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Abstract. The paper focuses on positive solutions to a coupled system of parabolic
equations with nonlocal initial conditions. Such equations arise as steady-state equations
in an age-structured predator-prey model with di¤usion. By using global bifurcation
techniques, we describe the structure of the set of positive solutions with respect to two
parameters measuring the intensities of the fertility of the species. In particular, we establish
co-existence steady-states, i.e. solutions which are nonnegative and nontrivial in both com-
ponents.

1. Introduction

This paper is dedicated to solutions u ¼ uða; xÞf 0 and v ¼ vða; xÞf 0 to the system
of parabolic equations

qau � DDu ¼ �ða1u þ a2vÞu; a A ð0; amÞ; x A W;ð1:1Þ

qav � DDv ¼ �ðb1v � b2uÞv; a A ð0; amÞ; x A W;ð1:2Þ

subject to the nonlocal initial conditions

uð0; xÞ ¼ h
Ðam

0

b1ðaÞuða; xÞ da; x A W;ð1:3Þ

vð0; xÞ ¼ x
Ðam

0

b2ðaÞvða; xÞ da; x A W:ð1:4Þ

The operator �DD in (1.1), (1.2) stands for the negative Laplacian on W with subscript
D indicating that Dirichlet conditions are imposed on the boundary qW. Note that, due to
the nonlocal character of the initial conditions, equations (1.1)–(1.4) do not pose a proper
evolution problem.
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System (1.1)–(1.4) arises when studying stationary (i.e. time-independent) solutions to
a particular predator-prey system with age structure of the form

qtu þ qau � d1Dxu ¼ �ða1u þ a2vÞu; t > 0; a A ð0; amÞ; x A W;ð1:5Þ

qtv þ qav � d2Dxv ¼ �ðb1v � b2uÞv; t > 0; a A ð0; amÞ; x A W;ð1:6Þ

for u ¼ uðt; a; xÞf 0 and v ¼ vðt; a; xÞf 0 subject to the constraints

uðt; 0; xÞ ¼
Ðam

0

hb1ðaÞuðt; a; xÞ da; t > 0; x A W;ð1:7Þ

vðt; 0; xÞ ¼
Ðam

0

xb2ðaÞvðt; a; xÞ da; t > 0; x A W;ð1:8Þ

and Dirichlet boundary conditions. It models the situation where a prey and a predator
with population densities u and v, respectively, inhabit the same spatial region W and both
species are assumed to be structured by age a A ð0; amÞ and spatial position x A W. Here,
am > 0 denotes the maximal age of the species. The constants d1; d2 > 0 give the rate
at which the species di¤use. For notational simplicity they are taken to be d1 ¼ d2 ¼ 1 in
(1.1) and (1.2). The mortality rates in (1.1), (1.2), (1.5), and (1.6) are given by

m1ðu; vÞ :¼ a1u þ a2v; m2ðu; vÞ :¼ b1v � b2u

with positive constants a1, a2, b1, and b2. Equations (1.7) and (1.8) represent the age-
boundary conditions and reflect that individuals with age zero are those created when a
mother individual of any age a A ð0; amÞ gives birth with rates hb1ðaÞ and xb2ðaÞ, respec-
tively. The functions bj ¼ bjðaÞf 0 describe the profiles of the fertility rates while the
parameters h; x > 0 measure their intensity without a¤ecting the structure of the birth rates.
We refer to [27] for a recent survey on the formidable literature about age-structured
population models. Of course, (1.5)–(1.8) represents just a simple age-structured predator-
prey model with di¤usion and other, in certain regards, biologically maybe more accurate
models (e.g. with other mortality and birth rates or di¤erent maximal ages for prey and
predator) exist as well. The main goal of the present paper is to provide a framework in
which problems of this kind including nonlocal initial conditions can be treated.

Of particular interest when studying (1.1)–(1.4) are coexistence solutions, i.e. solutions
ðu; vÞ with both components nonnegative and nonzero.

Variants of the elliptic counterpart of equations (1.1)–(1.4) being revealed when age
structure is neglected and also related elliptic systems for, e.g., competing or cooperative
species, have attracted considerable interest in literature both in the past [3], [4], [5], [8],
[12], [13], [17], [23], [28] and, more recently, [6], [14], [18], [19], [20], [21], though both lists
are far from being complete. Methods used in the cited literature include sub-/supersolution
methods and bifurcation techniques for di¤erent parameters in order to establish positive
solutions for the elliptic equations. We should also note that the idea to regard a mea-
sure for the fertility intensity as a bifurcation parameter has been used for a single age-
structured equation without di¤usion in [10], [11].
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The parabolic problem (1.1)–(1.4) has recently been investigated in [26] for slightly
di¤erent mortality rates of Holling–Tanner type (1.9) and particular birth profiles bj of
negative exponential type. To prove coexistence solutions, a bifurcation approach has
been chosen with respect to the parameters h and x. The assumption in [26] that there is
no maximal age, i.e. am ¼ y, allows one to recover the elliptic system by integrating the
parabolic equations with respect to age. In the present paper with am < y, however, this
approach is no longer possible and the analysis becomes more involved. But considering
am < y will allow us herein to take advantage of compact embeddings of the underlying
function spaces when interpreting solutions of (1.1)–(1.4) as the zeros of some function. It
thus provides a setting, where we can apply global bifurcation techniques with respect to
the bifurcation parameters h and x. This is in contrast to [26], where merely local bifurca-
tion results have been obtained. We shall give a partial, but nevertheless rather complete
description of the bifurcation diagrams with respect to these parameters. Our results are
inspired by those of [3], [4] for the corresponding elliptic system without age structure.
Our method is based on the celebrated global alternative of Rabinowitz [22] and on the
global unilateral theorems of López-Gómez [19] as well as on the local bifurcation results
of Crandall–Rabinowitz [9], [19].

As pointed out above, the mortality rates considered in [4], [26] (see also [6]) are of
Holling–Tanner type, that is, roughly of the form

m1ðu; vÞ :¼ a1u þ a2
v

1 þ mu
; m2ðu; vÞ :¼ b1v � b2

u

1 þ mu
:ð1:9Þ

All of the present results can be deduced for these nonlinearities as well with only minor
modifications.

We shall also mention that the birth profiles b1 and b2 depend on age only. In princi-
ple, a spatial dependence could be included as well, but would require some additional ef-
fort. In the present paper we investigate positive solutions to (1.1)–(1.4) in dependence of
the fertility intensities h and x. However, one might study bifurcation of equilibrium solu-
tions with respect to other parameters, like a1 and b1 for instance. For the case of a single
equation we refer to the techniques developed in [25], which may provide a template also
for system (1.1)–(1.4).

2. Main results

To set the stage, let J :¼ ½0; am� and let WHRn be a bounded and smooth domain.
Throughout this paper we assume a1; a2; b1; b2 > 0 and that, for j ¼ 1; 2,

bj A Lþ
yðJÞ; bjðaÞ > 0 for a near amð2:1Þ

are normalized such that

Ðam

0

bjðaÞe�l1a da ¼ 1;ð2:2Þ
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where l1 > 0 denotes the principal eigenvalue of �DD on W. For technical reasons we
introduce the solution space

Wq :¼ Lq

�
J;W 2

q;DðWÞ
�
XW 1

q

�
J;LqðWÞ

�

with q su‰ciently large, e.g. q > n þ 2, but point out that all our solutions will actually be
smooth with respect to both variables a and x. The space W 2

q;D stands for the Sobolev space
of order 2 involving the Dirichlet boundary conditions, and we write Wþ

q for the non-
negative functions in Wq.

Clearly, for any choice of h and x, u1 0 solves (1.1) subject to (1.3) and v1 0 solves
(1.2) subject to (1.4). Moreover, taking v1 0 in (1.1) we obtain positive solutions for (1.1)
subject to (1.3) when regarding h as parameter (and, of course, similarly for (1.2) with u1 0
subject to (1.4) when regarding x as parameter):

Theorem 2.1. For each h > 1, there is a unique solution uh A Wþ
q nf0g to

qau � DDu ¼ �a1u2; uð0; �Þ ¼ h
Ðam

0

b1ðaÞuða; �Þ da:ð2:3Þ

The mapping ðh 7! uhÞ belongs to Cy
�
ð1;yÞ;Wq

�
with kuhkWq

! 0 as h ! 1 and

kuhkWq
! y as h ! y. If he 1, then (2.3) has no solution in Wþ

q nf0g.

To study the solutions of (1.1)–(1.4) we first keep h fixed and regard x as bifurcation
parameter. We thus write ðx; u; vÞ for a solution and suppress h. Then Theorem 2.1 pro-
vides, in addition to the trivial branch of zero solutions

B0 :¼ fðx; 0; 0Þ; x A RgHR�Wþ
q �Wþ

q ;

a semi-trivial branch

B1 :¼ fðx; 0; vxÞ; x A ð1;yÞgHRþ �Wþ
q � ðWþ

q nf0gÞ;

where ðx; vxÞ is the solution to (1.2) with u1 0 subject to (1.4). If h > 1, there is another
semi-trivial branch

B2 :¼ fðx; uh; 0Þ; x A RgHR� ðWþ
q nf0gÞ �Wþ

q

from which a continuum of positive coexistence solutions bifurcates. More precisely, we
have:

Theorem 2.2. For he 1, there is no solution ðx; u; vÞ A Rþ � ðWþ
q nf0gÞ �Wþ

q to

(1.1)–(1.4). For h > 1, there is a unique value x0ðhÞ > 0 such that
�
x0ðhÞ; uh; 0

�
A B2 is a

bifurcation point. A continuum B3 HRþ � ðWþ
q nf0gÞ � ðWþ

q nf0gÞ of solutions to (1.1)–
(1.4) emanates from

�
x0ðhÞ; uh; 0

�
satisfying the alternatives

(i) B3 joins B2 with B1, or

(ii) B3 is unbounded in Rþ � ðWþ
q nf0gÞ � ðWþ

q nf0gÞ.
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Bifurcation is to the right, i.e., x > x0ðhÞ for any ðx; u; vÞ A B3. If, in addition,

b2 A L1

�
J; ð1 � e�saÞ�1da

�
ð2:4Þ

for some s > 0, then (ii) can only occur if B3 is unbounded with respect to the parameter x

(i.e. the x-projection of B3 coincides with the interval
�
x0ðhÞ;y

�
), and there is N A ð1;y�

such that (i) must occur for 1 < h < N.

