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Abstract
A deterministic model of tuberculosis in Cameroon is designed and analyzed with respect to

its transmission dynamics. The model includes lack of access to treatment and weak diag-

nosis capacity as well as both frequency- and density-dependent transmissions. It is shown

that the model is mathematically well-posed and epidemiologically reasonable. Solutions

are non-negative and bounded whenever the initial values are non-negative. A sensitivity

analysis of model parameters is performed and the most sensitive ones are identified by

means of a state-of-the-art Gauss-Newton method. In particular, parameters representing

the proportion of individuals having access to medical facilities are seen to have a large im-

pact on the dynamics of the disease. The model predicts that a gradual increase of these

parameters could significantly reduce the disease burden on the population within the next

15 years.

Introduction
Tuberculosis (TB) is a preventable and curable disease caused byMycobacterium tuberculosis
(Mtb) that most often affects the lungs. To date, TB claims the second largest number of fatali-
ties due to a single infectious agent right after Human Immunodeficiency Virus and Acquired
Immune Deficiency Syndrome (HIV/AIDS) [1]. Young adults in their most productive years
are especially affected. Worldwide, 8.8 million people were infected in 2010. Sub-Saharan Af-
rica carries the greatest burden with over 260 new cases per 100,000 population in 2011 [1].
Structurally speaking, Mtb’s infection can remain latent, become active, or progress from latent
TB to active TB either by endogenous re-activation and/or exogenous re-infection. Active TB is
often acquired through co-infection of Mtb with other diseases (such as diabetes and HIV/
AIDS) or abuse of alcohol and tobacco.

Mathematical analysis of disease transmission models can significantly help to understand
the underlying mechanisms of these processes and to design potential therapies [2, 3]. The ear-
liest mathematical models describing TB dynamics were constructed in the 1960’s by the statis-
tician H. T. Waaler [4]. His models focus on prediction and control strategies using simulation
approaches. However, he considered exponential population dynamics in the absence of TB,
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which is certainly not realistic. Further simulation models have been suggested by Waaler [5],
Revelle and coworkers [6], and Ferebee [7]. Revelle [6] first introduced a TB dynamics model
consisting of systems of nonlinear ordinary differential equations (ODEs), which he used to
study a minimal cost strategy against TB. Later, Blower and colleagues [8–10] discussed the
persistence condition of TB inside the population and determined the characteristic reproduc-
tion ratioR0, the average number of new infectious cases caused by a single infectious case in a
fully susceptible population over the course of the entire infectious period. A sensitivity analy-
sis ofR0 has been performed by several authors [8]. However, the sensitivity analysis of param-
eters with respect toR0 alone does not fully exhibit the impact of these parameters on the
global time dependent behavior of the system, especially in the presence of backward bifurca-
tion. From their model, Blower and colleagues derived that 1<R0 < 9. Moreover, the infec-
tion rate, the probability of fast progression, the re-activation rate, and the TB related death
rate appeared to be the most important parameters. Chavez and colleagues [11] developed a
mathematical analysis of a TB model without fast progression. Since then, most publications
included sophisticated mathematical theories to study the dynamics of tuberculosis, such as
center manifold theory and Lyapunov functions [12–16].

In the reality of developing countries the true challenge of TB control is the high level of un-
diagnosed infectious cases as well as lost sight cases compared to diagnosed infectious cases. In
the following, the term “undiagnosed infectious population”means those people that have not
yet been to a hospital for diagnosis or have not been detected, but have a pulmonary TB [17,
18]; the term “lost sight population” includes those people that have been diagnosed as having
active TB and begun their treatment, but quit before the end. Compared to existing results in
[11–14, 16, 19–23] (and references therein), the model presented here considers, in addition to
undiagnosed infectious and lost sight population, the aspects of exogenous re-infections, dis-
ease relapse as well as primary active TB cases, natural recovery and traditional medicine or
self-medication (practiced in Sub-Saharan Africa). Moreover, our model takes undiagnosed
population, lost sight population, and exogenous re-infections as important factors of TB
transmission in Sub-Saharan Africa into account. As a consequence, we divide the infective
class into the following three subgroups: i) diagnosed infectious population, ii) undiagnosed in-
fectious population and iii) lost sight population. According to the National Committee for the
Fight against TB in Cameroon (NCFT) [24], about 8% of diagnosed infectious people who
begin a therapy, never return to the hospital for the rest of sputum examinations and treat-
ment, and then become part of the lost sight population. The design of the model is accompa-
nied by a qualitative analysis to gain insight into the transmission dynamics of TB.

The main difficulty in model construction is the large number of unknown model parame-
ters. Usually, the goal is to determine parameter values that minimize the difference between
experimental measurement values and model predictions in a least-squares sense. Often, how-
ever, there are not enough data available to determine all parameter values. In this case, the
least-squares problems are rank-deficient, which means that there exists a continuum of possi-
ble solutions all of which give nearly the same “nice fits”. Standard optimization methods typi-
cally ignore this detail, failing to take the structure of the underlying inverse problem into
account. These algorithms tend to simply return a “solution”, but do not consider the question
of the identifiability of the parameters or the uniqueness of the solutions. This can yield mis-
leading results, especially when parameters are co-regulated. In view of this situation, we solve
such nonlinear least-squares problems by an error-oriented Gauss-Newton method [25],
which monitors the numerical rank of the Jacobian matrix and converges locally, for a well-de-
fined class of statistically “adequate” problems, to a solution that is unique within the subspace
of identifiable parameters. As usual, special attention must be paid to initial guesses for the pa-
rameter values to be estimated. Since the algorithm converges to a local optimum, these values
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should reflect good approximations to the “true” values. In fact, this methodology has not been
applied to the modelling of TB dynamics before and represents an important motivation for
writing this paper. Alternatively, one might think of developing simpler models with less pa-
rameters. Such models, however, are prone to lose their predictive ability, if important mecha-
nisms of disease transmission are missing. On the contrary, larger models can help in
determining the importance of assumed mechanisms for the observed effects.

