the quantumFisher information for the ground states

of the spin-squeezingHamiltonian (27) as a function of λ forN=100 particles. (b) The same quantities are shown for the thermal
states (29) as a function of T .

6
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( ) ( )J JTr e e Tr e e (30)J J
z
m J J

z
mi i i iy y y yϱ ϱ=ϕ ϕ ϕ ϕ− + + −

holds for m 2, 4,= fromwhich (15) follows.
Finally, note that infigure 2(a) and (b) ametrologically useful k( 1) particle+ − entanglement is detected

based on (9) if the quantumFisher information divided byN is larger than an integer k6. Based on (9), a similar
statement holds for N( ) ,opt

2Δθ − which detects entanglement that is useful for themetrological procedure with a

Jz
2〈 〉measurement.

5. Applications of themethod to experimental data

In this section, we discuss how to apply the formula (21) in the cold gas experiment described in [53]. In the
experiment, it is possible tomeasure the operator J ,z which is defined as a population difference as

( )J N N
1

2
, (31)z 1 2 1 2= −+ −

where N 1 2+ and N 1 2− are the number of particles in the spin-states j 1 2z = + and j 1 2,z = − respectively.
Hence, in principle the expectation values of allmoments of Jz can be obtained. In practice, it is possible to
measure the lower ordermoments like Jz

2〈 〉 and J ,z
4〈 〉 while higher ordermoments necessitate an increasing

number of repetitions of the experiment to get sufficient statistics.

The angularmomentum components Jx and Jy aremeasured by rotating the total spin using a
2

π
microwave

coupling pulse before the population differencemeasurement.Whether Jx or Jy ismeasured depends on the
relation between themicrowave phase and the phase of the initial Bose–Einstein condensate. The condensate
phase represents the only possible phase reference in analogy to the local oscillator in optics. Intrinsically, it has
no relation to themicrowave phase, such that we homogeneously average over all possible phase relations in our
measurements. From another point of view, one can also say that the fluctuation of the phase results in a random
rotation of the spin around the z axis.Hence, wemeasure

J J Jsin( ) cos( ) , (32)x yα α= +α

where α is a randomphase, andwe need to consider an averaging over .α Effectively, the densitymatrix of the
state is

1

2
e e d , (33)J Ji

0
iz z∫ϱ

π
ϱ ϕ= ϕ ϕ− +

where 0ϱ is whatwewould obtain if we had access to the phase reference7. For a state of the form (33), the
equality (30) holds for m 2, 4,= which can be seen directly by substituting (33) into (30).Hence, the unitary
dynamics will fulfill the simplifying assumption (15).Note that integration over the rotation angle in (33) does
not create quantum entanglement. If the state ϱ is entangled, 0ϱ must also be entangled.

Next, wewill simplify the bound for the precision of the parameter estimation (21), based on the
consequences of our state having the form (33). Since ϱ is invariant under rotations around the z axis, we have

J J J , (34)m
x
m

y
m〈 〉 = 〈 〉 = 〈 〉α

for all m.Hence, the expectation values Jx
m〈 〉 and Jy

m〈 〉 can be obtained frommeasurements of J .m〈 〉α Moreover,

there is a single remaining term in (21), the expectation value J J J ,z x z
2〈 〉 which is difficult tomeasure directly in an

experiment. It can be bounded as

( ) ( )
J J J

J J J J J J J J J J

N N
J J

2 2
( 2)

8

1

2
, (35)

z x z

z x y z z x y z z z

z z

2

2 2 2 2 2 4

2 4 

=
+

=
+ + −

⩽ + − ≕

where the last inequality is due to (23), which is saturated for symmetric states. Thus, for symmetric states the
formula (35) is not only an upper bound, it is exact. Using (34) and (35), we can simplify (21) as

6
This is true if k is a divisor of N , or k N≪ [13, 14].

7
States of the form (33) can bewritten as incoherentmixtures of states with a definite J ,z i.e., p ,

l N

N

l l2

2∑ϱ ϱ=
=−

where for the subensembles
J lz l

〈 〉 =ϱ and J( ) 0z
2

l
Δ =ϱ hold, while for the probabilities p 0l ⩾ and p 1

l l∑ = .
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( )
( )

( ) ( )J J J J J

J J
( )

