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Abstract

Coffee berries are known to release several volatile organic compounds, among which is the spiroacetal, conophthorin, an
attractant for the coffee berry borer Hypothenemus hampei. Elucidating the effects of other spiroacetals released by coffee
berries is critical to understanding their chemo-ecological roles in the host discrimination and colonization process of the
coffee berry borer, and also for their potential use in the management of this pest. Here, we show that the coffee berry
spiroacetals frontalin and 1,6-dioxaspiro [4.5] decane (referred thereafter as brocain), are also used as semiochemicals by the
coffee berry borer for host colonization. Bioassays and chemical analyses showed that crowding coffee berry borers from 2
to 6 females per berry, reduced borer fecundity, which appeared to correlate with a decrease in the emission rates of
conophthorin and frontalin over time. In contrast, the level of brocain did not vary significantly between borer- uninfested
and infested berries. Brocain was attractive at lower doses, but repellent at higher doses while frontalin alone or in a blend
was critical for avoidance. Field assays with a commercial attractant comprising a mixture of ethanol and methanol (1:1),
combined with frontalin, confirmed the repellent effect of this compound by disrupting capture rates of H. hampei females
by 77% in a coffee plantation. Overall, our results suggest that the levels of frontalin and conophthorin released by coffee
berries determine the host colonization behaviour of H. hampei, possibly through a ‘push-pull’ system, whereby frontalin
acts as the ‘push’ (repellent) and conophthorin acting as the ‘pull’ (attractant). Furthermore, our results reveal the potential
use of frontalin as a repellent for management of this coffee pest.
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Introduction

The coffee berry borer (Hypothenemus hampei) [Scolytinae:

Coleoptera] is the most important and damaging pest of

commercial coffee [1], causing losses greater than US$ 500

million annually, and threatening the livelihoods of 100 million

small-holder farmers worldwide. Given the cryptic nature of the

pest [2], non-selective pesticides provide the main method of

effective control [3]. However, the development of insecticide

resistance in the pest and the growing environmental concerns of

synthetic chemical pollutants [4,5] has led to the search for

alternative sustainable control strategies for the pest including the

use of semiochemicals [1]. An example of a semiochemical that

has been tested as a mass-trapping lure for the coffee berry borer

with limited success is a 1:1 mixture of methanol and ethanol. To

improve upon this, a better understanding and exploitation of the

behaviour and chemical ecology of the coffee berry borer is

required. For example, in previous behavioural studies, while

females were attracted to healthy ripe coffee berries, borer-infested

berries repelled them [6]. Also, colonizing females were found to

hardly share a host [1,7]. These observations suggest the

involvement of a female host marking pheromone (HMP) or

berry-induced defensive/repellent compounds affecting conspecif-

ics. In scolytinae species, this characteristic behaviour is commonly

referred to as ‘maximum attack density’ (MAD), and it involves

attack on a unit area of a host in a uniform pattern to enhance

spacing for reproduction by individual pest during the host

colonization process [8–10]. In some scolytid species, once the

host’s threshold population has been reached, then allomones and

pheromones are produced to signal to conspecifics to search for

healthy hosts. Therefore, it is desirable to explore whether a

similar interaction occurs between the coffee berry borer and its

coffee berry host.

Previous studies suggested that host finding in the coffee berry

borer is regulated by olfactory cues and several coffee berry

volatile organic compounds were identified as semiochemicals for

the borer [11–12]. Among these are chalcogran, verbenone, a-

pinene, and the spiroacetals conophthorin, 1,6 dioxaspiro [4.5]
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decane (brocain) and frontalin. Of the three spiroacetals, frontalin

is a multifunctional pheromone particularly amongst Dendrocto-
nus spp; as a spacer, and both an aggregation and an anti-

aggregation pheromone as well as a sex pheromone [13–17].

While conophthorin is an attractant for the coffee berry borer

[12], the behavioural significance of 1,6-dioxaspiro [4.5] decane

(brocain) and frontalin, both of which elicit antennal activity in the

insect [12] is unknown. We have expanded on these findings and

here we present results of laboratory and field studies on the effect

of these two specific spiroacetals in the host colonization process by

H. hampei, with emphasis on their potential use in the

management of this pest.

Materials and Methods

Insects
Females of the coffee berry borer used in the experiments were

obtained from a colony maintained in the laboratories of the

International Centre of Insect Physiology and Ecology (icipe),

Duduville campus, Nairobi, Kenya. The insects were reared using

a technique developed by Jaramillo et al. [18], which utilizes fresh

coffee berries in order to closely mimic field conditions. The borers

were reared on 150 days old coffee berries (C. arabica var. Ruiru

11) collected from a plot in a privately owned coffee plantation in

Kiambu (Central province), Kenya. The colony was kept at room

temperature (2561uC), 70%65% relative humidity [RH], and a

12:12 h (L: D) photoperiod. Infested berries were kept inside

square plastic containers (40 x 40 x 20 cm) with perforated lids

(55 mm diameter) covered with insect gauze. The bottom of each

container was layered with a 2 cm mixture of plaster of Paris and

activated charcoal to maintain humidity and to prevent the

desiccation of berries and insects.

Study site
Laboratory experiments were carried out at the International

Centre of Insect Physiology and Ecology (icipe), Duduville campus,

Nairobi, while field tests were carried out in Kiambu, Central

Province of Kenya (1u 119 27.150 S; 36u 499 23.030E. altitude

1,722 m.a.s.l). No specific permissions were required for field

study/collections. The field studies did not involve endangered or

protected species. The owner of the land gave permission to

conduct the study on this site.