The paper is organized as follows. At the beginning, we derive the model equations and
briefly review the mathematical algorithm used for sensitivity analysis and parameter identifi-
cation. Then we show that the model is mathematically well-posed and epidemiologically rea-
sonable. We present the values of model parameters and discuss the results of the sensitivity
analysis. Finally, by means of a controlled dynamical system we simulate an increasing access
to TB treatment and discuss the effect of this strategy. Even though the used data originate
from Cameroon, the class of TB epidemiological models presented here can be extended to
many classes of infective individuals and data for further African countries.

Methods
This section presents our newly suggested mathematical model and briefly reviews the mathe-
matical algorithms for sensitivity analysis and parameter identification.

Suggested epidemiological model
Based on the available data, a finite total population at time t denoted by N(t) is considered and
sub-divided into the following mutually exclusive sub-populations (“compartments”):

S susceptible: healthy people not yet exposed to TB

E latently infected: exposed to TB but not infectious

I diagnosed infectious: have active TB confirmed after a sputum examination in a hospital

J undiagnosed infectious: have not yet been to a hospital for diagnosis but are active for confir-
mation by a sputum examination

L lost sight: people who have been diagnosed as having active TB, begun their treatment and
quitted before the end

R recovered: people cured after treatment in the hospital

With these definitions, we are now ready to derive the details of our compartment model.
In Africa, reliable TB tests [26] are often missing or too expensive. Hence, TB diagnosis

based on a single sputum examination can often only be classified as “probable” or “presumed”,
and cannot detect cases of less infectious forms of TB [27].

Transmission of Mtb occurs due to sufficient contacts among susceptible people and infec-
tious TB cases. Diagnosed infectious people are in most cases hospitalized for at least two
months or are advised to lessen their infectiousness in their neighborhood. Their distribution
in the population is not necessarily homogeneous. People from class L (lost sight) are first diag-
nosed before quitting the treatment. Even though they are more likely to transmit the disease
than diagnosed cases who continue their treatment, since they are aware of their infectiousness
they are less likely to transmit TB than undiagnosed cases. We consider a density dependent
force of infection for both diagnosed infectious people as well as lost sight infectious people,
but with different contact rates for the infection [28]. Since undiagnosed infectious people re-
main inside the population, there is an unlimited possibility of contacts with the susceptible
population [17]. Thus, susceptible individuals acquire Mtb infection from individuals with

A Tuberculosis Model for Cameroon

PLOS ONE | DOI:10.1371/journal.pone.0120607 April 13, 2015 3 / 20



active TB (classes I and J) and lost sight people (class L) at a rate ν(I, J, L) given by

nðI; J; LÞ ¼ b1

I
N
þ b2

L
N
þ b3J: ð1Þ

Here, βi, i = 1, 2, 3, are the effective contact rates with diagnosed, lost sight and undiagnosed in-
fectious population sufficient to transmit infection to susceptible people. The effective contact
rates β1, 2 in a given population are measured in effective contacts per unit time. This may be
expressed as the product of the total contact rate per unit time (ηi) by the risk of infection (ϕi)
given contact between an infectious and a susceptible individual, βi = ηi ϕi.

All recruitment is into the susceptible class and occurs at an average scale Λ. The fixed sur-
vey for non-disease related death is μ, thus 1/μ is the average lifetime. Diagnosed infectious, un-
diagnosed infectious and lost sight population have additional constant death rates due to the
disease, defined by d1, d2 and d3, respectively.

A proportion p of the latently-infected individuals develop fast active TB and the remainder
(1−p) develop latent TB and enter the latent class E. Among latently-infected individuals devel-
oping active TB, a fraction f is assumed to undergo a fast progression directly to the diagnosed
infectious class I, while the remainder (1−f) enters the undiagnosed infectious class J. We set

p1 ¼ pf and p2 ¼ pð1� f Þ:

Once latently infected with Mtb, an individual will remain so for life, unless reactivation occurs.
Latently infected individuals are assumed to acquire some immunity as a result of infection,
which reduces the risk of subsequent infection but does not fully prevent it.