The values of N and of x0ðhÞ as well as the value x1ðhÞ of x associated to the point
where B3 meets B1 if alternative (i) occurs are related to the spectral radii of some compact
operators and will be determined precisely (see (4.1), (4.12), and Lemma 4.7). It is worth-
while to point out that in either case of the alternatives we obtain coexistence solutions;
that is, solutions ðx; u; vÞ with both components nonzero, i.e. u, v belonging to Wþ

q nf0g.
For those values of h for which alternative (ii) occurs there are coexistence solutions for
any x > x0ðhÞ while for those h-values leading to occurrence of alternative (i) there are
coexistence solutions for x0ðhÞ < x < x1ðhÞ.

Actually, we conjecture that under the additional assumption (2.4), we can take
N ¼ y and thus B3 must join B2 with B1 for each h > 1. We refer to Remark 4.8 for
further details.

Next, we regard h as bifurcation parameter and keep x fixed. We thus write ðh; u; vÞ
for a solution to (1.1)–(1.4) and suppress x. Suppose first that x > 1. Then Theorem 2.1
provides two semi-trivial branches

S1 :¼ fðh; uh; 0Þ; h > 1g; S2 :¼ fðh; 0; vxÞ; h A Rg

with Sj HR�Wþ
q �Wþ

q . Similarly as in Theorem 2.2, a continuum of positive coexistence
solutions bifurcates from S2. In this case, however, the continuum must be unbounded:

Theorem 2.3. For x > 1, there is a unique value h0ðxÞ > 1 such that
�
h0ðxÞ; 0; vx

�
A S2

is a bifurcation point. An unbounded continuum S3 HRþ � ðWþ
q nf0gÞ � ðWþ

q nf0gÞ of

solutions to (1.1)–(1.4) emanates from
�
h0ðxÞ; 0; vx

�
. This bifurcation is to the right, that is,

h > h0ðxÞ for any ðh; u; vÞ A S3. If, in addition, b2 satisfies (2.4) for some s > 0, then S3 is

unbounded with respect to the parameter h, i.e. the h-projection of S3 coincides with the

interval
�
h0ðxÞ;y

�
.

Note that S3 consists exclusively of coexistence solutions. If b2 satisfies (2.4), then
there is a coexistence solution for any x > 1 and any h > h0ðxÞ. The exact value of h0ðxÞ
will be specified later in (5.2).

The case x < 1 is more di‰cult, and we obtain merely a partial result. In fact, for
values of x < 1 near 1, we can show that a local continuum of positive solutions bifurcates
from S1. Observe that S1 is the only semi-trivial branch in this case.

Theorem 2.4. There is d A ½0; 1Þ with the property that for x A ðd; 1Þ, there are a

unique value h1ðxÞ > 1 and e > 0 such that a local continuum

S4 :¼ fðh; u; vÞ; h1ðxÞ < h < h1ðxÞ þ egHRþ � ðWþ
q nf0gÞ � ðWþ

q nf0gÞ

of positive solutions to (1.1)–(1.4) bifurcates to the right from
�
h1ðxÞ; uh1ðxÞ; 0

�
A S1.
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The continuum S4 consists of a continuous curve of coexistence solutions. The
precise values of d and h1ðxÞ > 1 will be given in (5.4) and (5.5), respectively. Referring to
Remark 5.2 we conjecture that one can take d ¼ 0 in the statement.

The outline of the remainder of this paper is as follows: In Section 3, we first provide
some auxiliary results including a comparison type lemma that are helpful for the study
of semi-trivial solutions. The second part of Section 3 includes the proof of Theorem 2.1.
Section 4 is dedicated to the proof of Theorem 2.2, where x is regarded as bifurcation
parameter. The proofs of Theorems 2.3 and 2.4 about the bifurcation results with respect
to the parameter h are given in Section 5.

3. Semi-trivial solutions: Proof of Theorem 2.1

3.1. Notations. Given Banach spaces E and F we denote the set of bounded linear
operators from E into F by LðE;FÞ. We set LðEÞ :¼ LðE;EÞ, and we write KðEÞ for the
subspace of compact linear operators thereof. If T A LðEÞ, we let rðTÞ denote its spectral
radius. Suppose now that E is ordered by a convex cone Eþ. We write ff 0 if f A Eþ and
f > 0 if f A Eþ but f3 0. A positive operator T A LþðEÞ is an element T of LðEÞ such
that TðEþÞHEþ, and we express this by T f 0. Then KþðEÞ :¼ LþðEÞXKðEÞ. Assume
then further that the interior intðEþÞ of Eþ is non-empty. The following equivalence turns
out to be very useful in many circumstances: A point f A Eþ is a quasi-interior point (i.e.
hf 0; fi > 0 for all f 0 in the dual E 0 of E with f 0

f 0 and f 03 0) if and only if f A intðEþÞ.
We call T A LþðEÞ strongly positive provided Tf A intðEþÞ for f A Eþnf0g. Recall that
the Krein–Rutman theorem ensures (since intðEþÞ3j) that the spectral radius rðTÞ of a
strongly positive compact operator T A KðEÞ is positive and a simple eigenvalue with
positive eigenvector and a strictly positive eigenfunctional. Moreover, rðTÞ > 0 is the only
eigenvalue of T with a positive eigenvector. We refer to, e.g., [7], Appendix A.2, and [15],
Section 12, for these facts.

Recall that W is a bounded and smooth domain of Rn. We fix q A ðn þ 2;yÞ and set,
for k > 1=q,

W k
q;D :¼ W k

q;DðWÞ :¼ fu A W k
q ; u ¼ 0 on qWg;

where W k
q :¼ W k

q ðWÞ stand for the usual Sobolev–Slobodeckii spaces and values on the
boundary are interpreted in the sense of traces. Then W

2�2=q
q;D ,! C1ðWÞ by the Sobolev

embedding theorem, hence the interior of the positive cone

W
2�2=q;þ
q;D :¼ W

2�2=q
q;D XLþ

q

is non-empty. Here, Lþ
q :¼ Lþ

q ðWÞ is the positive cone of Lq :¼ LqðWÞ consisting of func-
tions which are nonnegative a.e. Let J :¼ ½0; am�. We put

Lq :¼ LqðJ;LqÞ; Wq :¼ LqðJ;W 2
q;DÞXW 1

q ðJ;LqÞ;

and recall that

Wq ,! CðJ;W 2�2=q
q;D Þ ,! C

�
J;C1ðWÞ

�
ð3:1Þ
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according to [1], III, Theorem 4.10.2. Since Wq HW 1
q ðJ;LqÞ ,! C1�1=qðJ;LqÞ, the inter-

polation inequality in [1], I, Theorem 2.11.1, yields in fact

Wq ,! C1�1=q�QðJ;W 2Q
q;DÞ; 0e Qe 1 � 1=q:ð3:2Þ

By (3.1), the trace g0u :¼ uð0Þ defines an operator g0 A LðWq;W
2�2=q
q;D Þ. We then say that

an operator A A LðW 2
q;D;LqÞ has maximal Lq-regularity (on J) provided that

ðqa þ A; g0Þ A LðWq; Lq � W
2�2=q
q;D Þ

is a toplinear isomorphism. For the positive cone of Lq, we write Lþ
q :¼ Lþ

q ðJ;LqÞ
(i.e. those functions u A Lq for which uðaÞ belongs to Lþ

q for a.a. a A J). We put

Wþ
q :¼ Wq XLþ

q ðRþ;LqÞ and use the notation _WWþ
q :¼ Wþ

q nf0g. Note that u A Wþ
q implies

uðaÞf 0 on W for a A J due to (3.1).

Let j1 denote the strongly positive eigenfunction to the principal eigenvalue l1 > 0 of
�DD with kj1ky ¼ 1.

3.2. Preliminaries. If % > 0 and h A C%
�
J;CðWÞ

�
, then clearly

�DD þ h A C%
�
J;LðW 2

q;D;LqÞ
�

and for a A J fixed, DD � hðaÞ is the generator of an analytic semigroup on Lq with
domain W 2

q;D. Hence, [1], II, Corollary 4.4.1, ensures the existence of a parabolic evolution
operator

P½h�ða; sÞ; 0e se ae am;

associated with �DD þ h. That is, given f A Lq, w :¼ P½h�ð�; sÞf is the unique strong
solution to

qaw � DDw þ hðaÞw ¼ 0; a A ðs; am�; wðs; �Þ ¼ f:

As DD � hðaÞ is resolvent positive for each a A J, [1], II, Section 6, and [15], Corollary 13.6,
entail in fact that P½h�ða; sÞ A LðW 2�2=q

q;D Þ is strongly positive for 0e s < ae am.