Coffee berries
For all the experiments, organically grown coffee berries (Coffea

arabica L. var. Ruiru 11) were collected from Kiambu district,

Central Kenya (see above). Berries of approximately 150 days old

(yellow/orange exocarp stage), the most attractive developmental

stage to H. hampei [19], were randomly sampled in the field. They

were excised directly from coffee tree branches without hand

contact, using a sterile scalpel blade No. 21.

Chemicals
Authentic standards of frontalin (1,5-dimethyl–6,8-dioxabicy-

clo[3.2.1]octane), purity $98%, was purchased from ConTech

Inc. (USA); (5S,7S)-conophthorin, and 1,6- Dioxaspiro[4.5]de-

cane (herein called brocain) (purity 97%) was provided by Prof.

Wittko Francke, University of Hamburg, Germany.

Preliminary laboratory experiments
For H. hampei berry infestation, four different stages of attack

are recognized [20]. (A), onset of female colonization of a new

berry but without penetration of the exocarp; (B), penetration of

the berry exocarp, but without reaching the endosperm; (C),

boring into the endosperm and gallery construction with no

oviposition; and (D), gallery construction accomplished, oviposi-

tion, and one or more immature stages present inside the gallery.

In this study, we observed that H. hampei females spent approx. 1–

2 hrs, 6–8 hrs, 10–12 hrs and 6–15 days to attain infestation stages

A, B, C and D respectively.

To investigate the volatile composition associated with coffee

berries in the different stages of infestation by H. hampei females,

we carried out preliminary assays as follows: Field-collected,

infested and uninfested coffee berries in the orange-red exocarp

stage (see above), were placed in separate sterile cylindrical glass

jars (0.5 L) with single-port lids (Analytical Research Systems INC,

Gainesville, FL, USA) and transported to the laboratory.

Headspace volatiles were collected from both the uninfested (101

berries, ,170 g) and berries (50 berries, ,83 g) in advanced

infestation stage. Two equal aliquots were prepared from the

-uninfested coffee berry sample, of which one was subjected to

headspace volatile collection and the other artificially infested with

three H. hampei females per berry. Infestation stages B and C were

obtained after 10 hrs of infestation, as described above. Volatiles

were collected from this sample as well as frass (,3 g).

GC-MS analyses of the volatiles of the above samples identified

(5S,7S)-conophthorin as the major component (figure S1), with

frontalin detected in relatively lower levels (figure S1). In

subsequent analysis, (5S, 7S)-conophthorin and frontalin were

identified at varying levels as H. hampei infestation advanced

inside the berries, with the least levels detected in the frass. These

results guided experimentation to investigate the two spiroacetals

emission rates as a function of the number of initial colonizing

females infesting each coffee berry, different infestation stages and

the number of life stages inside berries as described below.

H. hampei life stages versus spiroacetals produced by
berries infested with different colonizing numbers of H.
hampei females

To investigate the volatile composition associated with coffee

berries in different stages of infestation by different numbers of

colonizing H. hampei females, randomly sampled and field-

collected uninfested berries in the yellow-orange exocarp stage

were checked for infestation. Only uninfested berries of uniform

shape and weight were used for subsequent experiments. A total of

1200 berries were used. The berries were divided into 3 groups,

(400/group) and placed in round plastic containers (23 cm

diameter 66.8 cm depth) and exposed to different numbers of

H. hampei females: group 1: two H. hampei females per berry

(total number of females, 800); group 2: four H. hampei females

per berry (total number of females, 1600); group 3: six H. hampei
females berry (total number of females, 2400). After infestation, the

different berry groups were transferred into different rearing

containers, and kept in temperature-controlled climate chambers

(SANYO MIR-553, Sanyo Electrical Ltd., Japan) set at 26uC,

65% RH, and a 12:12 h (L: D) photoperiod. To maintain the

humidity inside the containers, distilled sterile water was added

every three days.

Half of the berries in each group (200 berries) were kept for

dissections and counting of the different H. hampei life stages

inside them. Volatiles were collected from the other half of the

berries (200). Both, the dissections and headspace volatile

collections for each group were carried out after 2, 5, 15 and 30

days after the initial infestation of the berries.

For the dissections, 48 berries per evaluation time were selected

(8 berries per 6 replicates) were destructively sampled under the

stereomicroscope. The numbers of live and dead H. hampei
colonizing females as well as their infestation stage (A, B, C and D)
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and number of beetle life stages (i.e., eggs, larvae, pupae and

adults) were assessed.

Headspace volatile collection
Headspace volatiles were collected from the H. hampei infested

coffee berries for each of the H. hampei stages of infestation inside

the berry, 2, 5, 15 and 30 days after the initial infestation for each

group (2, 4 and 6 H. hampei females/berry). Volatiles were

collected for 36 hr from each odour source by aeration and

adsorption on pre-cleaned (methanol, dichloromethane, pentane,

nitrogen-dried) charcoal filters (5 mg; Part No. 91006015; Brech-

bühler, Schlierensee, Switzerland). Each filter was connected by

PVC tubing (Masteflex. 06409-15 Tygon mfg by St. Gobain) to a

mobile battery operated pump (PAS-500 Personal Air Sampler,

Supelco, Bellefonte, PA, USA), which pulled volatiles through the

filter at a flow rate of 348 ml/min. All the filters were eluted with

100 mL of GC-grade dichloromethane (Sigma Aldrich, Gilling-

ham, UK), and the eluents were stored at 280uC in a 200 ml

microtube vial insert placed inside a 1.5 ml glass vial (Sun Sri, TN,

USA) with a PTFE lined cap prior to analysis.