Due to endogenous reactivation, a fraction 1−r1 of latently infected individuals who did not
receive effective chemoprophylaxis become infectious with a constant rate k. They reinfect
after effective contact with individuals in the active TB classes or lost sight class at a rate

le ¼ s1nðI; J; LÞ;

where σ1 is the factor reducing the risk of infection as a result of acquiring immunity for latent-
ly infected individuals. Among latently infected individuals who become infectious, the fraction
h is diagnosed and treated under the “Stop TB” program [29], while the remaining fraction
1−h is not diagnosed and becomes undiagnosed infectious. We assume that, after some time
suffering from TB, some undiagnosed infectious people decide to go to hospital with a rate θ.
Also, we assume that among diagnosed infectious people who begin their treatment therapy, a
fraction r2 of I take the full dose and make all the sputum examinations and will be declared
cured from the disease. Some diagnosed infectious people who do not finish their dose of drugs
and sputum examinations or whose treatment was unsuccessful, will not return to the hospital
for the rest of sputum examinations and check-up. They will enter the class L of lost sight pop-
ulation at a constant rate α. Lost sight population can return to the hospital at a constant rate δ.

As suggested by Murray et al. [30], recovered individuals can only have partial immunity.
Hence, they can undergo a TB reactivation or relapse with a constant rate γ. The remaining
people can be reinfected (exogenously) after an effective contact with individuals in the active
TB classes and lost sight class at a rate

lr ¼ s2nðI; J; LÞ;

where σ2 is the factor reducing the risk of infection as a result of acquiring partial immunity for
recovered individuals. Due to their own immunity, traditional medicine, natural recovery and
drugs bought in the street (practiced in sub-Saharan Africa), a fraction of lost sight and undiag-
nosed infectious population can spontaneously recover at constant rates ρ and ω and enter the
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latent class E and recovery class R, respectively. The whole compartment model is schematical-
ly presented in a flow diagram in Fig. 1. This diagram gives rise to the following mathematical
model of ordinary differential equations:

_S ¼ L� nðI; J; LÞS� mS;

_E ¼ ð1� p1 � p2ÞnðI; J; LÞSþ rJ þ s2nðI; J; LÞR

�s1ð1� r1ÞnðI; J; LÞE � A1E;

_I ¼ p1nðI; J; LÞSþ dLþ yJ þ gRþ hð1� r1Þðkþ s1nðI; J; LÞÞE

�A2I;

_J ¼ p2nðI; J; LÞSþ ð1� hÞð1� r1Þðkþ s1nðI; J; LÞÞE � A3J;

_L ¼ aI � A4L;

_R ¼ r2I þ oL� s2nðI; J; LÞR� A5R;

ð2Þ

8>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>:

where

A1 ¼ mþ kð1� r1Þ; A2 ¼ mþ d1 þ r2 þ a;

A3 ¼ mþ d2 þ yþ r; A4 ¼ mþ d3 þ dþ o and A5 ¼ gþ m:

Sensitivity analysis and parameter identification
In order to be able to assess targeted public health education strategies and chemoprophylaxis
against TB spread in a population, we want to test the suitability of the model by fitting it to
data from Cameroon [27]. For this purpose, we briefly describe the mathematical techniques
that we use for parameter identification. In mathematical short-hand notation, the system of

Fig 1. Compartment model for the transmission dynamics of tuberculosis.

doi:10.1371/journal.pone.0120607.g001
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differential Equations (2) can be formally written as

d
dt

yðt;pÞ ¼ f ðt; y;pÞ; t � 0;

yð0;pÞ ¼ y0;

ð3Þ

8>>>><
>>>>:

where p is the vector of parameters, and the right-hand side f depends on both the states,
y 2 R

n, and the parameter vector, p 2 R
q. The initial condition vector, y0, has the same dimen-

sion as the state vector y. The TB model (2) can be written in the form of Equation (3), where

yðt;pÞ ¼ ðSðt;pÞ; Eðt;pÞ; Iðt;pÞ; Jðt;pÞ; Lðt;pÞ;Rðt;pÞÞ 2 R
6

and

p ¼ ðL; b; � � � ; mÞ 2 R
22:

Assume there are givenm experimental measurement time-point τ1, � � �, τm, and correspond-
ing data values zj 2 R

n, j = 1, � � �,m associated with corresponding measurement tolerances
δzj 2 R

n. For ease of presentation, these tolerances are assumed to be positive, but the
algorithm to be described is also able to tackle strictly zero tolerances (that indicate equality
constraints); details are omitted here, but can be found, e.g., in the book [25]. Parameter identi-
fication consists of solving the least-squares minimization problem

gðpÞ ¼ 1

m

Xm
j¼1

k D�1
j � ðyðtj;pÞ � zjÞ k22 �! min

p
ð4Þ

with diagonal weighting

Dj ≔ diagððdzjÞ1; � � � ; ðdzjÞnÞ 2 MnðRÞ; j ¼ 1; � � � ;m: ð5Þ

That means we want to minimize the relative deviation of model and data at the measurement
time points τj. Again in short-hand notation, the minimization problem (4) can be written as

gðpÞ≔ FðpÞT � FðpÞ !min
p

; ð6Þ

where F(p) = (F1(p), . . .,Fm(p)) is a vector of length N =m�n with entries defined by

FðpÞ ¼

D�1
1 � ðyðt1;pÞ � z1Þ

..

.

D�1
m � ðyðtm;pÞ � zmÞ

2
66664

3
77775: ð7Þ

F:Rq ! R
N is a non-linear mapping and structured as a stacked vector. If not all components

of a measurement zj are given, the number N is accordingly smaller, N< nm. The above prob-
lem (6), which is highly nonlinear in p, can be solved by affine covariant Gauss-Newton itera-
tion, see [25], where each iteration step k requires the solution of a linear least-squares
problem,

k JðpkÞ � Dpk þ FðpkÞk2 !min
pk

; ð8Þ

pkþ1 ¼ pk þ Dpk
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where J(pk) = F0(pk) 2R
N×q denotes the Jacobian matrix or, equivalently, the sensitivity matrix.