In the following, we put

H½h� :¼
Ðam

0

b1ðaÞP½h�ða; 0Þ da; ĤH ½h� :¼
Ðam

0

b2ðaÞP½h�ða; 0Þ da:

Consequently, (3.2) warrants that we may write any solution ðu; vÞ A Wq �Wq to (1.1)–
(1.4) equivalently in the form

uðaÞ ¼ P½a1uþa2v�ða; 0Þuð0Þ; a A J; uð0Þ ¼ hH½a1uþa2v�uð0Þ;ð3:3Þ

vðaÞ ¼ P½b1v�b2u�ða; 0Þvð0Þ; a A J; vð0Þ ¼ xĤH ½b1v�b2u�vð0Þ:ð3:4Þ
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In particular observe that u, v are nonzero and nonnegative provided that uð0Þ, vð0Þ are
nonzero and nonnegative. The following information about the spectral radii of the opera-
tors H½h� and ĤH ½h� will be of great importance:

Lemma 3.1. For h A C%
�
J;CðWÞ

�
with % > 0, the operator H½h� A KðW 2�2=q

q;D Þ is

strongly positive. In particular, the spectral radius rðH½h�Þ > 0 is a simple eigenvalue with

an eigenvector B½h� belonging to intðW 2�2=q;þ
q;D Þ and a strictly positive eigenfunctional

B 0
½h� A ðW 2�2=q

q;D Þ0. It is the only eigenvalue of H½h� with a positive eigenfunction. Moreover, if

h; g A C%
�
J;CðWÞ

�
with gf h but gE h, then rðH½g�Þ < rðH½h�Þ. The same statements hold

for ĤH.

Proof. As P½h�ða; sÞ is strongly positive for 0e s < ae am, we obtain from
standard regularizing e¤ects of P½h� and the compact embedding W 2k

q;D ,�,! W
2�2=q
q;D ,

2k > 2 � 2=q, that H½h� A KðW 2�2=q
q;D Þ is strongly positive (see [25], Lemma 2.1). Due to

the Krein–Rutman theorem (e.g. [15], Theorem 12.3) it then remains to prove that rðH½h�Þ
is decreasing in h.

Let h; g A C%
�
J;CðWÞ

�
with gf h but gE h. Fix f A W

2�2=q;þ
q;D nf0g and set

zðaÞ :¼ P½h�ða; 0Þf; wðaÞ :¼ P½g�ða; 0Þf; a A J:

Let u :¼ z � w. Then

qau � DDu þ hðaÞu ¼
�
gðaÞ � hðaÞ

�
wðaÞ; uð0Þ ¼ 0;

so

uðaÞ ¼
Ða
0

P½h�ða; sÞ
��

gðsÞ � hðsÞ
�
wðsÞ

�
dsf 0; a A J:ð3:5Þ

The strong positivity of P½g�ðs; 0Þ ensures wðsÞ A intðW 2�2=q;þ
q;D Þ for s A ð0; am�. Since gE h,

there is some s0 A J such that

P½h�ða; sÞ
��

gðsÞ � hðsÞ
�
wðsÞ

�
A intðW 2�2=q;þ

q;D Þ; a A ðs; am�; s near s0:

This together with (2.1) and (3.5) readily imply

ðH½h� � H½g�Þf ¼
Ðam

0

b1ðaÞuðaÞ da A intðW 2�2=q;þ
q;D Þ; f A W

2�2=q;þ
q;D nf0g:

Letting h� ; �i denote the duality pairing in W
2�2=q
q;D , we thus deduce

rðH½h�ÞhB 0
½h�;B½g�i ¼ hB 0

½h�;H½h�B½g�i > hB 0
½h�;H½g�B½g�i ¼ rðH½g�ÞhB 0

½h�;B½g�i:

Therefore, rðH½g�Þ < rðH½h�Þ. r
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The next lemma provides a comparison principle which turns out to be a key tool
to handle the nonlocal initial conditions (1.3), (1.4). To shorten notation, we set for the
remainder of this section

U :¼
Ðam

0

b1ðaÞuðaÞ da; V :¼
Ðam

0

b1ðaÞvðaÞ da;

for u; v A Wq and we use this definition of capital letters also for other elements of Wq.

Lemma 3.2. Let h > 1 and f A Lþ
q . Suppose u; v A _WWþ

q satisfy either

qau � DDu ¼ �a1u2 þ f ; uð0Þf hU ; qav � DDv ¼ �a1v2; vð0Þ ¼ hV ;

or

qau � DDu ¼ �a1u2; uð0Þ ¼ hU ; qav � DDv ¼ �a1v2 � f ; vð0Þe hV :

Then uf v.

Proof. Note that for z :¼ u � v, we have

qaz � DDz þ a1ðu þ vÞz ¼ f f 0; zð0Þf hZ;

with u þ v A Wq. Thus

zðaÞfP½a1ðuþvÞ�ða; 0Þzð0Þ; a A J;ð3:6Þ

and

zð0Þf hZ f h
Ðam

0

b1ðaÞP½a1ðuþvÞ�ða; 0Þ dazð0Þ ¼ hH½a1ðuþvÞ�zð0Þ;

that is,

ð1 � hH½a1ðuþvÞ�Þzð0Þf 0:ð3:7Þ

Suppose that the first alternative of the statement holds. Then

vðaÞ ¼ P½a1v�ða; 0Þvð0Þ; a A J; vð0Þ ¼ hV ¼ hH½a1v�vð0Þ;

hence vð0Þ A intðW 2�2=q;þ
q;D Þ since v A _WWþ

q . By Lemma 3.1, this implies hrðH½a1v�Þ ¼ 1. Also,
due to Lemma 3.1 and u A _WWþ

q ,

rðH½a1v�Þ > rðH½a1ðuþvÞ�Þ;

whence 1 > hrðH½a1ðuþvÞ�Þ so that ð1 � hH½a1ðuþvÞ�Þ�1
f 0 (e.g. see [15], equation (12.8)).

Recalling (3.7), it follows zð0Þf 0 and then zðaÞ ¼ uðaÞ � vðaÞf 0 for a A J owing to
(3.6). If the second alternative of the statement holds, we conclude analogously. r
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We now focus on problems of the form

qau � DDu ¼ �a1u2; uð0; �Þ ¼ hU :ð3:8Þ

Observe that the comparison principle of Lemma 3.2 warrants uniqueness of solutions:

Corollary 3.3. For h > 1, there is at most one solution u ¼ uh A _WWþ
q to (3.8). If

uh1
; uh2

A _WWþ
q are solutions to (3.8) with h1 > h2, then uh1

f uh2
with uh1

E uh2
.

The next proposition provides a global continuum of positive solutions to (2.3) and is
the basis for Theorem 2.1.

Proposition 3.4. Problem (3.8) admits an unbounded connected set of solutions

U :¼ fðh; uhÞ; h A IgH ð1;yÞ � _WWþ
q

emanating from ð1; 0Þ, where I is an interval in ð1;yÞ with left endpoint 1. There is no solu-

tion ðh; uhÞ in Rþ � _WWþ
q to (3.8) if he 1.

Proof. Let AðuÞ :¼ �DD þ a1u and A�ðuÞ :¼ AðuÞ �Að0Þ ¼ a1u. Given n A ½0; 1Þ
and r A ½0; 1 � nÞ, it follows from [2], Theorem 1.1, that Wq ,�,! W r

q ðJ;W 2n
q;DÞ, where ,�,!

stands for a compact embedding. Fix s, n, g, and s such that 1=q < s < 1 � n < 1 and
0 < s < 1 � g < n=2q. Then, by Sobolev’s embedding theorem,

Wq ,�,! W s
q ðJ;W 2n

q Þ ,! LyðJ;W 2n
q Þ; Wq ,�,! W s

q ðJ;W 2g
q Þ ,! Lq

�
J;CðWÞ

�
;ð3:9Þ

from which we easily deduce that

A� A C1
�
W s

q ðJ;W 2n
q Þ;L

�
W s

q ðJ;W 2g
q Þ; Lq

��
:

Observe that Að0Þ ¼ �DD has maximal Lq-regularity and that assumption (2.2) implies
H½0�j1 ¼ j1 so that rðH½0�Þ ¼ 1 by Lemma 3.1. We are therefore in a position to apply
[24], Proposition 2.5, Theorem 2.7, and conclude the existence of an unbounded continuum
U of solutions in ð0;yÞ � _WWþ

q emanating from ð1; 0Þ. If ðh; uÞ is a solution to (3.8) with
u A _WWþ

q , then z 0ðaÞe�l1zðaÞ for a A J, where

zðaÞ :¼
Ð
W

j1uðaÞ dx; a A J;

and thus

zð0Þ ¼ h
Ðam

0

b1ðaÞ
Ð
W

j1uðaÞ da dxe h
Ðam

0

b1ðaÞe�l1a da zð0Þ:

Since u A _WWþ
q , this inequality is actually strict and uð0Þ > 0 by (3.3) (with v1 0). Therefore,

we have zð0Þ > 0 and so h > 1 by the above inequality and (2.2). This proves the assertion.
r
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Remark 3.5. Using (3.3), we have for ðh; uhÞ A U that

uhðaÞ ¼ P½a1uh�ða; 0Þuhð0Þ; a A J; uhð0Þ ¼ hUh ¼ hH½a1uh�uhð0Þ:

Since uhð0Þ A W
2�2=q;þ
q;D and uhð0Þ3 0, this implies

rðhH½a1uh�Þ ¼ 1ð3:10Þ

according to Lemma 3.1.

Classical regularity theory for the heat equation ensures that uh is smooth both with
respect to a and x for ðh; uhÞ A U. To conclude Theorem 2.1, it remains to show that the
continuum U is unbounded with respect to the parameter h. We will need some further
auxiliary results. First, we give lower and upper bounds for solutions to (3.8).

Lemma 3.6. If ðh; uhÞ A U, then

uhðaÞf
l1

a1

h� 1

hðel1a � 1Þ þ 1 � e�l1ðam�aÞ j1 on W; a A J:

Moreover, there is k > 0 such that

kuhðaÞky e
1

a1a þ ðkh2Þ�1
; a A J;

for ðh; uhÞ A U.