Analysis of volatiles
Volatile extracts were analysed using coupled gas chromatog-

raphy-mass spectrometry (GC-MS) on an Agilent Technologies

7890A GC linked to a 5795C MS, equipped with MSD

ChemStation E.02.00.493, and Wiley 9th/NIST 2008 MS library

and a HP5 MS column (30 m x 0.25 mm iD). The temperature

program was 5 min at 35uC, then 10uC/min to 280uC. An aliquot

(1 ml) of each volatile extract was analysed in the splitless mode,

using helium as a carrier gas at a flow rate of 1.0 ml/min. Spectra

were recorded at 70 eV in the electron impact (EI) ionisation

mode, and emission current of 34.6 mA. Compounds in the

volatiles were identified by comparing their mass spectra with

those in the library (NIST/EPA/NIH Mass spectral Library

2005a version V2.od). Unambiguous structure assignments were

based on co-injection with authentic standards.

Behavioural assays
Behavioural responses of H. hampei were tested in three

different experiments, comprising a Y-tube olfactometer with an

air-flow, and a Petri-dish arena in still air, both carried out in the

laboratory, and in field trials as follows:

a) Experiment 1: Y- tube Olfactometer. This assay was

carried out in a Pyrex glass Y-tube olfactometer (10 mm i.d; stem

85 mm; arms 75 mm at a 60u angle to the stem) (Analytical

Research Systems INC, Gainesville, FL, USA). Solutions for each

compound were formulated in dichloromethane to dissolve the

chemicals. The Y-arms of the olfactometer were attached with

PVC tubing (Masteflex. 06409-15 Tygon, St. Gobain) to a sealed

glass odour source chamber (internal volume 50 ml) supplied with

charcoal-filtered and humidified air (90% RH). The airflow

through each arm of the Y-tube was maintained at 100 ml/min by

the positive pressure of a battery-powered pump (USDA/ARS-

CMAVE, Gainesville, Fl, USA). Bioassays were carried out in a

room (2561uC; 6065% RH) with diffused uniform fluorescent

light (58 W). The assays were run only between 10:00 and 17:00

hrs to coincide with the peak of H. hampei female activity in the

field [12]. Females of H. hampei used in this experiment were

collected from berries infested for between 8 and 12 weeks. Prior

to assays, the females were starved for 12 hrs and subsequently

individually introduced into the stem of the Y-tube olfactometer.

They were considered to have made a positive response after

spending at least 15 sec beyond the Y-tube intersection into the

arm with the tested chemical. H. hampei females that failed to

choose an arm in 15 min were recorded as non-responders.

The Y-tube olfactory tests were carried out with the volatile

extract obtained from coffee berries infested with varying number

of colonizing females and at different infestation stages (see, group

1–3 above). In total, each odour source was tested in 10 replicates,

with 15 H. hampei females individually tested per run. In addition,

authentic standards of brocain and frontalin were tested in dose-

response tests. The composition of blends and doses tested are

listed in table 1. The blends were formulated using 40 ng/ml

brocain and 5 ng/ml frontalin (blend A) as the reference blend. An

initial bioassay with the individual spiroacetals showed that these

two doses were the most attractive to the coffee berry borer.

Varying high amounts of both compounds in the blend were also

tested. Subsequently, we retained the dose of brocain but

increased the amount of frontalin with 5 replicates using 15

insects/run (N = 75).

An aliqout (40 ml) of the volatile extract or solvent was applied

to a filter paper strip (25 x 25 mm) (No. 1 Whatman Int Ltd.

Maidstone, England) and tested in assays. After solvent evapora-

tion for 2 min the treatment and control filter paper strips were

held in glass chambers (internal volume 50 ml). At intervals of

30 min, the treatment and control filter paper strips were replaced

with fresh ones in order to minimize variability of odour

perception among insects introduced at various times. Addition-

ally, assignment of odour source to each arm of the olfactometer

was reversed in between tests to eliminate directional bias. Blends

were also tested similarly, except that 40 ml of each component

was loaded on to a separate filter paper held in in the same glass

chamber. The Y-tubes were exchanged with clean ones after each

test and all glassware was washed with Teepol (multipurpose

detergent. Teepol products, Kent, UK), rinsed with acetone and

then with distilled water and baked in an oven at 100uC for 2 hr.

b) Experiment 2: Petri dish bioassay. This experiment

was carried out to investigate H. hampei females infestation levels

in coffee berries with brocain or frontalin applied on the exocarp

in a glass Petri dish (14 cm diameter) arena, lined with filter paper

(No. 1 Whatman Int. Ltd. Maidstone, England), divided into two

equal halves. Responses of coffee berry borer females, released in

groups into a circular area of ,1.5 cm diameter located in the

middle of the filter paper were compared between; brocain and

control (solvent only), and frontalin and control (solvent only). Five

berries treated with either of the compounds or solvent were

placed on each half on the extreme end, equidistant from the

centre and separated 9 cm apart. The experiment was run for 4

hrs, with 10 insects to allow for infestation to occur, after which the

experiment was stopped. The Petri dish was rotated 90u after

every 15 min to minimize positional bias and replacing the filter

paper after each test. There were 10 replicates for all the different

infestation days (N = 100 insects).

Subsequently, H. hampei infestation levels of brocain, frontalin

and control (solvent) treated berries were compared jointly by

dividing the Petri dish arena into three equal sections. Three

berries, separately treated with the test materials, were held in

each section of the Petri dish. Nine females were released in a

group into the middle and their response time in the different

sections recorded after 4 hrs. The Petri dish was rotated

horizontally at an angle of 120u after every 15 min to exchange

positions of the treatments, with 11 replicates (N = 99). Likewise,

the filter paper was renewed after each test. Infestation was

considered successful when at least 90% of the insects had fully

penetrated the berries. In both tests, 100 ml of brocain and

frontalin or solvent (table 1) were applied on to the berries.