Its elements are the sensitivities

sijðtÞ ¼
@yiðtÞ
@pj

ð9Þ

computed at all data time-points. These entries represent the sensitivity of the solution y with
respect to the parameters p at the time points of measurements. In model (2), values of model
parameters and population classes vary over orders of magnitude. To achieve comparability,
the sensitivity values have to be normalised by the absolute values of species and parameters to
obtain scaled sensitivities

sijðtÞ ¼
@yiðtÞ
@pj

� jpscaljjyscalj
; ð10Þ

whereby pscal and yscal are scaling values specified by the user.
An analysis of the scaled matrix J(p) gives some hints whether the current combination of

model and data will allow an identification of a given parameter. Parameters with very small
sensitivity have nearly no influence on the solution at the measurement time-points and there-
fore cannot be estimated. In this case the entries of the corresponding column in J(p) are al-
most zero. Furthermore, some of the parameters might be linearly dependent, which leads to
nearly identical columns in J(p). In both cases the matrix J(p) will be singular or, from a nu-
merical point of view, “nearly” singular. In order to reveal such properties, the linear least
squares problem (8) is solved by QR factorization with column pivoting [31]. By a suitable per-
mutation of the columns of the matrix J(p), the diagonal elements of the upper triangular ma-
trix R can be ordered in the form

jr11j � jr22j � � � � � jrqqj � 0 :

As a measure of the term “nearly singular”, the sub-condition of parameter pj is defined by

scj ¼
jr11j
jrjjj

: ð11Þ

Thus, the permutation of matrix columns corresponds to a new ordering of parameters accord-
ing to increasing sub-condition. The sub-condition indicates whether a parameter can be esti-
mated from the given data or not. Only those parameters can be estimated for which

scj � 1="; ð12Þ

where e is the relative precision of the Jacobian J(p) [32]. Herein, the Jacobian has been com-
puted with a finite difference scheme, resulting in a precision of

ffiffiffiffiffiffiffiffiffi
�mach

p
, whereby �mach = 2−52 is

the machine precision, i.e. the floating-point relative accuracy for double precision. Thus we
set e = 10−7 throughout the numerical computations in this paper.

The iterative scheme (8) can be generalized to the so-called global Gauss-Newton method
by introducing damping factors λk,

pkþ1 ¼ pk þ lkDp
k; 0 < lk � 1:

The step length λk is computed successively in each iteration by an adaptive trust-region meth-
od [25]. This method for solving a non-linear least squares problem is implemented in the soft-
ware code NLSCON [25] and part of the software package BioPARKIN [33]. Here, a Matlab-
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based version of this software package, named POEM 2.0, which is especially adapted to pa-
rameter identification in ordinary differential equation models, has been used.

As the data set for parameter identification, we used figures for diagnosed infectious and
total population in Cameroon over the period 1994–2010 as published by WHO [1]. The data
are listed in Table 1.

Overall, parameter identification is an iterative process because the sub-conditions depend
on the current parameter values. At the beginning, all parameter values are fixed to their initial
guesses and those parameter values are estimated that have the lowest sub-condition. These pa-
rameters are then fixed to their estimated values. Afterwards, parameter estimation is per-
formed with a restricted list of previously non-identifiable parameters. After this phase, the
estimation process is repeated with the full set of estimated parameters to check, whether the
new values of previously non-identifiable parameters affect values of the identifiable ones. This
process is repeated until convergence in the parameter values is achieved.

Results and Discussion
In the following, we show that the model is mathematically well-posed and epidemiologically
reasonable [34]. Furthermore, we present the values of model parameters and discuss the re-
sults of the sensitivity analysis. In addition, we analyze the effect of increasing access to TB
treatment as a result of improved infrastructures and education.

Basic properties of the model
Since model (2) monitors a human population, all its associated parameters and state variables
should be non-negative and bounded for all t� 0.

Table 1. Numbers for diagnosed infectious (I) and total population (N) in Cameroon over the period
1994–2010.

year I N

1994 3092 13240337

1995 3292 13940337

1996 3049 14287475

1997 3952 14631908

1998 5022 14976200

1999 7660 15324051

2000 5251 15678269

2001 11307 16039737

2002 11057 16408085

2003 15964 16783366

2004 17655 17165267

2005 21499 17553589

2006 23483 17948395

2007 24062 18350022

2008 24622 18758778

2009 24662 19175028

2010 24073 19598889

Data published by WHO [27].

doi:10.1371/journal.pone.0120607.t001
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Positivity of the solution. The following result shows that state variables are non-negative
and dissipative.

