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We extract the leading-order entropy of a four-dimensional extremal black hole in N = 2 ungauged 
supergravity by formulating the CFT1 that is holographically dual to its near-horizon AdS2 geometry, in 
terms of a rational Calogero model with a known counting formula for the degeneracy of states in its 
Hilbert space.
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1. Introduction

A successful statistical mechanical description of black-hole mi-
crostates constitutes one of the most precise tests of any purported 
theory of quantum gravity such as string theory. The most out-
standing insight to be gleaned from string theory can be formu-
lated in terms of the holographic AdS/CFT correspondence which 
establishes an isomorphism between the Hilbert space of quantum 
gravity in asymptotically AdS spaces and that of a conformal field 
theory living on the lower-dimensional boundary of the AdS space. 
Hence, non-perturbative objects in gravity such as black holes have 
a microstate description as thermal ensembles in the holographi-
cally dual theory. The least well understood of the well-studied 
AdS/CFT correspondences is the AdS2/CFT1 pair, where the dual 
conformal quantum mechanics is still an outstanding formulation 
problem in string theory. AdS2 is of more interest than just as a 
two-dimensional toy model of quantum gravity: Every extremal 
black hole in four dimensions possesses a near-horizon geome-
try that can be expressed as the direct product of a black hole 
in AdS2 and a spherical, planar or hyperbolic horizon of the four-
dimensional black hole. The deep-throat geometry of the AdS iso-
lates the constant modes in it from the asymptotic modes of fields 
in the black-hole background that affect the black-hole horizon and 
hence its entropy. In fact, the constant modes in the near-horizon 
geometry are fixed in terms of the quantum numbers of the black 
hole, and they are independent of their asymptotic values. This is 
the well known attractor mechanism displayed by these extremal 
black holes (see [1] and [2] and the references therein for a de-
tailed explication). The holographic Bekenstein–Hawking entropy 
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of the black hole is therefore determined purely by states in the 
near-horizon region. Hence, an encoding of these states in the dual 
conformal quantum mechanics attains significance in identifying 
the holographically dual conformal quantum mechanics and count-
ing the microstates of the black hole. In this article, we look at 
the induced worldline superconformal quantum mechanics of an 
n-particle BPS system moving in the background of a black-hole in 
AdS2. This quantum mechanics has a reformulation [3] in terms of 
an n-particle rational Calogero model (of type An−1),1 and we ar-
gue that this encodes the thermal-ensemble states corresponding 
to the black hole in the holographically dual CFT1. We justify this 
assertion by counting the large-charge degeneracy of states in this 
model to arrive at the Bekenstein–Hawking entropy of the dual 
black hole in AdS2.

2. Calogero dynamics and extremal black holes

The near-horizon geometry of a zero-temperature BPS black-
hole solution in four-dimensional ungauged supergravity is a black 
hole in AdS2 × S2, whose geometry is described as

ds2 = − r2 − �2

b2∗
dt2 + b2∗

r2 − �2
dr2 + b2∗d�2

2 . (2.1)

We restrict ourselves to only bosonic backgrounds in the theory. 
The scalar fields φi that make up the moduli space in this back-
ground and do not correspond to flat directions of the scalar po-
tential are driven to a critical point of this potential. They flow 
from the asymptotically flat space to the near-horizon geometry, 
and their extremum values φi∗ are fixed entirely in terms of the 
quantum numbers of the system, independent of the asymptotic 

1 See also [4,5] for recent related work.
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starting values. Hence, the near-horizon geometry acts as an at-
tractor in the moduli space. The common radius of the AdS2 and 
S2 spaces is the modulus |Z | of the central charge Z of the super-
symmetry algebra and, by the BPS condition, equal to the mass 
M(φi) of the black hole. Both are computed at a point in the 
asymptotic moduli space coinciding with the attractor point. The 
three U-duality invariants characterizing the black hole can hence 
be summarized as

M(φ∗) = |Z(φ∗)| = b∗ . (2.2)