2 2 1 6

4
, (36)

z x x z x

x z

opt
2

2 2 2 2 2 2 2

2 2 2


Δθ

Δ Δ
⩽

+ − + +

−

where  is defined in (35).
Next, wewill substitute the experimentallymeasured values to (36). Themeasured data from [49] for

N=7900 yields

J J

J J

112 31, 40 10 22 10 ,

6 10 0.6 10 , 6.2 10 0.8 10 . (37)
z z

x x

2 4 3 3

2 6 6 4 13 13

〈 〉 = ± 〈 〉 = × ± ×
〈 〉 = × ± × 〈 〉 = × ± ×

Hence, we obtain for the precision

N

( )
3.7 1.5. (38)

opt
2Δθ

⩾ ±
−

In (37) and (38), the statistical uncertainties have been obtained through boot straping. Note that a direct
substitution of themean values into (36) would yield a gain of 3.3.Based on (6), (38) proves the presence of
metrologically useful entanglement [12]. Based on (8), it even indicates that the quantum state had
metrologically useful 4-particle entanglement.Within one standard deviation, it demonstrates 3-particle
entanglement.

Infigure 3, we plot the precision as a function of the rotation angle using the expectation values (37)
obtained experimentally. Sincewe cannot obtain the expectation value J J Jz x z

2〈 〉 experimentally, we approximate
it with the right-hand side of (35), i.e., we plot the right-hand side of (36).With that, we overestimate ( ) ,2Δθ or
equivalently we underestimate ( ) .2Δθ −

Thus, we could detectmetrological usefulness bymeasuring the second and fourthmoments of the
collective angularmomentum components. For future applications of our scheme, it is important to further
reduce the number of quantities we need tomeasure for ourmethod. In practice, one can easily avoid the need
for determining Jx

4〈 〉. Note that the distribution of values obtained frommeasuring Jx is strongly non-Gaussian.
The values N 2± appearmost frequently, and the value 0 appear least frequently [47]. One can bound the fourth
moment of Jx as follows

J
N

J
4

. (39)x x
4

2
2⩽

Equation (39) is based on the fact that for two commuting positive-semidefinite observables,A and B, we have

AB A B( ) , (40)maxλ〈 〉 ⩽ 〈 〉
where A( )maxλ is the largest eigenvalue of A. Since even for a noisyDicke state Jx

2〈 〉 is very large, (39) is a very
good upper bound. Substituting the right-hand side of (39) in the place of Jx

4〈 〉 into (36), wewill underestimate
( ) .2Δθ −

It is also possible to approximate Jz
4〈 〉with J .z

2〈 〉 This will not lead to a strict bound on the precision as the one
for J ,x

2〈 〉 but still can help us to access themetrological usefulness based on secondmoments only. One can use
the formula

Figure 3. (solid) N( ) 2Δθ − as a function of the parameter θ given by (18), for parameter values given in (37). (dashed) Themaximum
is taken at 0.0057,θ = as calculated based on (20). (dotted) N( ) 2Δθ − corresponding to the shot-noise limit. If the curve is above this
line, then the quantum state shows entanglement based on (6).
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J J , (41)z z
4 2 2

β=

where β is a constant. In principle, β can be obtained based on some knowledge of the distribution of the
measured values. In practice, the distribution is typically dominated by aGaussian technical noise. For a
Gaussian distribution and for large N , we have 3.β = Note that the distribution is expected to be centered
around zero, since themethod used to create aDicke statemakes sure that J 0z〈 〉 = [47, 49]. Thus, (41) can give
an estimate on the fourthmoment, even if only the secondmoments aremeasured, under the assumption of a
Gaussian probability density.

Substituting (39) and (41) into (36), we obtain a formula that gives an upper bound on ( )2Δθ merely as a
function of J ,x

2〈 〉 Jz
2〈 〉 and .β It is reasonable to choose 3β = assuming aGaussian statistics for themeasurement

results of J .z figure 4(a) shows the two-dimensional plot which is obtained based on these considerations. The
regionswith various levels ofmultipartite entanglement can clearly be identified. The idealDicke state (11)
corresponds to the bottom-right corner. Infigure 4(b), the cross section of the two-dimensional plot is shown.
Note that calculations based only on the secondmoments give ametrological usefulness different from (38),
which used information also on the fourth ordermoments. Finally, also note that a figure similar tofigure 4(a)
appears in [53], wheremultipartite entanglement has been detected independently frommetrology.