Lemma 1 Let the initial values be S(0)> 0, E(0)� 0, I(0)� 0, J(0)� 0, L(0)� 0 and R(0)�
0. Then, solutions (S, E, I, J, L, R) of model system (2) are non-negative for all t> 0. Further-
more,

lim sup
t�!1 NðtÞ � L

m
;

with N(t) = S(t)+E(t)+I(t)+J(t)+L(t)+R(t).
The proof of this Lemma follows the ideas from [35, 36]. The following steps establish the

invariance of the set

Or ¼ ðS; E; I; J; L;RÞ 2 R
6
þ; NðtÞ � L

m
þ r

� �
; r > 0; ð13Þ

i.e. solutions remain in Oρ for all t� 0. This implies that the trajectories of model system (2)
are bounded. On one hand, integrating the differential inequality :N � L� mN yields

NðtÞ � Nð0Þe�mt þ L
m
ð1� e�mtÞ:

In particular NðtÞ � L
m if Nð0Þ � L

m. On the other hand, if Nð0Þ � L
m, then Λ−μN(0)� 0, and

_N ð0Þ � L� mNð0Þ � 0;

i.e. the total population N(t) will decrease until

NðtÞ � L
m
:

Thus, the simplex Oρ is a compact forward invariant set for model system (2), and for ρ> 0
this set is absorbing. So, we limit our study to this simplex for ρ> 0. The prevalent existence,
uniqueness and continuation results hold for model system (2) in Oρ.

Basic reproduction number. The global behavior of the TB model crucially depends on
the basic reproduction number, i.e., the average number of secondary cases produced by a sin-
gle infective individual who is introduced into an entirely susceptible population. Obviously,
model system (2) has an equilibrium Q0 = (x0, 0) with x0 = Λ/μ when I = 0. This equilibrium
point is the disease-free equilibrium (DFE). On this basis, we are now able to calculate the basic
reproduction numberR0, using the next generation method developed in [37]. For that pur-
pose, let us write system (2) in the form

_x ¼ φðxÞ � nðI; J; LÞx;

_y ¼ Fðx; yÞ þ Vðx; yÞ;

ð14Þ

8>>><
>>>:

where

φðxÞ ¼ L� m x; Fðx; yÞ ¼ nðI; J; LÞB1x;

Vðx; yÞ ¼ nðI; J; LÞ½B2he1 j yi þ B3he5 j yi� þ A y:
ð15Þ

Herein, x = S 2 R+ is a state representing the compartment of non transmitting individuals

(susceptible), y ¼ ðE; I; J; L;RÞT 2 R
5
þ is the vector representing the state compartment of
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different infected individuals, and

nðI; J; LÞ ¼ he1 j yi
N

þ he2 j yi; N ¼ x þ y1 þ y2 þ y3 þ y4 þ y5

is the force of infection. h�j�i is the usual scalar product and A is the constant matrix

A ¼

�A1 0 r 0 0

khð1� r1Þ �A2 y d g

kð1� hÞð1� r1Þ 0 �A3 0 0

0 a 0 �A4 0

0 r2 0 o �A5

2
66666666664

3
77777777775
;

with A1, A2, A3, A4 and A5 defined as above in (2). Furthermore, we set

e1 ¼ ð0; b1; b2; 0; 0Þ 2 R
5; e2 ¼ ð0; 0; 0; b3; 0Þ 2 R

5;

e3 ¼ ð1; 0; 0; 0; 0Þ 2 R
5; e4 ¼ ð0; 0; 0; 0; 1Þ 2 R

5;

B1 ¼ ð1� p1 � p2; p1; p2; 0; 0ÞT 2 R
5;

B2 ¼ ð�s1ð1� r1Þ; hs1ð1� r1Þ; s1ð1� hÞð1� r1Þ; 0; 0ÞT 2 R
5;

B3 ¼ ð�s2ð1� gÞ; 0; 0; 0; s2ð1� gÞÞT 2 R
5:

We define the Jacobian matrices at the DFE as

F ¼ @F
@y

ðQ0Þ and V ¼ @V
@y

ðQ0Þ:

Using the same notations as in [37], the basic reproduction number is given by the spectral
radius of FV−1,

R0 ¼ rðFV�1Þ: ð16Þ

For model (14), one has

F ¼ B1 e1 þ
L
m
e2

� �
and V ¼ �A:

Then, according to [38, 39], the basic reproduction ratio is given by

R0 ¼
�
e1 þ

L
m
e2 j ð�A�1ÞB1

�
: ð17Þ

The following result is established from [37].
Lemma 2: The disease-free equilibrium Q0 of model system (2) is locally asymptotically sta-

ble wheneverR0 < 1, and unstable, ifR0 > 1.
From a biological point of view, Lemma 2 implies that TB can be eliminated from the com-

munity (whenR0 � 1) if the initial size of the population is in the basin of attraction of Q0. But
ifR0 > 1 the infection will be able to spread through the population. Generally, the larger the
value ofR0, the harder it is to control the epidemic.
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Parameter values of the model
Fig. 2 shows the column norms kJ(p)(:, j)k2 of the sensitivity matrix evaluated at the final iter-
ate, i.e. for the final set of parameter values from Table 2. Obviously, the parameter with the
largest column norm is p2, which means that it has the largest influence on the solution trajec-
tory at the given measurement time-points. In fact, Fig. 2 shows that p2 is the parameter with
lowest subcondition, i.e. it can be best identified from the given measurements. In contrast, pa-
rameters σ1 and p1 are the two parameters with smallest column norm and largest subcondi-
tion. Note, however, that the magnitudes of the sensitivities alone, represented by the column
norms in Fig. 2, are only an indicator for identifiability but generally do not provide informa-
tion on the correct ordering of parameters. Moreover, the sensitivities and subconditions
change throughout the modelling process whenever parameter values are changed.