As our model system, we consider a bound state of D0 and D4 
branes wrapped on a C Y3 × T 2 to produce a four-dimensional dy-
onic black solution. In the M-theory picture, this can be viewed 
as a collection of particle momenta on the M-theory circle S1

M
with intersecting M5 branes wrapping a (4-cycle in C Y3) × S1

M . 
As the near-horizon geometry decouples from the asymptotically 
flat space, the states contributing to the black-hole entropy must 
be localized in this region. Hence, probing the Hilbert space of 
these states will yield a count of the black-hole microstates from 
a statistical mechanics perspective. As mentioned in the previous 
section, the Hilbert space of quantum gravity in the near-horizon 
AdS2 geometry can be formulated in terms of states in the holo-
graphically dual CFT1 which implies that the black-hole degeneracy 
must be reproducible in terms of the counting formula for states 
in this conformal quantum mechanics. We therefore need a pro-
posal for identifying the microstates of the AdS2 black hole in a 
conformal quantum mechanical theory. One such proposal for con-
ducting such an analysis is motivated by the observation that this 
system belongs to the special class of BPS black holes which can 
be lifted up to five dimensions to yield a near-horizon geometry 
of a BTZ black hole in AdS3 × S2. The holographic correspondence 
with the two-dimensional BCFT is well understood in this case, 
and the black hole can be thought of as a chiral-ensemble excita-
tion in the CFT, with the central charge defined by the D4 branes 
and with the CFT excitation number of the black hole being equal 
to its mass. Hence, in the ‘black hole in AdS2’ scenario, we are 
motivated to consider the black hole as an excitation about AdS2, 
described in terms of degrees of freedom that can be encoded in 
terms of a superconformal quantum mechanics. This suggests that 
the black hole is naturally represented as a halo of n BPS particles 
moving in the AdS2 background. These particles are governed by 
a superconformal quantum mechanics, with a target space that is 
the symmetric product of AdS2 and S2. This is a putative formula-
tion of the holographically dual CFT. We proceed to delineate this 
connection below.

3. AdS2–Calogero correspondence

3.1. Rational Calogero from AdS2

Gravity in two dimensions is a conformal quantum field theory 
living on a strip. States in this theory are in a one-to-one cor-
respondence to those defined in the BCFT, which in this case is 
also the holographically dual field theory. This field theory is in 
fact some superconformal quantum mechanics and must encode 
all the bulk states. A single particle moving in the AdS background 
is described by a superconformal quantum mechanical worldline 
theory. For a scalar particle, in the large-radius limit of an AdS ge-
ometry, parametrized in the Poincaré patch via

ds2 = − R4

4
dt2 + R2 dq2

2
, (3.1)
q q
this is the rational 2-body Calogero model, with the Hamiltonian2

H = p2

2
+ λ2

q2
, (3.2)

where λ is proportional to the angular momentum Casimir of the 
particle in four dimensions. The energy must be evaluated with 
respect to the AdS global time coordinate, where the Killing vector 
is smooth everywhere, and the Hamiltonian for this coordinate is 
given by

H = p2

2
+ λ2

q2
+ ω2 q2

2
, (3.3)

with an undetermined non-zero force constant ω. The addition of 
the last term arises by passing from the Poincaré time t to the 
global time τ , which are related as

∂τ = ∂t + ω2 K , (3.4)

where K is the special conformal transformation generator of the 
SO(2, 1) isometry group of AdS2, given by K = 1

2 q2 in the large-R
limit. The ground-state wave function in this case reads

ψ(q) = qα e−ω2q2/4 where α = 1
2

(
1 +

√
1 + 4λ2

)
. (3.5)

Hence, the particle has no support at the center of AdS, and its 
wave function is localized farther out. The limiting value of the 
wave function at the boundary acts as a local insertion on the 
BCFT and, hence, defines the operator in the BCFT corresponding 
to some state in the bulk. As a consequence, a state corresponding 
to an excitation in AdS2 can be mapped to a superparticle mov-
ing in the bulk and such states can be organized in terms of the 
asymptotic symmetry group of AdS2. Thus, we can regard the black 
hole as an ensemble of n BPS particles in AdS, which define a su-
perconformal quantum mechanics with a target space given by n
symmetrized copies of AdS2 × S2. In the fully symmetric sector, 
the SU(2) R-charge of the superconformal quantum mechanics will 
be simply the common R-charge of the n particles multiplied by n. 
It follows that the angular momentum matrix of this system is a 
multiple of the identity matrix.