Push-Pull System in H. hampei
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Field trials
We evaluated in a short field trial between 18th November 2013

and 9th December 2013, in the same coffee plantation where the

berries for the laboratory experiments were collected, traps baited

with brocain and frontalin tested alone or combined with the

commercial attractant (1:1 mixture of methanol and ethanol). No

crop sanitation was carried out during the time of the field-testing

in order to have an undisturbed H. hampei population in the target

plots.

The traps were deployed in three unshaded coffee plots within

the plantation, each plot with approx. 100 trees (planting density 2

x 2 m). The specific characteristics of the plots were: plot A was

adjacent to a shaded plot with 15 shade trees (12 grevillea

(Grevillea robusta), 2 avocado (Persea americana) and 1 mango

(Mangifera indica); plot B was next to plot A, and plot C was at

the farthest end from the shaded plot (full sunlight exposure). The

spiroacetals were prepared from a stock solution (SL) of 1 mg/ml

of either brocain or frontalin formulated in 5% DMSO+95% H20

(solvent). Brocap traps were used to dispense the seven treatments

(table 1), placed in each plot, hanging from coffee trees at approx.

120 cm above the ground and.10 m apart, with 3 replicates of

each treatment over time. The compounds were placed in

dispensers provided together with the traps. A uniform hole

(2 mm diameter) was drilled in the dispenser. In the collection

bottle of the trap, 500 ml of distilled water plus 5 drops of teepol

detergent was added, to kill captured females. Treatments were

replaced with new ones weekly while trapped insects were counted

and held in vials with 70% ethanol for preservation. The

treatments that remained in the traps’ dispensers were transported

to the laboratory under cool conditions (24uC) for weighing and

calculating the release rates of the different treatments whose

averages are provided in table S1. Re-randomization of traps in

each plot was done during each visit. Methanol: ethanol and 5%

DMSO +95% H20 solvent were used as positive and negative

controls respectively.

Statistical analysis
In order to standardize the outcome, the counts of lifestages (e.g.

number of eggs, larvae, pupae, and adults) observed inside coffee

berries were divided by the number of initial colonizing females

introduced into a berry. Thereafter, the data on densities of life

stages inside coffee berries over evaluation time were analysed

using Analysis of Variance (ANOVA) following a Box-Cox

transformation with lambda equal 20.55. Prior to transformation,

we added a constant 0.01 to make the values positive. The factors

in the ANOVA model were the main effects for life stage,

evaluation time, crowding and their interaction terms. R version

3.1.0 [21] was used for this section.

The number of entries into treated and control arms of the

olfactometer per odour source in experiments of berries infested

with different numbers of H. hampei were compared using Chi

square test. Similarly, data on olfactometer trials using authentic

standards of frontalin, brocain, blends and petri dish trials were

also analysed using Chi square test [22]. The numbers of coffee

berry borer making choices between treatment and control,

relative to the total number of insects introduced including those

that did not respond, were compared using Chi Square test.

Data on field trials were analysed using Analysis of Variance

(ANOVA) in SAS version 9.2 [22]. Averages of H. hampei females

captured were log transformed before analysis using the formula

log (number of catches+1). Multiple comparisons for the plots and

treatments baited in traps were performed using Student-New-

man-Keuls (SNK) procedure. All tests were performed at 5%

significance level.

Results

H. hampei life stages in berries infested with different
numbers of colonizing females

The ANOVA results indicated that the coffee berry borer life

stages, evaluation time and crowding interaction were significant

(F18, 2256 = 1.89, P = 0.0120). The effect of evaluation time and

crowding within berries for each life stage was also significant for

all the four life stages: eggs (F6, 564 = 3.36, P = 0.0029), larvae

(F 6, 564 = 2.77, P = 0.0115), pupae (F 6, 564 = 6.23, P = ,0.0001,

and adult (F6, 564 = 2.79, P = 0.0110). As a consequence, we

studied the effect of crowding at each evaluation time within each

life stage. The results are summarized in table S2, and presented in

figure 1.

Table 1. Compounds and doses tested in laboratory and field experiments.

Experiment Compounds tested Concentration (ng/ml) Volume

I. Laboratory tests

a) Y-tube olfactometer 1. Brocain 2.5, 5, 10, 20, 40, 80,160,320, 640 40 ml

2. Frontalin 2.5, 5, 10, 20, 40, 80, 160,320, 640 40 ml

3. Brocain + frontalin mixtures a) 40+5, 160+20, 640+80 40 ml

b) 40+5, 40+10, 40+20, 40+40 40 ml

b) Petri dish 1. Brocain 40 100 ml

2. Frontalin 80 100 ml

II. Field trials (Plots A, B and C) 1. Brocain 320 0.96 ml

2. Frontalin 320 0.96 ml

3. 1:1 Ethanol+ methanol mixture (EM) - 3 ml

4. Brocain+ EM 320 0.96 ml+3 ml

5. Frontalin + EM 320 0.96 ml+3 ml

6. 95% distilled water +5% dimethyl sulfoxide - 3 ml

7. Dimethyl sulfoxide (solvent) + EM - 0.96 ml+3 ml

doi:10.1371/journal.pone.0111316.t001
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Effect of H. Hampei infested coffee berries on spiroacetals
emission and behaviour of H. hampei

We assessed how H. hampei infestation level influenced the

emission patterns of the two spiroacetals (5S,7S)-conophthorin

and frontalin in coffee berries because of their behavioural

importance [12] and how this affected the response of recipient

females in subsequent assays. Notably, the berries infested by 2

initial H. hampei females released the highest amount of (5S, 7S)-

conophthorin while those infested by 6 colonizing females released

the lowest amount. Generally, conophthorin release levels

diminished with increasing number of colonizing females and

advancing infestation stages (figure 2). Only berries infested by two

borers released frontalin – with a larger proportion released in the

initial infestation stages, which decreased over time to undetect-

able levels after 30 days (figure 2).