6. Conclusions

Wehave discussed how to access themetrological usefulness of noisyDicke states for estimating the angle of
rotation.Our formula is able to verify themetrological usefulness without carrying out themetrological task.We
have demonstrated the use of our formula for recent experimental results. Themetrological usefulness can be
inferred frommeasurements of second and the fourthmoments of the x-component and the z-component of
the collective angularmomentumonly. In practice, the fourth-ordermoments can bewell approximated by the
second-ordermoments. After completing our calculations, we have recently become aware of a relatedwork by
Haine et al [69], which is based on the preliminarywork in [70], and obtains sensitivity bounds formetrology
with twin-Fock states.
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AppendixA.Details of the derivation of (16) and (17) using the symmetry (15)

In this appendix, we discuss howwe use the symmetry (15) to simplify our calculations.
First, let us see the numerator of (13). Based on (14), the dynamics of the second and the fourthmoments are

obtained, respectively, as

( )

{ }

{ } { }

{ } { }

J J J J J

J J J

J J J J

A B

J J J J J J J J J J

( ) cos sin , sin cos ,

( ) cos sin

, , cos sin

cos sin cos sin ,

where A , , B , . (A.1)

z z x z x

z z x

z x z x

z x z z x x x z z x

2 2 2 2 2

4 4 4 4 4

2 2 2 2 2

3 3

2 2

θ θ θ θ θ

θ θ θ

θ θ

θ θ θ θ

= + − 〈 〉

= +

+ +

− 〈 〉 − 〈 〉
= + = +

After calculating the terms in the numerator of (13), for the derivative in the denominator of (13)we obtain

( ) { } ( )J J J J J2 cos sin , cos sin . (A.2)z x z z x
2 2 2 2 2θ θ θ θ∂ = − + −θ

For calculating (A.2), we used the dynamics of of J ( )z
2 θ〈 〉 given in (A.1).

Let us use now the assumption (15) to simplify the equations (A.1) and (A.2). From (15) it follows that the
coefficients of all terms that are odd functions of θmust be zero. First, let us consider the equation giving the
dynamics of J ( )z

2 θ〈 〉 in (A.1).We realize that

{ }J J, 0 (A.3)z x =

must hold. Then, we set the coefficients of all other terms that are odd functions of θ to zero.Hence, from (A.1)
we arrive at (16). In a similar way, using (A.3), from (A.2)we arrive at (17).

Finally, as we discussed before, the experimentally prepared state has the symmetry (15), which is also an
assumption used to derive (21). Let us examine the case of an initial state ϱ that does not have this property. Let
us define now the state

, (A.4)z z
N

z
Nϱ σ ϱσ= ⊗ ⊗

Direct substitution of (A.4) into (A.1) shows that

J J

J J

( ) ( ) ,

( ) ( ) . (A.5)

z z

z z

2 2

4 4
z

z

θ θ

θ θ

〈 〉 = 〈 − 〉
〈 〉 = 〈 − 〉

ϱ ϱ

ϱ ϱ

Hence, the state

( )1

2
, (A.6)z

N
z

N
sϱ ϱ σ ϱσ= + ⊗ ⊗

obeys the symmetry (15).Note that the transformation (A.6) does not change the quantities in (18) and in (21).
Thus, in a sense with our schemewe get information on themetrological usefulness of the state ,sϱ that wewould
get after the trivialmixing operation (A.6).

Appendix B.Details of the calculations for (18)

In this appendix, we give further details of our calculations for obtaining (18). After straightforward but long
algebra based on commutation relations, the coefficient of the term cos sin2 2θ θ in (16) can be obtained as

{ }J J J J J J J J J J{ , } , 4 3 2 6 . (B.1)z x z x x y z z x z
2 2 2 2 2 2 2〈 〉 + = − − + 〈 〉

Then, based on (13), (16), (17), and (B.1), we canwrite the variance of the estimated parameter θ in the following
way
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( )
( ) ( )J J

J J
( )

cos sin cos sin

4 cos sin
, (B.2)

z x

x z

2

2 2 4 2 2 4 2 2

2 2 2
2 2


Δθ

Δ θ Δ θ θ θ

θ θ
=

+ +

−

where

J J J J J J J J4 3 2 6 2 . (B.3)x y z z x z x z
2 2 2 2 2 2 ≔ − − + 〈 〉 −

Simplifying and rearranging terms in (B.2), we arrive at (18). Note thatwithout the assumption (15), we could
not have obtained a formulawith so simple dependence on .θ