Proof. Let ðh; uhÞ A U be fixed and put

c0 :¼ a1

l1

h� e�l1am

h� 1
>

a1

l1
:

Then

c0l1 � a1

c0l1el1a � a1
f

1

hel1a
; c0l1el1a � a1 f c0l1 � a1 > 0;ð3:11Þ

for a A J. Thus, z :¼ f j1 A Wþ
q , where

f ðaÞ :¼ l1

c0l1el1a � a1
; a A J;

solves the ode f 0 þ l1 f ¼ �a1 f 2. Since z ¼ f j1 e f , we obtain

qaz � DDz ¼ �a1z2 � F ; F :¼ a1zð f � zÞf 0:
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Also observe that, by (2.2) and (3.11),

1 ¼ h
Ðam

0

b1ðaÞ
1

hel1a
dae h

Ðam

0

b1ðaÞ
c0l1 � a1

c0l1el1a � a1
da;

whence

zð0Þ ¼ l1

c0l1 � a1
j1 e h

Ðam

0

b1ðaÞ
l1

c0l1el1a � a1
da j1 ¼ hZ:

Now the comparison principle of Lemma 3.2 implies uhf z and the lower bound on uh
follows from the definition of z.

For the second assertion set

cðaÞ :¼ 1

a1a þ kuhð0Þk�1
y

; a A J;

for ðh; uhÞ A U given. Then

c 0 ¼ �a1c
2; cð0Þ ¼ kuhð0Þky f uð0Þ on W:

Let w :¼ c� uh. Clearly, w A C1;2ðJ �WÞ and

qaw � DDw ¼ �a1ðcþ uhÞw on J �W;

wð0; �Þf 0 on W; wða; �Þ ¼ cðaÞ > 0 on qW; a A J:

Hence, the parabolic maximum principle (e.g. see [15], Theorem 13.5) yields wf 0 on
J �W, that is,

uhða; xÞecðaÞ; ða; xÞ A J �W:ð3:12Þ

Using this we derive from the initial condition uhð0Þ ¼ hUh that

kuhð0Þkye hkb1ky
Ðam

0

�
a1a þ kuhð0Þk�1

y

��1
da ¼ hkb1ky

a1
log

�
a1amkuhð0Þky þ 1

�

from which we easily deduce kuhð0Þky e ðkhÞ2 for some k > 0. Combining this with esti-
mate (3.12), we conclude also the upper bound on uh. r

3.3. Proof of Theorem 2.1. To finish the proof of Theorem 2.1 note first that, owing
to Proposition 3.4, problem (3.8) does not admit a solution u in _WWþ

q if he 1. Also recall
that, again by Proposition 3.4, there is an unbounded continuum U of solutions to (3.8)
and that uniqueness of solutions is provided by Corollary 3.3. In particular, there are
ðhj; uhj

Þ A U with kðhj; uhj
ÞkR�Wq

! y as j ! y. Since U is connected, the existence of a

unique solution uh A _WWþ
q to (3.8) for each value h > 1 will be established provided we can
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show that hj ! y. Suppose otherwise, i.e. let hj e h� for some h� > 1. Then necessarily
kuhj

kWq
! y. However, Lemma 3.6 implies

kuhj
ðaÞky e kh2

� ; a A J; j A N;ð3:13Þ

for some k > 0. The positivity of uhj
and (3.8) ensure 0e uhj

ðaÞe uhj
ð0Þ on W for a A J,

and thus

ku2
hj
kq
Lq
¼

Ðam

0

Ð
W

�
uhj

ðaÞ
�2q

dx dae amkuhj
ð0Þk2q

L2q
; j A N:

Using the property of maximal Lq-regularity for �DD in (3.8), it follows that

kuhj
kWq

e c
�
ka1u2

hj
kLq

þ kuhj
ð0Þk

W
2�2=q

q;D

�
e c

�
kuhj

ð0Þk2
L2q

þ kuhj
ð0Þk

W
2�2=q

q;D

�
ð3:14Þ

for j A N and some constant c independent of uhj
. Writing the solution uhj

to (3.8) in the
form

uhj
ðaÞ ¼ eaDD uhj

ð0Þ � a1

Ða
0

eða�sÞDD
�
uhj

ðsÞ
�2

ds;

we see that

uhj
ð0Þ ¼ hj

Ðam

0

b1ðaÞeaDD uhj
ð0Þ da � a1hj

Ðam

0

b1ðaÞ
Ða
0

eða�sÞDD
�
uhj

ðsÞ
�2

ds da:

Taking into account that keaDDk
LðLq;W

2�2=q

q;D
Þ e ca1=q�1 for a > 0, e.g. due to [1], we derive

from (3.13) that
�
uhj

ð0Þ
�

j AN
stays bounded in W

2�2=q
q;D . But then ðuhj

Þj AN stays bounded

in Wq by (3.14) in contradiction to our observation above. Therefore, hj ! y and we

conclude that (3.8) admits for each value of h > 1 a unique solution uh A _WWþ
q .

Next, we show that kuhkWq
! y as h ! y. Indeed, if kuhkWq

e c < y for all h > 1,
then kuhð0Þky would be bounded with respect to h by (3.1). Thus uhð0Þ ¼ hUh would imply
that kUhky tends to zero as h ! y contradicting the fact

l1

a1ð1 � e�l1amÞ
h� 1

h
j1 e

1

h
uhð0Þ ¼ Uh on W;

and kj1ky ¼ 1 according to Lemma 3.6.

Finally, it remains to prove that ðh 7! uhÞ A Cy
�
ð1;yÞ;Wq

�
. For, set

Gðh; uÞ :¼
�
qau � DDu þ a1u2; uð0Þ � hU

�
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and note that G A Cy
�
ð1;yÞ �Wq; Lq � W

2�2=q
q;D

�
with Gðh; uhÞ ¼ ð0; 0Þ for h > 1. In fact,

if h > 1 and f A Wq, then

Guðh; uhÞf ¼
�
qaf� DDfþ 2a1uhf; fð0Þ � hF

�
:

Thus, Guðh; uhÞf ¼ ðc;YÞ with ðc;YÞ A Lq � W
2�2=q
q;D if and only if

fðaÞ ¼ P½2a1uh�ða; 0Þfð0Þ þ
Ða
0

P½2a1uh�ða; sÞcðsÞ ds; a A J;

and

ð1 � hH½2a1uh�Þfð0Þ ¼ h
Ðam

0

b1ðaÞ
Ða
0

P½2a1uh�ða; sÞcðsÞ dsþY:

Invoking (3.10) and Lemma 3.1, we see that 1 > rðhH½2a1uh�Þ, whence 1 � hH½2a1uh� is inver-

tible. This readily implies that Guðh; uhÞ is bijective and so Guðh; uhÞ A LðWq; Lq � W
2�2=q
q;D Þ

is an isomorphism by the open mapping theorem. The implicit function theorem then
yields some e > 0 and a function z A Cy

�
ðh� e; hþ eÞ;Wq

�
such that zðhÞ ¼ uh and

G
�
s; zðsÞ

�
¼ 0 for js � hj < e. Since the solution to Gðs; uÞ ¼ 0 is unique by Corollary 3.3,

we derive zðsÞ ¼ us and so ðh 7! uhÞ A Cy
�
ð1;yÞ;Wq

�
. This completes the proof of

Theorem 2.1.

Actually, we can say more about the derivative of uh with respect to h. Set z :¼ q

qh
uh.

Di¤erentiation of the equation

qauh � DDuh ¼ �a1u2
h ; uhð0Þ ¼ hUh

with respect to h and interchange of the smooth derivatives yield

qaz � DDz ¼ �2a1uhz; zð0Þ ¼ Uh þ hZ;

whence

zðaÞ ¼ P½2a1uh�ða; 0Þzð0Þ; a A J; ð1 � hH½2a1uh�Þzð0Þ ¼ Uh:

Since, as above, 1 � hH½2a1uh� is invertible, we conclude

zð0Þ ¼ ð1 � hH½2a1uh�Þ
�1

Uh A intðW 2�2=q;þ
q;D Þ

and thus

Corollary 3.7. If h > 1, then
q

qh
uhðaÞ A intðW 2�2=q;þ

q;D Þ for a A J.

3.4. Further auxiliary results. We end this section with two results regarding non-
trivial nonnegative solutions to (1.1)–(1.4). Given h; x > 1, let uh A _WWþ

q denote the unique
solution to (1.1) and (1.3) with v1 0 and, accordingly, let vx A _WWþ

q denote the unique solu-
tion to (1.2) and (1.4) with u1 0, both solutions being provided by Theorem 2.1.
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Lemma 3.8. Let x; h > 1 be given and suppose that ðu; vÞ A Wþ
q �Wþ

q solves (1.1)–
(1.4). Then

0e uðaÞe uhðaÞ on W; a A J;

and if v A _WWþ
q , then

vðaÞf vxðaÞ on W; a A J:

Proof. Since u; v A Wþ
q , we have

qau � DDu ¼ �a1u2 � a2uve�a1u2; uð0Þ ¼ h
Ðam

0

b1ðaÞuðaÞ da;

and so uðaÞe uhðaÞ for a A J by Lemma 3.2. Similarly,

qav � DDv ¼ �b1v2 þ b2uvf�b1v2; vð0Þ ¼ x
Ðam

0

b2ðaÞvðaÞ da;

and so vðaÞf vxðaÞ for a A J if vE 0. r

Next we give constraints on the parameters h and x for solutions to (1.1)–(1.4).

Lemma 3.9. Let x; h > 0 be given and suppose that ðu; vÞ A Wþ
q �Wþ

q solves (1.1)–
(1.4).