Parameters not contained in the two figures have been estimated by WHO, are well-known
for Cameroon [24] or have fixed values according to the National Institute of Statistic of Cam-
eroon (NIS) [40]. In the following, we specify all parameter values.

The natural mortality μ: It is postulated to be equal to the inverse of the life expectancy at
birth. We fix μ = 1/53.6 per year according to [40].

The recruitment Λ: According to NIS [40], the average recruitment in the Cameroonian
population during the last fifteen year is fixed to Λ = 679685 per year.

TB mortality d1, d2 and d3 of undiagnosed infectious and lost sight population: Per capita
TB-induced mortality rate is 0.193 per year in developed countries, but could be as high as 0.45
per year in some African countries [41]. We fixed the yearly TB-induced mortality rates d1 =
0.193, d2 = 0.20 and d3 = 0.413 TB active cases according to [8, 24].

Transmission rates βi, i = 1, 2, 3: Blower et al. [41] estimated the contact rates βi 2 [1, 4] in
the case of a frequency dependent force of infection. Here, the fixed values β1 = 1, β2 = 4 ac-
cording to the data of Blower et al. have been used, and we estimated β3 = 6.33563�10−06 using
POEM.

Progression rate parameters p1, p2 and k: For HIV-negative TB people, Bacaer et al. [20, 42]
estimated that people in a South Africa township have 11% annual risk of developing primary
TB disease during five years following the first Mtb infection and a 0.03% annual risk of reacti-
vation after five years. In Cameroon, the estimated average TB prevalence for all forms in HIV-
positive is about 431 per 100,000 per year. Starting with this order of magnitude, we estimated
that p1 = 9.50082�10−04, p2 = 2.38932�10−02 and k = 3.31390�10−04 per year. Due to the limited
access to hospitals, p2 is expectedly larger than p1 and k.

Factors σ1 and σ2: Sutherland et al. [43] estimated that a previous Mtb infection reduces the
risk of disease after reinfection by 63% for HIV negative males and by 80% for HIV negative fe-
males. We estimate that σ1 = 2.38390�10−04 and we use the formula from [20] to set σ2 = 0.7�

(p1+p2). Running the simulation with other values for the pre-fractor, e.g. 0.2 or 0.9, leads only
to small changes in the simulation result, indicating that σ1 is indeed a less sensitive parameter
that is difficult to estimate from the given data.

Detection rate h: According to WHO data, h 2 [0.5, 0.9] per year. Using POEM, it was esti-
mated h = 0.812279 per year.

Diagnosis rate θ: WHO estimated θ 2 [0.3, 0.6] per year. The results in Fig. 2 show that the
model is highly sensitive to θ, which was finally estimated from the data with POEM as θ =
0.497358 per year.

Proportions r1 and r2 of successful treatments: Since the chemoprophylaxis is not practiced
in Cameroon, we took r1 = 0 per year and fixed r2 = 0.758821 per year according to [24].

Rate α at which diagnosed infectious people become lost sight: It has been estimated using
POEM as α = 0.215698 per year.
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Fig 2. Results of the sensitivity analysis at the final iterate, i.e. with the final set of parameter values from Table 2: (a) l2 column norms of the scaled
sensitivity matrix J and (b) subcondition numbers of parameters. In fact, all unknown parameters are identifiable for e = 10−7. The magnitudes of the
sensitivities alone, represented by the column norms, are an indicator for identifiability but generally do not provide information on the correct ordering
of parameters.

doi:10.1371/journal.pone.0120607.g002
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Rate δ at which lost sight people return to the hospital: According to the data of TB in Camer-
oon [24], we fixed δ = 0.309 per year.

Natural recovery rate ρ: In [20], the authors estimated that the natural recovery for HIV-
negative TB and HIV-positive TB cases are 0.139 and 0.24 per year, respectively. Herein, we
took the average of these values as initial guess for the Gauss-Newton algorithm and estimated
ρ = 0.131140 per year.

Recovery rate ω: We fixed ω = 0.5 per year. A reference cannot be given for this value. A de-
crease (increase) of this value leads to a slight increase (decrease) in the maximum value of
population class L but does not qualitatively affect the dynamics of the other population classes
because the average population level of L is small.

Relapse rate of recovered individuals: The average relapse rate of recovered individuals is es-
timated with POEM as γ = 0.0851257 per year.

Numerical values of all parameters are summarized in Table 2. Note that some of the pa-
rameters are not specific for Cameroon, but specific for TB or valid for developing countries or
sub-Saharan Africa in general. This especially applies to those parameters taken from the stud-
ies of Blower et al. [8, 41] and Nunn et al. [44]. However, since other parameter values are
Cameroon-specific, the model in fact represents a study for Cameroon.

Interpretations in terms of model simulations
In order to illustrate the theoretical results of the foregoing analysis, numerical simulations of
model system (2) are carried out using a fourth order Runge-Kutta scheme in the software
Matlab, version R2009. The total population of Cameroon in 1994 is given by N = 13,240,337
[40]. The initial values of the other variables were set as in Table 3. We deliberately decided not

Table 2. Numerical values of the TBmodel parameters.