In behavioural experiments, in the absence of odour sources,

the majority of H. hampei females (N = 69 out of 75) failed to

respond after 15 min into either arm of the olfactometer. Of the

three different colonizing groups of females, headspace volatiles

from the different stages was significantly attractive, only in berries

infested with 2 H. hampei initial females/berry at 2 and 5 days

post-infection (61.3%; x2
1 = 7.0146 P = 0.0081; and 58.7%; x2

1 = 3.8413 P = 0.049, respectively). However, no significant

behavioural response was recorded for all the groups, at 15 and

30 days after infestation, except for group 2 (4 H. hampei/berry),

which was significantly avoided at 15 days (59.4% for blank; x2

1 = 4.6992 P = 0.0302) (figure 3).

Behavioural assays with authentic chemicals
To elucidate the role of frontalin and the spiroacetal 1,6-

dioxaspiro[4.5] decane (brocain) in the colonization process of H.
hampei, we tested these compounds in different doses alone and in

mixtures using authentic standards.

No significant differences were found between frontalin and

control (solvent) for the first four least doses (2.5, 5, 10, 20 ng/ml)

(figure 4). Among the doses tested, 5 ng/ml was the most attractive

(+16% of attraction more than control), although not significant

(P = .0.05). All doses above 40 ng/ml were significantly repellent

to coffee berry borer females. 80 ng/ml frontalin was the optimal

dose with only 12% of insects preferring it and 64% opting for the

control (figure 4).

Likewise, as observed for frontalin, responses to doses between

2.5 and 20 ng/ul of brocain were not significantly different

(figure 5). However, at 40 ng/ml of brocain there was a threefold

(58%) increase in the number of coffee berry borers preferring the

Figure 1. Number of Hypothenemus hampei (CBB) life stages found inside coffee berries (approx. 150 days of development), infested
with 2, 4, and 6 H. hampei colonizing females per berry, after 2, 5, 15 and 30 days after infestation.
doi:10.1371/journal.pone.0111316.g001

Figure 2. Release rate (ng/ml/hr) of (5S,7S)-conophthorin and
frontalin in samples of coffee berries (approx. 150 days of
development), infested with 2, 4 and 6 Hypothenemus hampei
colonizing females per berry (CBB), after 2, 5, 15 and 30 days
after infestation.
doi:10.1371/journal.pone.0111316.g002
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Figure 3. Responses of individual Hypothenemus hampei females (75 individuals per group/time after infestation) in olfactometer
trials. Red: coffee berries infested with 2 H. hampei colonizing females per berry (group 1); Green: coffee berries infested with 4 H. hampei colonizing
females per berry (group 2); Blue: coffee berries infested with six H. hampei colonizing females per berry (group 3).
doi:10.1371/journal.pone.0111316.g003
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treatment compared to the control (21%). No significant responses

were observed for 80 ng/ml. However, all doses above 160 ng/ml

were avoided by borers, which preferred the solvent (figure 5).

Blends A (40 ng/ml+5 ng/ml), B (160 ng/ml+20 ng/ml) and C

(640 ng/ml+80 ng/ml) of brocain and frontalin respectively

(figure 6) were significantly more attractive to H. hampei females

(blend A: +41%, x2
1 = 25.47, P = , 0.001; blend B: +28%,

x2
1 = 10.79, P = , 0.01; and blend C: +22.7%, x2

1 = 7.07,

P = , 0.05) than control (figure 6). Although the amounts of

brocain and frontalin in the blends were increased, their ratios in

the blends were constant (8:1). Notably, blend B and blend C

partially or fully comprised doses that were individually avoided by

the borers (figures 4 and 5), when presented in a blend were

attractive. However, increasing blend dose significantly reduced

borer attraction. The ranking of preference by H. hampei females

follows the order blend A.blend B. blend C (figure 6).

In follow up tests, 40 ng/ml brocain was used in the

formulations of all the blends but the amounts of frontalin in the

blends varied to comprise 5, 10, 20 and 40 ng/ml, respectively.

Addition of frontalin to the blends constantly reduced H. hampei

Figure 4. Olfactometer responses of Hypothenemus hampei females to frontalin (mean ± SE). N = total number of insects, and n = total
respondents (i.e. n = N less non-respondents)). Positive response to the various concentration levels is referred to as test while responses to DCM
solvent is the control. The percent response for each arm was calculated relative to N.
doi:10.1371/journal.pone.0111316.g004

Figure 5. Olfactometer responses of Hypothenemus hampei females to brocain (mean ± SE). N = total number of insects, and n = total
respondents. Positive response to various concentration levels is referred to as test while to DCM solvent as control. The percent response for each
arm was calculated relative to N.
doi:10.1371/journal.pone.0111316.g005
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attractiveness to the blends (blend A: +41%, x2
1 = 25.47, P = ,

0.001; blend D: +17%, x2
1 = 3.94, P = , 0.05; and blend E: +

10.7%, x2
1 = 1.36, P = . 0.05) (figure 7). Blend F that com-

prised the highest amount of frontalin significantly repelled the

borers (blend X: 238%, x2
1 = 21.29, P = , 0.001) (figure 7).

Blend A was the most attractive blend amongst all the six blend

formulations. Comparison of H. hampei responses to solvent and

individual components making up the blend showed that most

insects highly preferred the blend than the solvent control and the

frontalin component, (+ 41.4%, x2
1 = 25.46, P = , 0.001; +

32%, x2
1 = 14.69, P = , 0.001 respectively). However, brocain

attracted significantly more borers than the blend (+28%,

x2
1 = 11.31, P = , 0.001) (figure 8).