(i) If h > 1 and vE 0, then

xf
1

rðĤH ½�b2uh�Þ
A ð0; 1Þ:

(ii) If x > 1 and uE 0, then hf 1, and if also vE 0, then

hf
1

rðH½a2vx�Þ
A ð1;yÞ:

Proof. (i) It follows from Lemma 3.8 that

qav � DDv ¼ �b1v2 þ b2uve b2uhv; vð0Þ ¼ xV ;

and so vðaÞeP½�b2uh�ða; 0Þvð0Þ for a A J. Hence

vð0Þe x
Ðam

0

b2ðaÞP½�b2uh�ða; 0Þ da vð0Þ ¼ xĤH ½�b2uh�vð0Þ

i.e. ð1 � xĤH ½�b2uh�Þvð0Þe 0. Suppose x�1 > rðĤH ½�b2uh�Þ. Then 1 belongs to the resolvent set
of xĤH ½�b2uh�, whence ð1 � xĤH ½�b2uh�Þ

�1
f 0 by [15], equation (12.8), yielding vð0Þe 0. Since
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v A Wþ
q by assumption, this gives vð0Þ ¼ 0 and so v1 0 from (3.4). From Lemma 3.1 and

(2.2) we deduce rðĤH ½�b2uh�Þ > rðĤH ½0�Þ ¼ 1.

(ii) The first assertion is shown as in the last step of Proposition 3.4. Since

qau � DDu ¼ �a1u2 � a2uve�a2uvx; uð0Þ ¼ hU ;

by Lemma 3.8 if vE 0, we conclude the second assertion as in (i). r

4. Bifurcation for the parameter x: Proof of Theorem 2.2

In this section we present the proof of Theorem 2.2. Regarding x as bifurcation
parameter in (1.1)–(1.4) and keeping h fixed, we write ðx; u; vÞ for a solution to (1.1)–(1.4)
and thus suppress h since no confusion seems likely. First recall that Theorem 2.1 warrants
for any value of h the existence of the semi-trivial branch

B1 ¼ fðx; 0; vxÞ; x A ð1;yÞgHRþ �Wþ
q � _WWþ

q ;

where ðx; vxÞ is the unique solution to (1.2) with u1 0 subject to (1.4). In addition, if h > 1,
then there is another semi-trivial branch

B2 ¼ fðx; uh; 0Þ; x A RgHR� _WWþ
q �Wþ

q :

Let h > 1 be fixed. By using Rabinowitz’ global alternative [22] and the global uni-
lateral theorems of López-Gómez [19], we now show that a continuum of coexistence
solutions bifurcates from the point

�
x0ðhÞ; uh; 0

�
A B2, where the choice

x0ðhÞ :¼
1

rðĤH ½�b2uh�Þ
A ð0; 1Þð4:1Þ

is suggested by Lemma 3.9(i). Due to Lemma 3.8,

ðx; u; vÞ ¼ ðx; uh � w; vÞ A Rþ �Wþ
q �Wþ

q

solves (1.1)–(1.4) if and only if ðx;w; vÞ A Rþ �Wþ
q �Wþ

q with we uh solves

qaw � DDw ¼ a1w2 � 2a1uhw þ a2ðuh � wÞv; wð0Þ ¼ hW ;ð4:2Þ

qav � DDv ¼ �b1v2 þ b2ðuh � wÞv; vð0Þ ¼ xV ;ð4:3Þ

where we slightly abuse notation by writing

W :¼
Ðam

0

b1ðaÞwðaÞ da; V :¼
Ðam

0

b2ðaÞvðaÞ da

when w; v A Wq. We shall use this notation also for other capital letters since it will always
be clear from the context, which of the profiles b1 or b2 is meant. Since the interval J is
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compact and uh A Wq, it follows from (3.1) and [1], I, Corollary 1.3.2, III, Theorem 4.8.7,
III, Theorem 4.10.10, that

Z1 :¼ ðqa � DD þ 2a1uh; g0Þ
�1 A LðLq � W

2�2=q
q;D ;WqÞ;

Z2 :¼ ðqa � DD � b2uh; g0Þ
�1 A LðLq � W

2�2=q
q;D ;WqÞ;

due to maximal regularity. Equations (4.2) and (4.3) may then be restated equivalently as

ðw; vÞ � KðxÞðw; vÞ þ Rðw; vÞ ¼ 0ð4:4Þ

by setting

KðxÞðw; vÞ :¼ Z1ða2uhv; hWÞ
Z2ð0; xVÞ

� �
; Rðw; vÞ :¼ � Z1ða1w2 � a2wv; 0Þ

Z2ð�b1v2 � b2wv; 0Þ

� �

for ðw; vÞ A Wq �Wq. Obviously, KðxÞ A LðWq �WqÞ.

Lemma 4.1. Let x A R. If mf 1 is an eigenvalue of KðxÞ with eigenvector

ðw; vÞ A Wq �Wq, then x3 0, and m=x is an eigenvalue of ĤH ½�b2uh� with eigenvector

vð0Þ A W
2�2=q
q;D .

Proof. Let mf 1 and ðw; vÞ A Wq �Wqnfð0; 0Þg with KðxÞðw; vÞ ¼ mðw; vÞ. Suppose
v1 0. Then

qaw � DDw þ 2a1uhw ¼ 0; wð0Þ ¼ h

m
W ;

from which

wðaÞ ¼ P½2a1uh�ða; 0Þwð0Þ; a A J; wð0Þ ¼ h

m
H½2a1uh�wð0Þ:

In particular, wð0Þ3 0 since otherwise ðw; vÞ1 ð0; 0Þ, and hence me hrðH½2a1uh�Þ contra-
dicting the fact that 1 ¼ rðhH½a1uh�Þ > m�1rðhH½2a1uh�Þ by (3.10) and Lemma 3.1 because
mf 1. Therefore, vE 0. But from

qav � DDv � b2uhv ¼ 0; vð0Þ ¼ x

m
V ;

it follows

vðaÞ ¼ P½�b2uh�ða; 0Þvð0Þ; a A J; vð0Þ ¼ x

m
ĤH ½�b2uh�vð0Þ;

and so vð0Þ3 0 and x3 0 since otherwise v1 0. Consequently, m=x is an eigenvalue of
ĤH ½�b2uh� with eigenvector vð0Þ. r
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Lemma 4.2. (i) KðxÞ A KðWq �WqÞ, x A R, is a continuous family of compact

operators.

(ii) R A CðWq �Wq;Wq �WqÞ is compact with Rðw; vÞ ¼ o
�
kðw; vÞkWq�Wq

�
as

ðw; vÞ ! ð0; 0Þ.

(iii) The set S :¼
�
x A R; dim

�
ker

�
1 � KðxÞ

��
f 1

�
is discrete.

Proof. It follows from (3.9) that the mapping

Wq �Wq ! Lq; ðw; vÞ 7! wv is compact;ð4:5Þ

and, since W 2
q;D ,�,! W

2�2=q
q;D , we easily deduce that

KðxÞ A LðWq �WqÞ and R A CðWq �Wq;Wq �WqÞ

are compact. Finally, if x A S, then m ¼ 1 is an eigenvalue of KðxÞ and so 1=x is an eigen-
value of ĤH ½�b2uh� due to Lemma 4.1. But the spectrum of the compact operator ĤH ½�b2uh� is
discrete. r

In order to apply the global alternative of Rabinowitz, the next lemma will be funda-
mental. For a summary about the fixed point index we refer, e.g., to [19], Section 5.6.

Lemma 4.3. Let x0ðhÞ be defined in (4.1). Then the fixed point index Ind
�
0;KðxÞ

�
of

zero with respect to KðxÞ changes sign as x crosses x0ðhÞ.

Proof. Recall that Ind
�
0;KðxÞ

�
¼ ð�1ÞzðxÞ, where zðxÞ is the sum of the algebraic

multiplicities of all real eigenvalues of KðxÞ greater than one. First, let 0 < x < x0ðhÞ and
suppose there is an eigenvalue mf 1 of KðxÞ. Then, since m=x is an eigenvalue of ĤH ½�b2uh�
according to Lemma 4.1, we get from (4.1) the contradiction m=xe x0ðhÞ�1. Thus

Ind
�
0;KðxÞ

�
¼ 1; 0 < x < x0ðhÞ:

Next, observe that, since ĤH ½�b2uh� is compact and strongly positive, there is some e > 0 such

that the interval
�
x0ðhÞ�1 � e;y

�
contains only one eigenvalue of ĤH ½�b2uh�, namely the sim-

ple eigenvalue x0ðhÞ�1. Fix x such that x0ðhÞ�1 � e < x�1
e x0ðhÞ�1. Then, there is a unique

m� f 1 with x=m� ¼ x0ðhÞ. Clearly, if mf 1 is an eigenvalue of KðxÞ, then necessarily m ¼ m�.
We claim that m� is a simple eigenvalue of KðxÞ. Indeed, since m�=x ¼ rðĤH ½�b2uh�Þ, we may

choose c0 A intðW 2�2=q;þ
q;D Þ with m�c0 ¼ xĤH ½�b2uh�c0. Setting

c� :¼ Z2ð0;c0Þ ¼ P½�b2uh�ð�; 0Þc0 A _WWþ
q ;

we obtain

m�c� ¼ Z2ð0; xC�Þð4:6Þ

as in the proof of Lemma 4.1. We then seek f� A Wq with m�f� ¼ Z1ða2uhc�; hF�Þ, i.e. a
solution to

qaf� � DDf� þ 2a1uhf� ¼
a2

m�
uhc�; f�ð0Þ ¼

h

m�
F�
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or, equivalently,

f�ðaÞ ¼ P½2a1uh�ða; 0Þf�ð0Þ þ ðNc�ÞðaÞ; ðNc�ÞðaÞ :¼
a2

m�

Ða
0

P½2a1uh�ða; sÞ
�
uhðsÞc�ðsÞ

�
ds

for a A J with

1 � h

m�
H½2a1uh�

� �
f�ð0Þ ¼

h

m�

Ðam

0

b1ðaÞðNc�ÞðaÞ da:

Since m� f 1 it follows from (3.10) and Lemma 3.1 that 1 � h

m�
H½2a1uh� is invertible and the

equation for f�ð0Þ is uniquely solvable. Thus, define f0 A W
2�2=q;þ
q;D and f� A Wþ

q by

f0 :¼ h

m�
1 � h

m�
H½2a1uh�

� ��1 Ðam

0

b1ðaÞðNc�ÞðaÞ da;

f� :¼ P½2a1uh�ð�; 0Þf0 þ Nc� ¼ Z1ðNc�; f0Þ:

Then KðxÞðf�;c�Þ ¼ m�ðf�;c�Þ and it remains to prove that m� is simple. Clearly, the pre-
ceding discussion shows

ker
�
KðxÞ � m�

�
¼ spanfðf�;c�Þg:

Suppose that ðf�;c�Þ A rg
�
KðxÞ � m�

�
. Then Z2ð0; xVÞ � m�v ¼ c� for some v A Wq,

that is,

qav � DDv � b2uhv ¼ � 1

m�
ðqac� � DDc� � b2uhc�Þ ¼ 0; vð0Þ ¼ x

m�
V � 1

m�
c0:

This readily implies

1 � x

m�
ĤH ½�b2uh�

� �
vð0Þ ¼ � 1

m�
c0

so that we obtain the contradiction

c0 A ker 1 � x

m�
ĤH ½�b2uh�

� �
X rg 1 � x

m�
ĤH ½�b2uh�

� �
¼ f0g

since m�=x ¼ rðĤH ½�b2uh�Þ is a simple eigenvalue of ĤH ½�b2uh�. Thus ðf�;c�Þ B rg
�
KðxÞ � m�

�
and m� is indeed a simple eigenvalue of KðxÞ. This ensures

Ind
�
0;KðxÞ

�
¼ �1; 0e x� x0ðhÞf 1;

and the assertion follows. r

167Walker, Reaction-di¤usion equations with nonlocal initial conditions

Bereitgestellt von | Technische Informationsbibliothek (TIB)
Angemeldet

Heruntergeladen am | 02.03.16 09:00



Taking x ¼ x0ðhÞ and m� ¼ 1, the proof of Lemma 4.3 reveals

Corollary 4.4. m� ¼ 1 is a simple eigenvalue of K
�
x0ðhÞ

�
. Thus

Wq �Wq ¼ ker
�
1 � K

�
x0ðhÞ

��
l rg

�
1 � K

�
x0ðhÞ

��
; ker

�
1 � K

�
x0ðhÞ

��
¼ spanfðf�;c�Þg

with c� ¼ Z2ð0;c0Þ A _WWþ
q , c0 ¼ x0ðhÞC� A intðW 2�2=q;þ

q;D Þ, and f� A _WWþ
q .

Owing to Lemmas 4.2 and 4.3 we are now in a position to apply Rabinowitz’ global
alternative [19], Corollary 6.3.2, to (4.4) and obtain a (closed) continuum C of solutions
ðx;w; vÞ to (4.2), (4.3) in R�Wq �Wq emanating from

�
x0ðhÞ; 0; 0

�
and satisfying the

alternatives

(i) C is unbounded in R�Wq �Wq, or

(ii) there is x A Snfx0ðhÞg with ðx; 0; 0Þ A C.

In addition, from Corollary 4.4 and [19], Lemma 6.4.1, it follows that for ðx;w; vÞ A C near
the bifurcation point

�
x0ðhÞ; 0; 0

�
we have

ðw; vÞ ¼ e
�
ðf�;c�Þ þ

�
oð1Þ; oð1Þ

��
ð4:7Þ

in Wq �Wq as e ! 0. Moreover, according to [19], Theorem 6.4.3, and Corollary 4.4, the
continuum C consists of two subcontinua CG both emanating from

�
x0ðhÞ; 0; 0

�
such that

Cþ contains those ðx;w; vÞ A C with e > 0 su‰ciently small in (4.7) and satisfies the same
alternatives as C or contains a point ðx̂x; ŵw; v̂vÞ with

ðŵw; v̂vÞ A rg
�
1 � K

�
x0ðhÞ

��
nfð0; 0Þg:

We then set

B 0
3 :¼ fðx; uh � w; vÞ; ðx;w; vÞ A Cþgn

��
x0ðhÞ; uh; 0

��
:

Observe that ðx; u; vÞ A B 0
3 is a solution to (1.1)–(1.4) with x > x0ðhÞ by (4.1) and Lemma

3.9, and close to
�
x0ðhÞ; uh; 0

�
we can write ðu; vÞ in the form

ðu; vÞ ¼
�
uh � ef� � eoð1Þ; ec� þ eoð1Þ

�

in Wq �Wq as e ! 0þ. In particular, since uhð0Þ A intðW 2�2=q;þ
q;D Þ, we derive from (3.1) that

uð0Þ ¼ uhð0Þ � ef�ð0Þ � eg0oð1Þ A intðW 2�2=q;þ
q;D Þ;

for e > 0 su‰ciently small. Hence, using (1.1) and (3.3), the strong positivity of the evolu-

tion operator implies u A _WWþ
q . Since c0 A intðW 2�2=q;þ

q;D Þ we similarly get from (3.1)

vð0Þ ¼ ec0 þ eg0oð1Þ A intðW 2�2=q;þ
q;D Þ

for e > 0 su‰ciently small and thus v A _WWþ
q by (1.2) and (3.4).
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Therefore, points on the continuum B 0
3 close to

�
x0ðhÞ; uh; 0

�
A B2 belong to

Rþ � _WWþ
q � _WWþ

q . Furthermore, defining

B3 :¼ B 0
3 X ðRþ � _WWþ

q � _WWþ
q Þ;

we have

Lemma 4.5. The continuum B3 either joins B2 with B1, or is unbounded in

Rþ � _WWþ
q � _WWþ

q .

Proof. Suppose that B 0
3 is contained in Rþ � _WWþ

q � _WWþ
q , that is, B 0

3 ¼ B3. Then,
according to the alternatives satisfied by Cþ, either

(i) B 0
3 is unbounded in R�Wq �Wq, or

(ii) B 0
3 contains a point ðx; uh; 0Þ with x A Snfx0ðhÞg, or

(iii) B 0
3 contains a point ðx; uh � w; vÞ with ðw; vÞ A rg

�
1 � K

�
x0ðhÞ

��
nfð0; 0Þg.

Clearly, since B 0
3 HRþ � _WWþ

q � _WWþ
q by assumption, alternative (ii) is impossible. We

now show that alternative (iii) can also be ruled out. Suppose otherwise and let
ðx; uh � w; vÞ A B 0

3 and ð f ; gÞ A Wq �Wq with

ð0; 0Þ3 ðw; vÞ ¼
�
1 � K

�
x0ðhÞ

��
ð f ; gÞ:

As v A _WWþ
q , we obtain from (3.4) and (1.2) that vð0Þ ¼ xV A intðW 2�2=q;þ

q;D Þ. Due to
Corollary 4.4, c�ð0Þ ¼ c0 A intðW 2�2=q;þ

q;D Þ and so we may choose t > 0 such that

gð0Þ � vð0Þ þ tc0 A intðW 2�2=q;þ
q;D Þ. Note that

v ¼ g � Z2

�
0; x0ðhÞG

�
; c� ¼ Z2

�
0; x0ðhÞC�

�
; p :¼ g � v þ tc� ¼ Z2

�
0; x0ðhÞðG þ tC�Þ

�
:

The last equality reads

qa p � DDp � b2uhp ¼ 0; pð0Þ ¼ x0ðhÞðG þ tC�Þ ¼ x0ðhÞP þ x0ðhÞV ;

from which we deduce that

�
1 � x0ðhÞĤH ½�b2uh�

�
pð0Þ ¼ x0ðhÞV A intðW 2�2=q;þ

q;D Þð4:8Þ

with pð0Þ A intðW 2�2=q;þ
q;D Þ by the choice of t. However, (4.8) has no positive solution owing

to [15], Corollary 12.4, and the definition of x0ðhÞ in (4.1). This contradiction ensures
that alternative (iii) is also impossible. Consequently, if B 0

3 is completely contained in
Rþ � _WWþ

q � _WWþ
q , then B 0

3 ¼ B3 is necessarily unbounded. It remains to verify that if B 0
3

is not contained in Rþ � _WWþ
q � _WWþ

q , then B3 joins B2 with B1.

Supposing that B 0
3 is not completely contained in Rþ � _WWþ

q � _WWþ
q , there are

ðxj; uj; vjÞ A Rþ � _WWþ
q � _WWþ

q and ðx; u; vÞ A B 0
3; ðu; vÞ B _WWþ

q � _WWþ
q
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with

ðxj; uj; vjÞ ! ðx; u; vÞ in R�Wq �Wq:

As (3.1) ensures uð0Þf 0 and vð0Þf 0, whence u; v A Wþ
q by (3.3), (3.4), the only possibil-

ity that ðu; vÞ does not belong to _WWþ
q � _WWþ

q is that u1 0 or v1 0.

Assume that both u1 0 and v1 0. Then ðx; u; vÞ ¼ ðx; 0; 0Þ A B0. But the only non-
trivial, nonnegative solutions to (1.1)–(1.4) close to B0 lie on the branch

B1 ¼ fðx; 0; vxÞ; x A ð1;yÞg;

that is, ðxj; uj; vjÞ belong to B1 which is impossible since uj A _WWþ
q .