Quantizing the spectrum of this system will generate the 
Hilbert space that counts the entropy of the BPS black hole. To 
this end, we observe that, in our chosen model of the dyonic 
black hole as a supersymmetric D0–D4 bound-state ensemble, the 
microstate counting is essentially a field-theory computation of 
the Witten index for n particles. Their momenta are equal to the 
D0-brane quantum numbers in the two-dimensional worldvolume 
theory of intersecting M5 branes on C Y3 × S1

M , at a point in the 
moduli space corresponding to V C Y3 � R S1

M
. This theory is sim-

ply two-dimensional SU(n) super Yang–Mills on a cylinder,3 which 
has been shown in [7] to be equivalent to an n-particle rational 
Calogero model governed by the Hamiltonian

H =
∑

i

p2
i

2
+

∑
i< j

λ2

(qi − q j)
2

. (3.6)

As in the single-particle case, the spectrum of the system is com-
puted with respect to the global time τ , and the corresponding 
Hamiltonian can be related to the Schwarzschild-time Hamiltonian 
by adding the superconformal generator K . This introduces a con-
fining harmonic well to the rational Calogero model,

2 See [3] and [6] for a detailed exposition.
3 See [3] and the references therein for details.
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H =
∑

i

p2
i

2
+

∑
i< j

λ2

(qi − q j)
2

+ ω2
∑

i

q2
i

2
. (3.7)

In the Higgs limit where the spacing between the positions of all 
particles vanish and all the particles are driven to the origin of 
the coordinate system, the analysis of the ground states is simi-
lar to that of the single-particle system, and so the discussion for 
the single-particle case goes through for the multi-particle system. 
Hence, this model offers a putative formulation of the CFT1 re-
quired to count the large-charge leading-order black-hole entropy. 
We now proceed to show how this model encodes the vacuum 
states of the holographically dual quantum mechanics and how the 
AdS2 geometry emerges in the bulk by analyzing the flow of the 
ground state in the space of its coupling constants. We test this 
model by deriving the degeneracy formula for this system.

For the purposes of the ensuing discussion and noting that for 
the N = 2 D0–D4–D4–D4 system, the SU(2) R-symmetry is iden-
tified with the SU(2) group of rotations in four dimensions, we 
see that all microstates of this static spherically symmetric system 
have the same fermion number, and hence the Witten index is the 
same as the full partition function. Therefore, in order to derive 
the Bekenstein–Hawking entropy for theses systems, we concen-
trate on the bosonic part of the Calogero model. The BPS particles 
are then simply assumed to be extremal particles with a unit ratio 
of mass to charge and with a mutual Coulomb interaction.

3.2. AdS2 from Calogero

How may an asymptotically AdS2 bulk background arise from a 
rational Calogero model? It is necessary to check that the ground 
state of this model in some limit (corresponding to approaching 
the boundary, i.e. q → 0) must move in the space of coupling 
constants of the deformed model, such that this state feels the 
vacuum geometry of the bulk gravity theory, namely AdS2. The 
metric it should see is nothing but the Fischer information met-
ric for the ground-state wave function of the deformed Calogero 
Hamiltonian (3.3), given by

ψ(q,α,ω) = A qαe−ω2q2/2

where A2 = (2α+1)(ω
2 )2α+1 . (3.8)

In the limit of q → 0, the wave function can be approximated to 
leading order by