Petri dish assays with frontalin and brocain
H. hampei successful colonization and infestation levels were

significantly low in berries whose surface were treated with

frontalin, compared to berries treated with solvent (control) (2

26%, x2
1 = 4.62, P = , 0.05). However, brocain appeared to

enhance arrestment in H. hampei that led to higher infestation

levels in brocain-treated berries than the control (solvent treated

berries). Berries treated with 40 ng/ml brocain were significantly

more attractive than the control (+30%, x2
1 = 7.41, P = , 0.01)

(figure 9).

Likewise, in multiple-choice assays, there were differential

colonization levels by females of berries treated with brocain,

frontalin or solvent (figure 10). Significant differences in the levels

Figure 6. Olfactometer responses of Hypothenemus hampei females (CBB) to blends (mean ± SE). Blend A: 40 ng/ml brocain +5 ng/ml
frontalin, blend B: 160 ng/ml brocain +20 ng/ml frontalin, blend C: 640 ng/ml brocain +80 ng/ml frontalin. The asterisks indicate the significance levels
(* = significant at 0.05, ** = significant at 0.01 and *** = significant at 0.001).
doi:10.1371/journal.pone.0111316.g006

Figure 7. Olfactometer responses of Hypothenemus hampei females (CBB) to blends (mean ± SE). Blend A: 40 ng/ml brocain +5 ng/ml
frontalin; blend D: 40 ng/ml brocain +10 ng/ml frontalin; blend E: 40 ng/ml brocain +20 ng/ml frontalin; and blend F: 40 ng/ml brocain +40 ng/ml
frontalin. The asterisks indicate the significance levels (* = significant at 0.05 and *** = significant at 0.001).
doi:10.1371/journal.pone.0111316.g007
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of infestation among berries treated with either compound were

recorded (x2
2 = 44.77, df = 2, P = ,0.001). Frontalin disrupted

infestation by 50% while brocain doubled infestation levels

compared to the control.

Field trials
In general, low numbers of H. hampei females were trapped in

the field assays (figure 11). Five hundred and forty (540) female

borers were captured in all traps during the trial period. Trap

captures varied significantly among the seven treatments

(F 6,9 = 22.26, P = ,0.0001) (table 2). Traps baited with brocain

trapped the lowest number of females, which did not vary

significantly from the control trap. Traps baited with frontalin

trapped no insects. The highest number of females was recorded in

traps baited with H. hampei commercial attractant, the 1:1

ethanol: methanol (EM) mixture. However, when the EM mixture

was combined with frontalin, a significantly fewer H. hampei were

caught in the traps compared to traps baited with EM lure alone

and EM lure mixed with either solvent or brocain.

Furthermore, H. hampei captures were significantly different

among plots (F2,21 = 5.27, P = ,0.01) (table 3). Plot C with full

sunlight exposure had the highest H. hampei female captures

whereas plot A, which was adjacent to a shaded plot had the

lowest number of captures.

Discussion

Results from our behavioural assays show that (5S,7S)-

conophthorin, frontalin and brocain appear to play an important

role in the host discrimination and colonization processes of H.
hampei. These findings are supported by our chemical analysis of

volatiles which showed quantitative changes in the levels of

(5S,7S)-conophthorin and frontalin in the headspace volatiles of

coffee berries at different stages of infestation by H. hampei. We

were unable to quantify the emission rates of brocain in the

headspace samples because of the very low quantities detected. A

follow-up experiment combining several samples will enable better

quantification of the amounts of brocain released. These two

spiroacetals were identified as the main components emitted by

coffee berries in the early stages of H. hampei infestation. The

levels of these components varied depending upon the presence or

absence of H. hampei immature stages in the berries and the

number of colonizing females. When H. hampei females were

exposed to volatile extracts that had been collected at different

Figure 8. Comparison of Hypothenemus hampei (CBB) responses to an optimal blend (A) against DCM solvents and individual
components of the blend, 5 ng/ml frontalin and 40 ng/ml brocain respectively. The asterisks indicate the significance levels (*** = ,0.001).
doi:10.1371/journal.pone.0111316.g008

Figure 9. Comparison of Hypothenemus hampei (CBB) infesta-
tion levels of ripe coffee berries treated with either 80 ng/ml
frontalin or 40 ng/ml brocain. The control is healthy berries treated
with solvent (5% Dmso +95% water). The asterisks indicate the
significance levels (* = significant at 0.05 and ** = significant at 0.01.
doi:10.1371/journal.pone.0111316.g009

Figure 10. Comparison of Hypothenemus hampei (CBB) infesta-
tion levels of ripe coffee berries treated with solvent (5%
Dmso+95% water), 80 ng/ml frontalin or 40 ng/ml brocain.
doi:10.1371/journal.pone.0111316.g010
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times after the beginning of the infestation process and in coffee

samples that were infested with different numbers of colonizing

females, we recorded significant attraction to samples that had the

highest amounts of (5S,7S)-conophthorin. This attraction disap-

peared as the levels of (5S,7S)-conophthorin decreased in the

samples where colonizing females were either crowded or in the

advanced stages of infestation (15 and 30 days post-infestation). A

previous study had shown that conophthorin attracted the coffee

berry borer [12]. Thus, we hypothesize that coffee berries

producing high levels of conophthorin would likely exert a ‘pull’

effect on the coffee berry borer. Interestingly, conophthorin is

widely known to repel conifer inhabiting bark beetles either as a

pheromone or a non-host volatile component of some angiosperm

trees [23–25], but is an attractant for two Pityphthorus spp [26].

Similarly, our results indicate that like Pityphthorus spp, H. hampei
uses conophthorin as an attractant.