References

[1] Giovannetti V, Lloyd S andMaccone L 2004 Science 306 1330–6
[2] ParisMGA2009 Int. J. Quantum Inf. 07 125–37
[3] Demkowicz-Dobrzanski R, JarzynaMandKolodynski J 2015Prog. Opt. 60 345–435
[4] Pezze L and Smerzi A 2014Quantum theory of phase estimationAtom Interferometry (Proc. Int. School of Physics ‘Enrico Fermi’, Course

188, Varenna) edGMTino andMAKasevich (Amsterdam: IOS) pp 691–741
[5] Schaff J F, Langen T and Schmiedmayer J 2014 Interferometry with atomsAtom Interferometry (Proc. Int. School of Physics ‘Enrico

Fermi’, Course 188, Varenna) edGMTino andMAKasevich (Amsterdam: IOS) pp 1–87
[6] HelstromC1976QuantumDetection and Estimation Theory (NewYork: Academic)
[7] HolevoA 1982Probabilistic and Statistical Aspects of QuantumTheory (Amsterdam:North-Holland)
[8] Braunstein S L andCaves CM1994Phys. Rev. Lett. 72 3439–43
[9] Braunstein S L, Caves CMandMilburnG J 1996Ann. Phys. 247 135–73
[10] PetzD 2008Quantum information theory and quantum statistics (Berlin: Springer)
[11] TóthG andApellaniz I 2014 J. Phys. A:Math. Theor. 47 424006
[12] Pezzé L and Smerzi A 2009Phys. Rev. Lett. 102 100401
[13] Hyllus P, LaskowskiW,Krischek R, SchwemmerC,WieczorekW,WeinfurterH, Pezzé L and Smerzi A 2012 Phys. Rev.A 85 022321
[14] TóthG2012Phys. Rev.A 85 022322
[15] Hyllus P, GühneO and Smerzi A 2010Phys. Rev.A 82 012337
[16] Escher B, deMatos FilhoR andDavidovich L 2011Nat. Phys. 7 406–11
[17] Demkowicz-Dobrzański R, Koĺodyński J andGuţăM2012Nat. Commun. 3 1063
[18] LeibfriedD, BarrettM, Schaetz T, Britton J, Chiaverini J, ItanoW, Jost J, Langer C andWinelandD 2004 Science 304 1476–8
[19] NapolitanoM,KoschorreckM,Dubost B, BehboodN, Sewell R J andMitchellMWW2011Nature 471 486–9
[20] RiedelMF, Böhi P, Li Y,HänschTW, Sinatra A andTreutlein P 2010Nature 464 1170–3
[21] Gross C, Zibold T,Nicklas E, Estève J andOberthalerMK2010Nature 464 1165–9
[22] Demkowicz-Dobrzański R, BanaszekK and Schnabel R 2013Phys. Rev.A 88 041802
[23] Gross C 2012 J. Phys. B: At.Mol. Opt. Phys. 45 103001
[24] Hald J, Sørensen J L, Schori C and Polzik E S 1999Phys. Rev. Lett. 83 1319–22
[25] Fernholz T, KrauterH, JensenK, Sherson J F, SørensenA S and Polzik E S 2008Phys. Rev. Lett. 101 073601
[26] WasilewskiW, JensenK, KrauterH, Renema J J, BalabasMVandPolzik E S 2010Phys. Rev. Lett. 104 133601
[27] Sewell R J, KoschorreckM,NapolitanoM,Dubost B, BehboodN andMitchellMW2012Phys. Rev. Lett. 109 253605
[28] Appel J,Windpassinger P J,OblakD,HoffUB, KaergaardN and Polzik E S 2009Proc. Natl Acad. Sci. USA 106 10960–5
[29] Hammerer K, SørensenA S and Polzik E S 2010Rev.Mod. Phys. 82 1041–93
[30] Estève J, Gross C,Weller A, Giovanazzi S andOberthalerM2008Nature 455 1216–9
[31] OckeloenCF, Schmied R, RiedelMF andTreutlein P 2013Phys. Rev. Lett. 111 143001
[32] MuesselW, StrobelH, LinnemannD,HumeDB andOberthalerMK2014Phys. Rev. Lett. 113 103004
[33] KitagawaMandUedaM1993Phys. Rev.A 47 5138–43
[34] WinelandD J, Bollinger J J, ItanoWMandHeinzenD J 1994Phys. Rev.A 50 67–88
[35] SørensenA S andMølmer K 2001Phys. Rev. Lett. 86 4431–4
[36] Ma J,WangX, SunCP andNori F 2011Phys. Rep. 509 89–165
[37] Greenberger DM,HorneMA, ShimonyA andZeilinger A 1990Am. J. Phys. 58 1131
[38] Bouwmeester D, Pan JW,DaniellM,WeinfurterH andZeilinger A 1999Phys. Rev. Lett. 82 1345
[39] Pan JW, BouwmeesterD,DaniellM,WeinfurterH andZeilinger A 2000Nature 403 515
[40] Zhao Z, YangT, ChenYA, ZhangAN, ZukowskiM and Pan JW2003Phys. Rev. Lett. 91 180401
[41] LuCY, ZhouXQ,GühneO,GaoWB, Zhang J, YuanZ S, Goebel A, YangT and Pan JW2007Nat. Phys. 3 91–95
[42] GaoWB, LuCY, YaoXC, XuP,GühneO,Goebel A, ChenYA, PengCZ, ChenZB andPan JW2010Nat. Phys. 6 331–5
[43] Sackett C et al 2000Nature 404 256–9
[44] MonzT, Schindler P, Barreiro J T, ChwallaM,NiggD,CoishWA,HarlanderM,HänselW,HennrichMandBlatt R 2011 Phys. Rev.