ψ(q,α,ω) = A qα for 0 ≤ q ≤ 2
ω , (3.9)

while all higher-order deformations of the Hamiltonian can be ne-
glected. This yields a two-parameter space graded by α and ω. The 
Fischer information metric for a space parametrized by n variables 
� = (θi), with i = 1, . . . , n, is given as

gθiθ j =
2
ω∫

0

dq q2α ∂θi log |ψ(q,�)|2 ∂θ j log |ψ(q,�)|2 |ψ(q,�)|2,

(3.10)

where |ψ(q, �)|2 is the probability density on the wave-function 
space. The Fischer metric on the two-dimensional space under 
consideration is computed explicitly to be

ds2 = α̃−2(dα̃2 + ω−2dω2) where α̃ = 1

2α+1
. (3.11)

Hence, to summarize, if one considers a deformation of the con-
formal Calogero Hamiltonian by a harmonic oscillator term which 
initiates a flow in the space of coupling constants, then in the limit 
of q → 0, to observe the change in the ground state, we need to 
consider only the quadratic deformation so as to obtain a two-
dimensional space of coupling constants. The latter is found to be 
essentially Euclidean AdS2.4 This explicitly goes to show that the 
flow of the ground state in the space of relevant coupling con-
stants, near the boundary of AdS2, falls into a representation of the 
SL(2, R) symmetry group that annihilates the vacuum of the dual 
CFT1. Hence, we now have a dynamical model which is a putative 
candidate for counting the degrees of freedom of the holograph-
ically dual CFT1. We now run our first check of this counting by 
computing the degeneracy of states in the spectrum of this Hamil-
tonian, dual to the ground state of a BPS particle moving in the 
background of a black hole in AdS2.

4. Degeneracy from the Calogero Hamiltonian

The presence of the harmonic oscillator discretizes the n-body 
spectrum in (3.7) so that it acquires energy eigenvalues [8,10],

En(m) = ω
(

f (λ) + n
2 + m

)
with m ∈ Z≥0 . (4.1)

In the above, f (λ) is a linear function of λ. Here, the quantum 
number m is actually partitioned into positive-integer parts of 
maximum size n,

m = m1 + m2 + m3 + . . . with mr ∈ {1,2, . . . ,n} , (4.2)

which determines the multiplicity of En(m) to be the number 
pn(m) of correspondingly restricted partitions of m. Its generating 
function reads [11]

∑
m

pn(m)qm =
∏

1≤k≤n

1

(1 − qk)
with q = e−β . (4.3)

Here, β is the periodicity of the Euclidean time circle and (up to
numerical factors) equal to the inverse of the black-hole tempera-
ture. We work in the large-n limit, which implies pn(m) → p(m)

and simplifies the generating function to

∑
m

p(m)e−βm =
∏
k∈N

1

(1 − qk)
= 1

η(β)
e

πβ
24 . (4.4)

The asymptotic growth of p(m) can be obtained by a saddle-point 
approximation of the Laplace transform of the degeneracy formula, 
in the low β limit, and by using the transformation property of the 
Dedekind η function under Poisson resummation to give

p(m) ≈ e
2π

√
m
6 , (4.5)

where the approximation sign indicates a suppression of all 
quadratic corrections to the saddle point and of other sublead-
ing terms. As the system we are studying exhibits no classical 
mass gap,5 we need to pick the largest possible Euclidean time 
periodicity to define the Euclidean temperature, and hence we 
take the Euclidean periodicity to be 2πn

ω . This is equivalent to 
rescaling ω in the spectrum by a factor of n and demanding that 
we count only eigenvalues with m being integral multiples of n. 
Therefore, in the above expression, m should actually be replaced 
by mn.

4 As α > 1
2 , this is not a complete Poincaré patch, since 0 ≤ α̃ < 1

2 . However, in 
what follows, we will simply refer to it as the Poincaré patch and leave the inherent 
subtleties in this metric for future study.