We also found that frontalin levels significantly increased in the

volatiles of early infestation stages of berries by two H. hampei
females, which significantly decreased in the advanced infestation

stages, as well as berries infested by 4 and 6 colonizing females.

Moreover, olfactory assays with frontalin elicited avoidance in H.
hampei, and frontalin significantly reduced the pull of an attractive

dose of brocain while tested in blends. This suggests that frontalin

potentially serves as a repellent and elicits avoidance in

conspecifics. In Petri dish assays only half of H. hampei, infested

frontalin-treated berries compared to the solvent-treated berries.

Interestingly, frontalin is an aggregation pheromone in econom-

ically important bark beetles [27]. These studies and our findings

suggest that different insects use the same semiochemical for

different behavioural activities.

In our study, brocain was attractive at a low dose but repellent

at high doses, suggesting a dose-dependent dual function of

brocain. Such dual purpose functioning of semiochemicals has

been reported in various bark beetle species [28–30].

The fact that our results suggest an attractant function for

brocain and conophthorin, while frontalin is a repellent in H.
hampei, following the opposite mechanism found in other conifer-

attacking Scolytidae, further supports the hypothesis by Jaramillo

et al. [12], that angiosperm- attacking scolytids use host and non-

host volatiles to navigate mixed forests.

The results from our field assays with different lures confirmed

our laboratory findings that frontalin caused a repellent or

avoidance behaviour in females of H. hampei. When we tested a

commercial attractant comprising a 1:1 mixture of ethanol and

methanol [7] combined with frontalin, trap captures decreased by

77% suggesting that frontalin acts both as a repellent and an

inhibitor of H. hampei attractants (brocain and methanol: ethanol).

This implies that the presence of frontalin in the headspace

volatiles is crucial in the host discrimination and colonization

processes of H. hampei compared to the common fermentation

product methanol and ethanol. This observation is supported by

other reports of the inhibitory effect of anti-aggregation phero-

mones and repellent host compounds to attractants in various Ips
and Dendroctonus species e.g [16,31–34].

GC/MS analyses indicated quantitative differences in the levels

of frontalin in berries in different infestation stages. Our

behavioural assays confirmed differential responses of H. hampei
to different doses of frontalin. Thus, we propose that frontalin may

play a dual function in the chemical ecology of the coffee berry

borer; as a defensive compound emitted by the coffee berry to

protect itself from herbivory and also as a host marker (repellent)

used by H. hampei to space its population in order to avoid

Table 2. Average (6 SE) Hypothenemus hampei captures of traps baited with different compounds.

Compound Average H. hampei captures

Ethanol: Methanol 19.0064.29 a

Ethanol: Methanol + brocain (EMB) 17.8964.13 a

Ethanol: Methanol + solvent (EMC) 16.0064.37 a

Ethanol: Methanol + frontalin (EMF) 4.4461.32 b

Brocain 1.3360.24 b

Control 1.3360.33 b

Frontalin 0.0060.00 c

Means followed by the same letter are not significantly different (p = 0.05, SNK test).
doi:10.1371/journal.pone.0111316.t002

Figure 11. Number of coffee berry borer females (CBB)
captured in traps baited with: brocain, frontalin, solvent,
ethanol+ methanol mixture (EM) and blends of; ethanol:
methanol + brocain (EMB); ethanol: methanol + frontalin
(EMF) and ethanol: methanol + Solvent.
doi:10.1371/journal.pone.0111316.g011

Table 3. Average (6 SE) Hypothenemus hampei captures in
the three coffee plots.

Plots Average H. hampei captures

A 5.1061.53 d

B 8.5262.43 de

C 12.1063.12 e

Means followed by the same letter are not significantly different (p = 0.05, SNK
test).
doi:10.1371/journal.pone.0111316.t003

Push-Pull System in H. hampei

PLOS ONE | www.plosone.org 10 November 2014 | Volume 9 | Issue 11 | e111316



competition from conspecific colonizing females. More research is

needed to confirm this proposition. In some species in the

Coleoptera, Lepidoptera, Diptera and Hymenoptera [35–40], host

marking with a chemical is an important survival factor,

preventing other females from exploiting the marked host to lay

eggs or compel competitors to lay fewer eggs [41]. In this study, H.
hampei female egg laying response matched with previously

observed egg laying response in the presence of competitors,

whereby berries with high numbers of colonizing females were the

least reproductive.

It is known that a coffee berry is usually attacked by a single H.
hampei. Since a single berry may accommodate up to approx. 200

eggs of the pest [42], this may reflect an adaptive behaviour of the

colonizing females to repel incoming colonizing beetles. It appears

that the limited carrying capacity of the berry, as the niche would

only suffice for its brood to complete the life cycle. Attack density

regulation is common among bark beetles due to its effect on

reproduction and population dynamics [43–44]. Thus, the

colonizing females may detect the density of conspecifics amongst

potential hosts before landing depending on the type and

concentrations of semiochemicals released by the beetles/plant

already attacking a host [10,45]. As previously indicated, H.
hampei attraction was only observed to berry volatiles infested by 2

H. hampei per berry in early the infestation (only eggs stages

present) while avoidance or repellence was observed in berries

infested by 4 and 6 initial colonizing females per berry, and late

infestation stages (all life stages present). This avoidance and lack

of host recognition behaviour of the females coincided with

diminished amounts of conophthorin, which is the pest attractant

[12]. Kraker [6] also reported that borer-infested berries caused

avoidance behaviour in H. hampei. It therefore appears that H.
hampei has a mechanism that limits pioneer females from sharing

a host, through release of repellent compounds and/reducing

production of attractants by the host, such that approaching

beetles are repelled or fail to recognize the host. Our findings

suggest that frontalin could serve both as a repellent and a spacing

factor in H. hampei, as has been reported for various bark beetles

[8–10,45].