Lett. 106 130506
[45] Urizar-Lanz I,Hyllus P, Egusquiza I L,MitchellMWandTóthG2013Phys. Rev.A 88 013626
[46] BehboodN,MartinCiurana F, ColangeloG,NapolitanoM, TóthG, Sewell R J andMitchellMW2014 Phys. Rev. Lett. 113 093601
[47] Lücke B et al 2011 Science 334 773–6
[48] Hamley C,GervingC,HoangT, Bookjans E andChapmanM2012Nat. Phys. 8 305–8
[49] Krischek R, SchwemmerC,WieczorekW,WeinfurterH,Hyllus P, Pezzé L and Smerzi A 2011 Phys. Rev. Lett. 107 080504
[50] Prevedel R, Cronenberg G, TameMS, PaternostroM,Walther P, KimMS andZeilinger A 2009 Phys. Rev. Lett. 103 020503
[51] Zhang Z andDuan LM2014New J. Phys. 16 103037
[52] Fröwis F andGisinN 2015 arXiv:1409.4440
[53] Lücke B, Peise J, VitaglianoG, Arlt J, Santos L, TóthG andKlemptC 2014Phys. Rev. Lett. 112 155304
[54] Werner R F 1989Phys. Rev.A 40 4277–81
[55] Horodecki R,Horodecki P,HorodeckiM andHorodecki K 2009Rev.Mod. Phys. 81 865–942
[56] Acín A, BrußD, LewensteinMand Sanpera A 2001Phys. Rev. Lett. 87 040401