Parameters Symbol Estimate/yr Source

Recruitment rate of susceptible Λ 679685 Fixed, [40]

Transmission rate β1, β2 1, 4 Fixed, [41]

Transmission rate β3 6.33563 � 10−06 Estimated

Fast route to infectious class p1 9.50082 � 10−04 Estimated

Fast route to undiagnosed infectious class p2 2.38932 � 10−02 Estimated

Reinfection parameter of latently infected individuals σ1 2.38390 � 10−04 Estimated

Reinfection parameter of recovered individuals σ2 0.7*(p1+p2) Fixed, [20]

Slow route to active TB k 3.31390 � 10−04 Estimated

Natural mortality μ 1/53.6 Fixed, [40]

TB mortality of diagnosed infectious d1 0.139 Fixed, [8, 24]

TB mortality of undiagnosed infectious d2 0.20 Fixed, [8, 24]

TB mortality of lost sight d3 0.413 Fixed, [8]

Chemoprophylaxis of latently infected individuals r1 0 Fixed, [24, 44]

Detection rate of active TB h 0.81228 Estimated

Recovery rate of diagnosed infectious r2 0.758821 Fixed, [24]

Recovery rate of lost sight ω 0.5 Fixed

Recovery rate of undiagnosed infectious ρ 0.131140 Estimated

Relapse of recovered individuals γ 8.51257 � 10−02 Estimated

Diagnosed infectious route to the lost sight class α 0.215698 Estimated

Lost sight route to the diagnosed infectious class δ 0.309 Fixed, [24]

Diagnosed rate θ 0.497458 Estimated

doi:10.1371/journal.pone.0120607.t002
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to fix the population numbers N(t) as equality constraints because the data do not represent
true values but rather estimates.

Using the data from Table 1, model (2) gives a very good fit to the Cameroonian data for the
period 1994–2010 [1], as depicted in Fig. 3. The agreement between data and simulations is not
perfect, but there are no evident consistent patterns in the discrepancy. Forward solutions of
the deterministic model follow fairly well the observed TB patterns of incidence.

In addition, the obtained dynamics for the other population classes is plausible as well, see
Fig. 4. To exclude the effect of a growing total population in the argumentation, numbers have
been scaled with respect to N(t). Before the year 2000, the relative amount of infectious individ-
uals, (I+L+J)/N, is small so that the contact rates to healthy individuals are low and the latently
infected population (E) decreases. This goes along with an increase in the relative amount of
healthy, susceptible individuals. (In fact, the two largest population classes, S and E, almost
sum up to the total population number N, thus S/N+E/N� 1.) Around the year 1999, however,
the infectious population reaches a critical value so that the latently infected population starts
increasing and the healthy, susceptible population starts decreasing. In terms of equations
(compare 2), this means that :S changes sign from positive to negative because now

nðI; J; LÞ > L
S
� m:

In 2003, a newWHO strategy was applied in Cameroon, including reorganization of the Na-
tional Committee on the Fight against Tuberculosis. As a consequence, the increase in the
number of infectious people slowed down, reaching a maximum in 2006. With a delay of 4
years, the number of latently infected individuals also starts decreasing, hence the healthy
population increases.

Table 3. Initial values of state variables of the TBmodel.

Symbol Initial value Source Symbol Initial value Source

S 5296135 Estimated E 7937875 Estimated

I 3092 Fixed (WHO) J 974 Estimated

L 251 Estimated R 2010 Estimated

N 13240337 Fixed [40]

doi:10.1371/journal.pone.0120607.t003

Fig 3. Evolution of model (2) showing the state trajectories for diagnosed infectious individuals (I) and
total population (N). The dot plots represent the year-by-year trend in yearly case reports for Cameroon over
the period 1994–2010. Parameter values are defined in Table 2 and initial values are presented in Table 3.

doi:10.1371/journal.pone.0120607.g003

A Tuberculosis Model for Cameroon

PLOS ONE | DOI:10.1371/journal.pone.0120607 April 13, 2015 14 / 20



To summarize, with the estimated transmission parameters, the deterministic model ap-
pears to capture all the qualitative properties of the observed pattern. Hence, model (2) can be
used to gain realistic insight into tuberculosis transmission dynamics at least for a
limited period.

Effects of increased access to treatment
Herein, we investigate the impact of the time variation of some specific parameters on the dy-
namics of model (2). For this purpose, some model parameters are considered as time depen-
dent variables to reflect their possible change within time. However, the variation is assumed to
be slow over time.

Effects of increasing the access to TB treatment as a result of improved infrastructures and
education are explored by taking into account the following expressions of model parameters,

yðtÞ ¼ ~y þ ð1� ~yÞt
yd þ t

; dðtÞ ¼ ~d þ ð1� ~dÞt
dd þ t

;

p1ðtÞ ¼ ~p1 þ
~p2t

pd þ t
; p2ðtÞ ¼ ~p2 �

~p2t
pd þ t

:

ð18Þ

Herein, t starts at 0, counting the years since the beginning of the strategy, and θδ, δδ as well as

Fig 4. Evolution of model (2) showing the state trajectories for the relative amounts of susceptible
population (S/N), latently infected population (E/N), infectious population ((I+L+J)/N), and recovered
population (R/N). Parameter values are defined in Table 2 and initial values are presented in Table 3.