Next, assume that uE 0 but v1 0. Then the uniqueness statement of Theorem 2.1
yields u ¼ uh. So ðx; 0; 0Þ is a bifurcation point for (4.2), (4.3), or equivalently, for (4.4).
Thus [19], Lemma 6.1.2, implies x A S, whence m ¼ 1 is an eigenvalue of KðxÞ. Setting
wj :¼ uh � uj, it follows from the properties of KðxÞ and R stated in Lemma 4.2 exactly as
in the proof of [19], Lemma 6.5.3, (see also [4], Theorem 3.1) that

ðwj; vjÞ
kðwj; vjÞkWq�Wq

converges to an eigenvector ðw; vÞ A Wþ
q �Wþ

q of KðxÞ corresponding to the eigenvalue 1.
Lemma 4.1 shows that vð0Þ is a positive eigenvector to ĤH ½�b2uh� associated to the eigenvalue
1=x and thus x ¼ x0ðhÞ since 1=x0ðhÞ is the only eigenvalue with positive eigenvector. But
then ðx; u; vÞ ¼

�
x0ðhÞ; uh; 0

�
and this is not possible.

Thus, the only possibility is that u1 0 but vE 0 so that, due to the uniqueness state-
ment of Theorem 2.1, ðx; u; vÞ ¼ ðx; 0; vxÞ A B1. Consequently, B 0

3 joins B2 with B1 and, as
B 0

3 leaves Rþ � _WWþ
q � _WWþ

q only when meeting B1, the same must be true for B3. r

We also need to show that if b2 additionally satisfies (2.4), then B3 can be unbounded
only if it is unbounded with respect to the parameter x. This is the content of the next
lemma.

Lemma 4.6. Let b2 satisfy (2.4). For M > 1, there is cðMÞ > 0 such that

kukWq
þ kvkWq

e cðMÞ whenever ðx; u; vÞ A Rþ �Wþ
q �Wþ

q is a solution to (1.1)–(1.4)

with xeM.

Proof. Let ðx; u; vÞ A Rþ �Wþ
q �Wþ

q be any solution to (1.1)–(1.4) with xeM.
Since

uðaÞe uhðaÞe kh2; a A J;

by Lemmas 3.6 and 3.8, we have

qav � DDv ¼ �b1v2 þ b2uve�b1v2 þ b2kh
2v; vð0Þ ¼ xV :
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Put m :¼ b2kh
2 and

f ðaÞ :¼ mkvð0Þky
�
b1kvð0Þkyð1 � e�maÞ þ me�ma

��1
; a A J;

so that

f 0 ¼ �b1 f 2 þ mf ; f ð0Þ ¼ kvð0Þky; f ðaÞe kvð0Þkyema; a A J:ð4:9Þ

Let z :¼ f � v and observe that

qaz � DDzf�b1ð f þ vÞz þ mz on J �W;

zf 0 on J � qW; zð0; �Þf 0 on W;

from which we get zf 0, i.e. vðaÞe f ðaÞ on W for a A J owing to the parabolic maximum
principle [15], Theorem 13.5. Since we may assume that mf s with s from (2.4), we have

f ðaÞe m

b1ð1 � e�maÞ e
m

b1ð1 � e�saÞ ; a > 0;

and so it follows from xeM that

vð0ÞeM
Ðam

0

b2ðaÞ f ðaÞ dae
Mm

b1

Ðam

0

b2ðaÞð1 � e�saÞ�1 da < y;

whence

kuðaÞky þ kvðaÞkye cðMÞ; a A J;ð4:10Þ

for some cðMÞ > 0 by (4.9). Next, using the maximal regularity property of �DD, we derive
from (1.1) and (4.10) that there is c0ðMÞ > 0 such that

kukWq
e c

�
kuð0Þk

W
2�2=q

q;D

þ ka1u2 þ a2uvkLq

�
e c0ðMÞ

�
kuð0Þk

W
2�2=q

q;D

þ 1
�
:

Writing (1.1) in the form

uðaÞ ¼ eaDD uð0Þ þ
Ða
0

eða�sÞDD
�
�a1uðsÞ2 � a2uðsÞvðsÞ

�
ds; a A J;

and using keaDDk
LðLq;W

2�2=q

q;D
Þ e ca1=q�1 for a > 0, we obtain from (1.3) and (4.10)

kuð0Þk
W

2�2=q

q;D

e hkb1ky
Ðam

0

keaDDk
LðLq;W

2�2=q

q;D
Þkuð0ÞkLq

da

þ hkb1ky
Ðam

0

Ða
0

keða�sÞDDk
LðLq;W

2�2=q

q;D
Þka1uðsÞ2 þ a2uðsÞvðsÞkLq

ds da

e c1ðMÞ

and consequently kukWq
e cðMÞ. Since xeM, we similarly deduce kvkWq

e cðMÞ. r
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Next, we show that B3 connects B2 with B1 for certain values of h. To state the pre-
cise result observe that rðH½a2vx�Þ is a strictly decreasing function of x on ð1;yÞ according to
Lemma 3.1 and Corollary 3.3. Since vx depends continuously on x in the topology of Wq,
we obtain from [1], II, Lemma 5.1.4, that the evolution operator P½a2vx�ða; 0Þ and hence
ĤH ½a2vx� depend continuously on x in the corresponding operator topologies. Together with

the fact that the spectral radius considered as a function KðW 2�2=q
q;D Þ ! Rþ is continuous

(see [16], Theorem 2.1), we conclude that

�
x 7! rðH½a2vx�Þ

�
A C

�
ð1;yÞ; ð0;yÞ

�
is strictly decreasing:ð4:11Þ

By Theorem 2.1, the continuum fðx; vxÞ; x > 1g emanates from ð1; 0Þ and

rðH½a2vx�Þ < rðH½0�Þ ¼ 1

thanks to Lemma 3.1 and (2.2), hence lim
x!1

rðH½a2vx�Þ ¼ 1. Defining N A ð1;y� by

N :¼ 1

lim
x!y

rðH½a2vx�Þ
;ð4:12Þ

we thus find for any h A ð1;NÞ fixed a unique x1 :¼ x1ðhÞ > 1 with

h ¼ 1

rðH½a2vx1
�Þ
:ð4:13Þ

For values of h less than N we can improve Lemma 4.5:

Lemma 4.7. Suppose b2 satisfies (2.4). If h A ð1;NÞ, then B3 joins up with B1 at the

point ðx1; 0; vx1
Þ.

Proof. If ðx; u; vÞ A Rþ � _WWþ
q � _WWþ

q solves (1.1)–(1.4), then vf vx by Lemma 3.8
while Lemma 3.9(ii) shows 1e hrðH½a2vx�Þ. Thus, by definition of N, if h < N, then neces-
sarily there must be some MðhÞ > 0 such that xeMðhÞ for all

ðx; u; vÞ A B3 HRþ � _WWþ
q � _WWþ

q :

Now Lemmas 4.5 and 4.6 imply that B3 must join up with B1, say, at the point ðx̂x; 0; vx̂xÞ.

To determine x̂x note first that, due to Lemma 3.8,

ðx; u; vÞ ¼ ðx; u; vx þ wÞ A Rþ �Wþ
q �Wþ

q

solves (1.1)–(1.4) if and only if ðx; u;wÞ A Rþ �Wþ
q �Wþ

q solves

qau � DDu ¼ �a1u2 � a2ðvx þ wÞu; uð0Þ ¼ hU ;ð4:14Þ

qaw � DDw ¼ �b1w2 � 2b1vxw þ b2ðvx þ wÞu; wð0Þ ¼ xW ;ð4:15Þ
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where we put

U :¼
Ðam

0

b1ðaÞuðaÞ da; W :¼
Ðam

0

b2ðaÞwðaÞ da:

Introducing

T :¼ ðqa � DD; g0Þ
�1 A LðLq � W

2�2=q
q;D ;WqÞ

and the operators

~KKðxÞðu;wÞ :¼ Tð�a2vxu; hUÞ
Tð�2b1vxw þ b2vxu; xWÞ

� �
; ~RRðu;wÞ :¼ � Tð�a1u2 � a2uw; 0Þ

Tð�b1w2 þ b2uw; 0Þ

� �

acting on ðu;wÞ A Wq �Wq, equations (4.14) and (4.15) are equivalent to

ðu;wÞ � ~KKðxÞðu;wÞ þ ~RRðu;wÞ ¼ 0:ð4:16Þ

The operators ~KKðxÞ and ~RR possess the properties stated in Lemma 4.2(i), (ii). Now, if
ððxj; uj; vjÞÞj is a sequence in B3 converging to ðx̂x; 0; vx̂xÞ, set wj :¼ vj � vxj

. As vx depends con-
tinuously on x, formulation (4.16) and the properties of ~KKðxÞ and R̂R readily imply (see, e.g.,
the proof of [19], Lemma 6.5.3, or [4], Theorem 3.1) that

ðuj;wjÞ
kðuj;wjÞkWq�Wq

converges to some eigenvector ðf;cÞ A Wþ
q �Wþ

q nfð0; 0Þg of ~KKðx̂xÞ associated to the eigen-

value 1 and thus satisfying (4.14), (4.15) with x ¼ x̂x when higher order terms are neglected:

qaf� DDf ¼ �a2vx̂xf; fð0Þ ¼ hF;

qac� DDc ¼ �2b1vx̂xcþ b2vx̂xf; cð0Þ ¼ x̂xC:

Observing that

1 ¼ rðx̂xĤH ½b1vx̂x�Þ > rðx̂xĤH ½2b1vx̂x�Þ

by the analogue of (3.10) and Lemma 3.1, it follows by a contradiction argument exactly as
in the proof of Lemma 4.1 that fE 0. In particular, this shows that ð1 � hH½a2vx̂x�Þfð0Þ ¼ 0

with fð0Þ > 0. Hence h�1 ¼ rðH½a2vx̂x�Þ due to Lemma 3.1 and so x̂x ¼ x1 by (4.13). This
proves the lemma. r

Gathering Lemmas 4.5, 4.6, and 4.7, the proof of Theorem 2.2 is complete since there
is no solution ðx; u; vÞ in R� _WWþ

q � _WWþ
q if he 1 and bifurcation of B3 at

�
x0ðhÞ; uh; 0

�
must be to the right according to Lemma 3.9.