11

New J. Phys. 17 (2015) 083027 I Apellaniz et al

http://dx.doi.org/10.1126/science.1104149
http://dx.doi.org/10.1126/science.1104149
http://dx.doi.org/10.1126/science.1104149
http://dx.doi.org/10.1142/S0219749909004839
http://dx.doi.org/10.1142/S0219749909004839
http://dx.doi.org/10.1142/S0219749909004839
http://dx.doi.org/10.1016/bs.po.2015.02.003
http://dx.doi.org/10.1016/bs.po.2015.02.003
http://dx.doi.org/10.1016/bs.po.2015.02.003
http://dx.doi.org/10.1103/PhysRevLett.72.3439
http://dx.doi.org/10.1103/PhysRevLett.72.3439
http://dx.doi.org/10.1103/PhysRevLett.72.3439
http://dx.doi.org/10.1006/aphy.1996.0040
http://dx.doi.org/10.1006/aphy.1996.0040
http://dx.doi.org/10.1006/aphy.1996.0040
http://dx.doi.org/10.1088/1751-8113/47/42/424006
http://dx.doi.org/10.1103/PhysRevLett.102.100401
http://dx.doi.org/10.1103/PhysRevA.85.022321
http://dx.doi.org/10.1103/PhysRevA.85.022322
http://dx.doi.org/10.1103/PhysRevA.82.012337
http://dx.doi.org/10.1038/nphys1958
http://dx.doi.org/10.1038/nphys1958
http://dx.doi.org/10.1038/nphys1958
http://dx.doi.org/10.1038/ncomms2067
http://dx.doi.org/10.1126/science.1097576
http://dx.doi.org/10.1126/science.1097576
http://dx.doi.org/10.1126/science.1097576
http://dx.doi.org/10.1038/nature09778
http://dx.doi.org/10.1038/nature09778
http://dx.doi.org/10.1038/nature09778
http://dx.doi.org/10.1038/nature08988
http://dx.doi.org/10.1038/nature08988
http://dx.doi.org/10.1038/nature08988
http://dx.doi.org/10.1038/nature08919
http://dx.doi.org/10.1038/nature08919
http://dx.doi.org/10.1038/nature08919
http://dx.doi.org/10.1103/PhysRevA.88.041802
http://dx.doi.org/10.1088/0953-4075/45/10/103001
http://dx.doi.org/10.1103/PhysRevLett.83.1319
http://dx.doi.org/10.1103/PhysRevLett.83.1319
http://dx.doi.org/10.1103/PhysRevLett.83.1319
http://dx.doi.org/10.1103/PhysRevLett.101.073601
http://dx.doi.org/10.1103/PhysRevLett.104.133601
http://dx.doi.org/10.1103/PhysRevLett.109.253605
http://dx.doi.org/10.1103/RevModPhys.82.1041
http://dx.doi.org/10.1103/RevModPhys.82.1041
http://dx.doi.org/10.1103/RevModPhys.82.1041
http://dx.doi.org/10.1038/nature07332
http://dx.doi.org/10.1038/nature07332
http://dx.doi.org/10.1038/nature07332
http://dx.doi.org/10.1103/PhysRevLett.111.143001
http://dx.doi.org/10.1103/PhysRevLett.113.103004
http://dx.doi.org/10.1103/PhysRevA.47.5138
http://dx.doi.org/10.1103/PhysRevA.47.5138
http://dx.doi.org/10.1103/PhysRevA.47.5138
http://dx.doi.org/10.1103/PhysRevA.50.67
http://dx.doi.org/10.1103/PhysRevA.50.67
http://dx.doi.org/10.1103/PhysRevA.50.67
http://dx.doi.org/10.1103/PhysRevLett.86.4431
http://dx.doi.org/10.1103/PhysRevLett.86.4431
http://dx.doi.org/10.1103/PhysRevLett.86.4431
http://dx.doi.org/10.1016/j.physrep.2011.08.003
http://dx.doi.org/10.1016/j.physrep.2011.08.003
http://dx.doi.org/10.1016/j.physrep.2011.08.003
http://dx.doi.org/10.1119/1.16243
http://dx.doi.org/10.1103/PhysRevLett.82.1345
http://dx.doi.org/10.1038/35000514
http://dx.doi.org/10.1103/PhysRevLett.91.180401
http://dx.doi.org/10.1038/nphys507
http://dx.doi.org/10.1038/nphys507
http://dx.doi.org/10.1038/nphys507
http://dx.doi.org/10.1038/nphys1603
http://dx.doi.org/10.1038/nphys1603
http://dx.doi.org/10.1038/nphys1603
http://dx.doi.org/10.1038/35005011
http://dx.doi.org/10.1038/35005011
http://dx.doi.org/10.1038/35005011
http://dx.doi.org/10.1103/PhysRevLett.106.130506
http://dx.doi.org/10.1103/PhysRevA.88.013626
http://dx.doi.org/10.1103/PhysRevLett.113.093601
http://dx.doi.org/10.1126/science.1208798
http://dx.doi.org/10.1126/science.1208798
http://dx.doi.org/10.1126/science.1208798
http://dx.doi.org/10.1038/nphys2245
http://dx.doi.org/10.1038/nphys2245
http://dx.doi.org/10.1038/nphys2245
http://dx.doi.org/10.1103/PhysRevLett.107.080504
http://dx.doi.org/10.1103/PhysRevLett.103.020503
http://dx.doi.org/10.1088/1367-2630/16/10/103037
http://arxiv.org/abs/1409.4440
http://dx.doi.org/10.1103/PhysRevLett.112.155304
http://dx.doi.org/10.1103/PhysRevA.40.4277
http://dx.doi.org/10.1103/PhysRevA.40.4277
http://dx.doi.org/10.1103/PhysRevA.40.4277
http://dx.doi.org/10.1103/RevModPhys.81.865
http://dx.doi.org/10.1103/RevModPhys.81.865
http://dx.doi.org/10.1103/RevModPhys.81.865
http://dx.doi.org/10.1103/PhysRevLett.87.040401