5 This is completely consistent with looking at the most symmetric sector of the 
theory.
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Now, let us consider the physically relevant values of this model 
for the black-hole statistical mechanics. Essentially, we are count-
ing a Witten index on the full Hilbert space of the system, and 
so we should be looking at the ground-state degeneracy. The full 
conformal quantum gravity has a net central charge of zero, which 
is the sum of the conformal anomalies due to diffeomorphisms, 
ghosts and matter. As the matter content in the black-hole back-
ground does not differ from that of ‘empty’ AdS, the matter contri-
bution to the stress tensor is the same in both cases, and hence the 
only matter contribution to the stress tensor can come from modes 
which are fully annihilated by the complete SO(2, 1) isometry of 
the AdS2 vacuum. This fixes the excitation quantum number to

m = c

24
. (4.6)

Another argument for the above relation can be put forward 
as follows. The ground-state degeneracy we are counting is in the 
black-hole background, while the Calogero spectrum has been eval-
uated in the Poincaré patch of AdS2. A conformal transformation 
can be used to map the ground state of the black-hole back-
ground to that of the Poincaré patch. Under this transformation 
the stress tensor picks up an inhomogeneous term coming from 
the Schwartzian derivative, which raises the ground-state energy 
by an amount of c

24 in the Poincaré patch [12]. Here, c is the 
ground-state Casimir energy or central charge of the holographi-
cally dual CFT. From a dual CFT perspective, this implies that all 
such black holes must have a Casimir energy equal to c

24 , implying 
again that m = c

24 .
The number n of particles in the Calogero model is equal to the 

number of degrees of freedom of the CFT1 and thus equal to c. 
Consequently, mn = c2

24 , and the leading-order contribution to the 
black-hole entropy is found to be

S = 2π

√
c2

6 × 24
= 2π

c

12
, (4.7)

which matches the standard Bekenstein–Hawking black-hole en-
tropy of the four-dimensional black hole reduced on the two-
sphere in the near-horizon geometry [13]. Note that the relevant 
degrees of freedom that go into the computation of the black-
hole entropy can be interpreted as the degrees of freedom of the 
AdS vacuum that the black-hole observer does not see, result-
ing in an entanglement entropy. Hence, one can extract leading-
order information about the microstate description of bulk states 
in AdS by using general properties of an equivalent formula-
tion of the BCFT in terms of a known superconformal Calogero 
model.

5. Discussion and conclusions

The formulation of a holographic dual to quantum gravity in 
AdS2 has been the least well understood of the frequently analyzed 
gauge–gravity correspondences. Concurrently, extremal black holes 
in four dimensions with a near-horizon geometry have a density 
of states that is related to the square root of the energy, reflecting 
an underlying degeneracy of microstates that is captured by a CFT2
as opposed to a CFT1. This article builds upon a proposed formu-
lation in [3] of the microstates of a black hole in AdS2 in terms of 
the worldline quantum mechanics of conformal Calogero particles 
in AdS2.

The AdS2 factor in the near-horizon geometry of all extremal 
black objects produces a universal expression for black-hole en-
tropy in terms of the two-dimensional central charge. The specific 
details of the model, including supersymmetry and rotations, go 
into the definition of the two-dimensional central charge. A paral-
lel situation exists in the case of black holes which can be lifted, 
at an appropriate point of their asymptotic moduli space, to five 
dimensions to get AdS3 near-horizon geometries. The correspond-
ing expression for the central charge in terms of the geometri-
cal length scale of AdS3 is obtained by a KK uplift along a third 
compact direction of the AdS2. The extra information involving, 
say, a U(1) charge corresponding to translation along this com-
pact direction is encoded in the definition of the three-dimensional 
Newton constant. Similarly, though the actual computation of the 
dependence of the entropy on the charge quantum numbers for 
any given system involves a model-dependent computation of the 
central charge, the relation between the Bekenstein–Hawking en-
tropy and the two-dimensional central charge is universal and 
is derived here. There is, by now, a rich body of literature ex-
plaining macroscopic counting in AdS2 with Sen’s entropy func-
tion and, for BPS black holes, a quantum entropy function con-
struction. For details on the supergravity backgrounds referred to 
here and on the corresponding macroscopic analysis see, for in-
stance, [9].