A previous study [14] reported that frontalin could play a role as

a spacer pheromone of some bark beetles. Its production has been

reported to contribute to terminating aggregation behaviour in the

mountain pine beetle, Dendroctonus ponderosae by signalling

approaching conspecifics of the unavailability of enough food in

the already attacked host trees [13,15]. More recently, Liu et al.

[17] reported that frontalin acted as both as an aggregation

pheromone and a sex pheromone for Dendroctonus valens,
although high concentrations were found to reduce female

attraction.

In our field study, the lowest H. hampei trap catches were

recorded in the plot adjacent to the shaded plot, while the highest

captures were recorded in the traps located in the sunny areas.

The variation in the trap captures in the different plots is an

interesting finding, which would require extensive replication.

Previous studies reported that intercropping coffee with shade

trees reduced H. hampei infestation levels [12,46,47]. We suspect

that semiochemical diversity, ratios and concentrations in a mixed

coffee cropping system may all contribute to minimizing pest

populations.

In summary, this study has investigated the contribution of

frontalin and brocain to the host colonization process in H.
hampei. Taken together, with results from our previous studies, we

now know the role of conophthorin, brocain and frontalin in the

chemical ecology of H. hampei. From the perspective of pest

management, the three spiroacetals could be potential candidates

for coffee berry borer management in a ‘push pull’ strategy

whereby; frontalin acts as the ‘push’ (repel) from the host with

conophthorin or brocain acting as the ‘pull’ (attractant).
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29. Vité J, Billings R, Ware C, Mori K (1985) Southern pine beetle: enhancement or
inhibition of aggregation response mediated by enantiomers of endo-brevicomin.

Naturwissenschaften 72: 99–100.
30. Rudinsky J, Morgan M, Libbey L, Putnam T (1974) Antiaggregative-rivalry

pheromone of the mountain pine beetle, and a new arrestant of the southern
pine beetle. Environ Entomol 3: 90–98.

31. Vega FE, Infante F, Castillo A, Jaramillo J (2009) The coffee berry borer,

Hypothenemus hampei Ferr. (Coleoptera: Curculionidae): a short review, with

recent findings and future research directions. Terr Arthropod Rev 2: 129–147.

32. Strom B, Roton L, Goyer R, Meeker J (1999) Visual and semiochemical

disruption of host finding in the southern pine beetle. Ecol Appl 9: 1028–1038.

33. Borden JH, Wilson IM, Gries R, Chong LJ, Pierce Jr HD, et al. (1998) Volatiles

from the bark of trembling aspen, Populus tremuloides Michx.(Salicaceae)

disrupt secondary attraction by the mountain pine beetle, Dendroctonus

ponderosae Hopkins (Coleoptera: Scolytidae). Chemoecology 8: 69–75.

34. Zhang Q-H, Schlyter F, Anderson P (1999) Green leaf volatiles interrupt

pheromone response of spruce bark beetle, Ips typographus. J Chem Ecol 25:

2847–2861.

35. Jactel H, Van Halder I, Menassieu P, Zhang Q, Schlyter F (2001) Non-host

volatiles disrupt the response of the stenographer bark beetle, Ips sexdentatus
(Coleoptera: Scolytidae), to pheromone-baited traps and maritime pine logs.

Integrated Pest Manag Rev 6: 197–207.

36. Huber DP, Borden JH (2001) Angiosperm bark volatiles disrupt response of

Douglas-fir beetle, Dendroctonus pseudotsugae, to attractant-baited traps.

J Chem Ecol 27: 217–233.

37. Nufio CR, Papaj DR (2001) Host marking behavior in phytophagous insects and

parasitoids. Entomol Exp Appl 99: 273–293.

38. Corbet SA (1971) Mandibular gland secretion of larvae of the flour moth,

Anagasta kuehniella, contains an epideictic pheromone and elicits oviposition

movements in a hymenopteran parasite. Nature 232: 481–484.

39. Szentesi A (1981) Pheromone-like substances affecting host-related behaviour of

larvae and adults in the dry bean weevil, Acanthoscelides obtectus. Entomol Exp

Appl 30: 219–226.

40. Averill AL, Prokopy RJ (1987) Residual activity of oviposition-deterring

pheromone in Rhagoletis pomonella (Diptera: Tephritidae) and female response

to infested fruit. J Chem Ecol 13: 167–177.

41. Roitberg BD, Lalonde RG (1991) Host marking enhances parasitism risk for a

fruit-infesting fly Rhagoletis basiola. Oikos 61: 389–393.

42. Stelinski LL, Zhang A, Onagbola EO, Meyer WL (2009) Recognition of foreign

oviposition marking pheromones is context dependent and determined by

preimaginal conditioning. Commun Integr Biol 2: 391–393.

43. Papaj D, Roitberg B, Opp S, Aluja M, Prokopy R, et al. (1990) Effect of marking

pheromone on clutch size in the Mediterranean fruit fly. Physiol Entomol 15:

463–468.

44. Jaramillo J, Chabi-Olaye A, Poehling HM, Kamonjo C, Borgemeister C (2009)

Development of an improved laboratory production technique for the coffee

berry borer Hypothenemus hampei, using fresh coffee berries. Entomol Exp Appl

130: 275-281.

45. Byers JA (1989) Behavioral mechanisms involved in reducing competition in

bark beetles. Holarctic Ecol 12: 466-476.

46. Pureswaran DS, Borden JH (2004) New repellent semiochemicals for three

species of Dendroctonus (Coleoptera: Scolytidae). Chemoecology 14: 67-75.
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