[57] GühneO, TóthG andBriegel H J 2005New J. Phys. 7 229
[58] Dicke RH1954Phys. Rev. 93 99–110
[59] EiblM, KieselN, BourennaneM,Kurtsiefer C andWeinfurterH 2004Phys. Rev. Lett. 92 077901
[60] HäffnerH et al 2005Nature 438 643–6
[61] Haas F, Volz J, Gehr R, Reichel J and Esteve J 2014 Science 344 180–3
[62] TóthG2007 J. Opt. Soc. Am.B 24 275–82
[63] TóthG,WieczorekW,Krischek R, Kiesel N,Michelberger P andWeinfurterH 2009New J. Phys. 11 083002
[64] HollandM J andBurnett K 1993Phys. Rev. Lett. 71 1355–8
[65] Kiesel N, SchmidC, TóthG, Solano E andWeinfurterH 2007Phys. Rev. Lett. 98 063604
[66] WieczorekW,Krischek R, KieselN,Michelberger P, TóthG andWeinfurterH 2009 Phys. Rev. Lett. 103 020504
[67] Chiuri A, Greganti C, PaternostroM,ValloneG andMataloni P 2012Phys. Rev. Lett. 109 173604
[68] Schindler P,MüllerM,NiggD, Barreiro J T,Martinez E,HennrichM,MonzT,Diehl S, Zoller P andBlatt R 2013Nat. Phys. 9 361–7
[69] Haine S A, Szigeti S S, LangMDandCaves CM2015Phys. Rev.A 91 041802
[70] Szigeti S S, Tonekaboni B, LauWYS,Hood SN andHaine S A 2014Phys. Rev.A 90 063630

12

New J. Phys. 17 (2015) 083027 I Apellaniz et al

http://dx.doi.org/10.1088/1367-2630/7/1/229
http://dx.doi.org/10.1103/PhysRev.93.99
http://dx.doi.org/10.1103/PhysRev.93.99
http://dx.doi.org/10.1103/PhysRev.93.99
http://dx.doi.org/10.1103/PhysRevLett.92.077901
http://dx.doi.org/10.1038/nature04279
http://dx.doi.org/10.1038/nature04279
http://dx.doi.org/10.1038/nature04279
http://dx.doi.org/10.1126/science.1248905
http://dx.doi.org/10.1126/science.1248905
http://dx.doi.org/10.1126/science.1248905
http://dx.doi.org/10.1364/JOSAB.24.000275
http://dx.doi.org/10.1364/JOSAB.24.000275
http://dx.doi.org/10.1364/JOSAB.24.000275
http://dx.doi.org/10.1088/1367-2630/11/8/083002
http://dx.doi.org/10.1103/PhysRevLett.71.1355
http://dx.doi.org/10.1103/PhysRevLett.71.1355
http://dx.doi.org/10.1103/PhysRevLett.71.1355
http://dx.doi.org/10.1103/PhysRevLett.98.063604
http://dx.doi.org/10.1103/PhysRevLett.103.020504
http://dx.doi.org/10.1103/PhysRevLett.109.173604
http://dx.doi.org/10.1038/nphys2630
http://dx.doi.org/10.1038/nphys2630
http://dx.doi.org/10.1038/nphys2630
http://dx.doi.org/10.1103/PhysRevA.91.041802
http://dx.doi.org/10.1103/PhysRevA.90.063630

	1. Inroduction
	2. Basics of quantum metrology
	3. Metrology with Dicke states
	4. Testing our bound on concrete examples
	5. Applications of the method to experimental data
	6. Conclusions
	Acknowledgments
	Appendix A.
	Appendix B.
	References