One may wonder about the isospectrality of the Calogero model 
to a set of decoupled harmonic oscillators and conclude that the 
latter could be argued to capture dynamics in AdS2. However, 
isospectrality is only about the energy eigenvalues. The wave func-
tions of the Calogero model differ from those of decoupled har-
monic oscillators, and the momentum operator is modified to the 
Dunkl operator. So, although the degeneracy of the black hole 
could be derived as a quaint numerology from a collection of har-
monic oscillators, the Calogero model arises naturally by studying 
the Hamiltonian governing geodesics in the near-horizon geom-
etry of the black hole. One is neglecting the particle motion in 
the angular directions, which is related to the mass gap of the 
angular excitations in a near-horizon geometry, allowing us to fo-
cus on an s-wave-like mode. The spectrum of this model is then 
used to compute the degeneracy after a motivated identification of 
the quantum numbers with relevant quantities of the black-hole 
background. Some of these arguments have been outlined before 
by [12], but the notion of computing the entropy by purely using 
the modular properties of the function in the large-n limit, without 
actually employing a two-dimensional Cardy formula, is genuinely 
a more rigorous approach.

The paper looks at the bosonic part of the super-Hamiltonian of 
a superparticle moving about in an AdS2 background. This is con-
sistent with the construction of black solutions in a purely bosonic 
subsector of superstring theory by suppressing the fermionic fields. 
Further, for static supersymmetric black holes in four dimensions, 
the identification of the R-charge with the angular momentum 
quantum number renders the Witten index calculation to be sim-
ply a count of ground states with the same fermion number, and 
hence, an effective partition function for the ground states. For a 
generic non-supersymmetric AdS2 background, we will of course 
have to compute the real partition function for the theory, which 
is a more involved problem and not being considered here. A de-
tailed microscopic calculation including subleading corrections will 
require precise identification of the fermionic constituents and also 
an analysis of the role played by various aspects of AdS2 dynamics 
such as fragmentation.

In sum, the purpose of the paper is to model the entropy of 
states in AdS2 as coming from the conformal quantum mechan-
ics on the boundary. The wave function of the particles moving 
in AdS2 have no support at its origin, and their support on the 
boundary can be thought of as operators on the BCFT. Hence, we 
model microstates of the black hole as constituents in the Hilbert 
space of light electric branes such as D0 branes moving about in 
a heavy magnetic background like D4 branes which backreact to 
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produce an AdS2 near-horizon geometry. Motivated by this, the 
boundary theory that is holographically dual to a black hole in 
AdS2 is conjectured to be precisely the theory of the n-particle 
system moving in AdS2. We give evidence for this conjecture by 
first computing ab initio the leading-order Bekenstein–Hawking 
component of the black-hole entropy and then verifying that the 
metric on the space of ground-state wave functionals of the theory 
is precisely AdS2. The degeneracy of states in this model accu-
rately reproduces the Bekenstein–Hawking entropy without taking 
recourse to viewing the underlying CFT as the chiral half of a two-
dimensional CFT or implementing the Cardy formula. The accuracy 
of the computation indicates that this formulation offers a putative 
way to understand quantum gravity in AdS2 and opens avenues for 
new checks on the gauge–gravity correspondence in two dimen-
sions.

If the Calogero model is to be dual to string theory in AdS2, 
then the metric on the space of coupling constants, as generated 
by the flow of generic states in this space, must be the emergent 
bulk metric of the geometry in which the motion of a BPS parti-
cle is governed by the worldline Hamiltonian that includes those 
couplings. The background so derived is dual to the states whose 
flow is under consideration. We have already demonstrated this 
for the vacuum state as a necessary condition for this theory to 
be a holographic candidate for AdS2. Investigating the Fisher infor-
mation metric on the full Hilbert space of the Calogero model, by 
which bulk geometry emerges from superconformal quantum me-
chanics, might yield further insights into gauge–gravity duality in 
two as well as in higher dimensions.

Finally, to extend this holographic dictionary, one needs to 
map phenomena in AdS2 such as AdS fragmentation in terms of 
Calogero models, understand subleading corrections in terms of 
the holographically dual theory. We leave this for ongoing and fu-
ture work.
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