doi:10.1371/journal.pone.0120607.g004
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pδ are positive constants to be estimated. The values ~y; ~d; ~p1 and ~p2 represent the original pa-
rameter values from Table 2. The time-dependent functions have been constructed in such a
way that they coincide with these values at time t = 0, given that θδ, δδ and pδ are larger than
zero. Moreover, limt ! 1 δ(t) = 1 and limt ! 1 θ(t) = 1, i.e. the rates δ(t) and θ(t) are bounded
from above by 1 as necessary. The parameters θδ and δδ determine how fast this limit is ap-
proached; the smaller their values, the faster the increase in θ(t) and δ(t), respectively. In addi-
tion, the functions p1(t) and p2(t) satisfy p1ðtÞ þ p2ðtÞ ¼ ~p1 þ ~p2 for all t in order to leave the
value of parameter σ2 unchanged. They have been chosen such that limt!1p1ðtÞ ¼ ~p1 þ ~p2 and
limt ! 1 p2(t) = 0. Again, the smaller pδ, the faster this limit is approached. Overall, the func-
tions in Equation 18 are the simplest rational functions, i.e. with lowest polynomial order, that
satisfy all the conditions discussed above.

These functions are assumed to be control functions for the dynamics of TB. Thus, model
(2) becomes a non-autonomous controlled system. The goal now is to find two different sets of
values for parameters θδ, δδ and pδ such that the following two scenarios can be achieved:

a) a reduction in the population of undiagnosed infectious (J) and lost sight (L) by 20% until
2025,

b) a reduction in the population of undiagnosed infectious (J) and lost sight (L) by 60% until
2025.

To estimate the parameter values, we generated two artificial data sets. Both data sets contain
the values of J and L from the previous simulation at the adaptively chosen time-points in the
time interval [1994, 2035]. However, the values in the time interval [2010, 2035] have been re-
duced by 20% and 60% to obtain the first and second data set, respectively. These data sets
were then used in the Gauss-Newton algorithm to obtain the following estimates:

a) reduction by 20%: pδ = 8.56043�107, θδ = 81.2807, δδ = 37.2240

b) reduction by 60%: pδ = 85.6660, θδ = 81.3256, δδ = 37.1301

The simulation results are presented in Figs. 5 and 6. They show the dynamic of TB inside
the population in the presence and absence of continuous effort to diagnose the population. In
particular, a relatively small increase in the access to TB treatment could generally result in a
decrease in the number of susceptible (S), diagnosed infectious (I), undiagnosed infectious (J),
lost sight (L), and recovered (R) individuals, and an increase in the number of latently infected
(E) individuals. We also observe that the number of diagnosed infectious people (I) increases at
the beginning, but decreases after a few years prior to the beginning of the control strategies.
Thus, TB can be reduced within 15 years if some efforts are made to increase the treatment ac-
cess for rural population, and TB prevention and education for fast and immuno-compromised
people.

Conclusion
In this paper, a deterministic model for the transmission dynamics of TB in Cameroon has
been presented. The objective is to determine the role of TB diagnosis, treatment, lack of infor-
mation about the epidemiological status of some people, and the role of traditional medicine
and natural recovery on the dynamics of TB. In contrast to other TB models in the literature,
the model includes three infective classes emanating from diagnosed infectious, undiagnosed
infectious, and lost sight individuals. The undiagnosed and lost sight subclasses are shown to
be of particular importance in TB modeling in developing countries like sub-Saharan Africa
where public health is under-developed. Model parameters have either been fixed according to
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Fig 5. Time series of model (2) showing the impact of a slow change on parameter valuesθ, δ, p1 and
p2 with respect to time in order to reduce the TB burden by 20%within 15 years. Solid lines present the
model predictions for TB dynamics using parameter values of Table 2 and the dashed lines present the
trajectories for parameters θ, δ, p1 andp2 set as in Equation (18). Parameter identification with artificial data
gavepδ = 8.56043�107, θδ = 81.2807, δδ = 37.2240. All other parameters are defined as in Table 2.

doi:10.1371/journal.pone.0120607.g005

Fig 6. Impact of a slow change of parameter values θ, δ, p1 and p2 with respect to time in order to reduce the TB burden by 60%within 15 years.
Model predictions (solid lines) for TB dynamics using parameter values of Table 2 and the estimated trajectories (dashed lines) for parameters θ, δ, p1 and p2
set as in Equation (18). Parameter identification with artificial data gave pδ = 85.6660, θδ = 81.3256, δδ = 37.1301.

doi:10.1371/journal.pone.0120607.g006
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data published in literature, or they have been estimated with a Gauss-Newton method using
data published by WHO and the National Institute of Statistics of Cameroon (NIS). To the
knowledge of the authors, it is the first time that a detailed sensitivity analysis is performed on
a TB model in order to infer identifiability of unknown model parameters. In particular, pa-
rameters representing the proportion of individuals having access to medical facilities have a
large impact on the dynamics of the disease. We showed that a change in these parameters over
time can significantly reduce the disease burden in the population within the next 15 year.
These parameters can be used to measure the success of educational and diagnosis campaigns
that encourage individuals to go for TB screening. In future work, optimal control strategies
could be applied to determine the optimal dynamics of these parameters in order to achieve
the highest possible reduction of TB in shortest time at low costs. In addition, the model might
be extended towards the inclusion of co-infection between TB and HIV, or the resistance
to treatment.
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