Remark 4.8. Note that kvxkWq
! y as x ! y by Theorem 2.1 (in fact:

kvxð0Þky ! y by Lemma 3.6) suggesting that rðH½a2vx�Þ tends to zero as x approaches
infinity or, equivalently, that N ¼ y in (4.12), whence also in Theorem 2.2.
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5. Bifurcation for the parameter h: Proof of Theorems 2.3 and 2.4

This section is dedicated to the proofs of Theorems 2.3 and 2.4. We thus regard h as
bifurcation parameter in (1.1)–(1.4) and keep x fixed. We write ðh; u; vÞ for a solution to
(1.1)–(1.4) and suppress x since no confusion seems likely.

5.1. Proof of Theorem 2.3. The argument used in the proof of Theorem 2.2 is simi-
lar to that for the proof of Theorem 2.3 and we thus merely sketch the latter pointing out
the main modifications to be made. Let x > 1 be fixed. Then Theorem 2.1 ensures the exis-
tence of the semi-trivial branches

S1 ¼ fðh; uh; 0Þ; h > 1g; S2 ¼ fðh; 0; vxÞ; h A Rg

of solutions to (1.1)–(1.4) in R�Wþ
q �Wþ

q . Recall from (4.14) and (4.15) that

ðh; u; vÞ ¼ ðh; u; vx þ wÞ A Rþ �Wþ
q �Wþ

q

solves (1.1)–(1.4) provided that ðh; u;wÞ A Rþ �Wþ
q �Wþ

q satisfies

ðu;wÞ � K̂KðhÞðu;wÞ þ R̂Rðu;wÞ ¼ 0;ð5:1Þ

with

K̂KðhÞðu;wÞ :¼ ẐZ1ð0; hUÞ
ẐZ2ðb2vxu; xVÞ

� �
; R̂Rðw; vÞ :¼ � ẐZ1ð�a1u2 � a2wu; 0Þ

ẐZ2ð�b1v2 þ b2uw; 0Þ

� �

for ðw; vÞ A Wq �Wq, where ẐZj A LðLq � W
2�2=q
q;D ;WqÞ are given by

ẐZ1 :¼ ðqa � DD þ a2vx; g0Þ
�1; ẐZ2 :¼ ðqa � DD þ 2b1vx; g0Þ

�1:

The operators K̂KðhÞ and R̂R possess the properties stated in Lemma 4.2(i), (ii). Analogously

to Lemma 4.1 one shows that, given h A R, if mf 1 is an eigenvalue of K̂KðhÞ with eigenvec-
tor ðu; vÞ A Wq �Wq, then h3 0, and m=h is an eigenvalue of H½a2vx� with eigenvector
uð0Þ A W

2�2=q
q;D . As in Lemma 4.3, if

h0ðxÞ :¼
1

rðH½a2vx�Þ
> 1;ð5:2Þ

then Ind
�
0; K̂KðhÞ

�
changes sign as h crosses h0ðxÞ, and m� ¼ 1 is a simple eigenvalue of

K̂K
�
h0ðxÞ

�
. Invoking again [19], Corollary 6.3.2, we obtain a continuum

S 0
3 HR�Wq �Wq

of solutions to (1.1)–(1.4) bifurcating from
�
h0ðxÞ; 0; vx

�
. By definition,

�
h0ðxÞ; 0; vx

�
B S 0

3.
Further, S 0

3 satisfies the alternatives

(i) S 0
3 is unbounded in R�Wq �Wq, or
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(ii) S 0
3 contains a point ðh; 0; vxÞ such that 1 is an eigenvalue of K̂KðhÞ but h3 h0ðxÞ,

or

(iii) S 0
3 contains a point ðh; u; vx þ wÞ with ðu;wÞ A rg

�
1 � K̂K

�
h0ðxÞ

��
nfð0; 0Þg.

Moreover, points on S 0
3 close to

�
h0ðxÞ; 0; vx

�
belong to Rþ � _WWþ

q � _WWþ
q . In fact, we have:

Lemma 5.1. Let S3 :¼ S 0
3 X ðRþ � _WWþ

q � _WWþ
q Þ. Then S3 ¼ S 0

3.

Proof. Suppose S3 is a proper subset of S 0
3. Then there are

ðhj; uj; vjÞ A Rþ � _WWþ
q � _WWþ

q ; ðh; u; vÞ A S 0
3; ðu; vÞ B _WWþ

q � _WWþ
q

with

ðhj; uj; vjÞ ! ðh; u; vÞ in R�Wq �Wq:

As (3.1) ensures uð0Þf 0 and vð0Þf 0, whence u; v A Wþ
q by (3.3), (3.4), the only possibil-

ity that ðu; vÞ does not belong to _WWþ
q � _WWþ

q is that u1 0 or v1 0. However, since vj A _WWþ
q

and thus vjðaÞf vxðaÞ for a A J owing to Lemma 3.8, v A _WWþ
q and so necessarily u1 0.

Hence v ¼ vx by the uniqueness statement in Theorem 2.1. But then, ðh; 0; 0Þ is a bifurca-
tion point for (5.1) and it follows from [19], Lemma 6.5.3, exactly as in the proof of Lemma
4.5 that this implies h ¼ h0ðxÞ. Thus ðh; u; vÞ ¼

�
h0ðxÞ; 0; vx

�
what is not possible. r

Now, as S 0
3 ¼ S3 HRþ � _WWþ

q � _WWþ
q , alternative (ii) above is impossible, while alter-

native (iii) can be ruled out by using an argument analogous to that in the proof of Lemma
4.5. Therefore, S3 is unbounded in Rþ � _WWþ

q � _WWþ
q . That bifurcation at

�
h0ðxÞ; 0; vx

�
is

to the right, is a consequence of Lemma 3.9(ii). Finally, let b2 satisfy (2.4) and suppose
there is some M > 0 with heM for ðh; u; vÞ A S3. Combining Lemmas 3.6 and 3.8, we
obtain kuðaÞky e kM 2 for a A J and we may then proceed as in Lemma 4.6 to show that
kukWq

þ kvkWq
e cðMÞ for some cðMÞ > 0 independent of ðh; u; vÞ A S3. This completes

the proof of Theorem 2.3.

5.2. Proof of Theorem 2.4. We now focus on the proof of Theorem 2.4. Let x < 1.
Then Theorem 2.1 implies that

S1 ¼ fðh; uh; 0Þ; h > 1g

is the only semi-trivial branch of solutions to (1.1)–(1.4). The same arguments leading to
(4.11) show that

�
h 7! rðĤH ½�b2uh�Þ

�
A C

�
ð1;yÞ; ð0;yÞ

�
is strictly increasingð5:3Þ

with lim
h!1

rðĤH ½�b2uh�Þ ¼ 1. Defining d A ½0; 1Þ by

d :¼ 1

lim
h!y

rðĤH ½�b2uh�Þ
;ð5:4Þ
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it follows that for any x A ðd; 1Þ fixed we find a unique h1 :¼ h1ðxÞ > 1 with

x ¼ 1

rðĤH ½�b2uh1
�Þ
:ð5:5Þ

To demonstrate that local bifurcation from S1 occurs at the point ðh1; uh1
; 0Þ, we apply the

theorem of Crandall–Rabinowitz [9]. Introducing

T ¼ ðqa � DD; g0Þ
�1 A LðLq � W

2�2=q
q;D ;WqÞ;

we observe from (4.2) and (4.3) that ðh; u; vÞ ¼ ðh; uh � w; vÞ A Rþ �Wþ
q �Wþ

q solves
(1.1)–(1.4) if and only if ðh;w; vÞ A Rþ �Wþ

q �Wþ
q with we uh is a zero of the function

Gðh;w; vÞ :¼ w � T
�
a1w2 � 2a1uhw þ a2ðuh � wÞv; hW

�
v � T

�
�b1v2 þ b2ðuh � wÞv; xV

�
� �

;

where we again agree here and for the remainder of this subsection upon the slight abuse of
notation

W :¼
Ðam

0

b1ðaÞwðaÞ da; V :¼
Ðam

0

b2ðaÞvðaÞ da;

being used for other capital letters as well since it will always be clear from the context,
which of the profiles b1 and b2 we mean. Theorem 2.1 warrants

G A C1
�
ð1;yÞ �Wq �Wq;Wq �Wq

�

with partial Frechét derivatives at ðh;w; vÞ ¼ ðh1; 0; 0Þ given by

Gðw; vÞðh1; 0; 0Þðf;cÞ ¼
f� Tð�2a1uh1

fþ a2uh1
c; h1FÞ

c� Tðb2uh1
c; xCÞ

� �

and

Gh; ðw; vÞðh1; 0; 0Þðf;cÞ ¼
�Tð�2a1u 0

h1
fþ a2u 0

h1
c;FÞ

�Tðb2u 0
h1
c; 0Þ

� �
; u 0

h :¼
q

qh
uh

for ðf;cÞ A Wq �Wq. We claim that the kernel of Gðw; vÞðh1; 0; 0Þ is one-dimensional.
Indeed, for ðf;cÞ A ker

�
Gðw; vÞðh1; 0; 0Þ

�
we have

qaf� DDf ¼ �2a1uh1
fþ a2uh1

c; fð0Þ ¼ h1F;ð5:6Þ

qac� DDc ¼ b2uh1
c; cð0Þ ¼ xC;ð5:7Þ

and so an argument similar to that used in the proof of Lemma 4.3 (with m� ¼ 1) shows
that ðf;cÞ must be a scalar multiple of ðf�;c�Þ A _WWþ

q � _WWþ
q , where

c� :¼ P½�b2uh1
�ð�; 0Þc0; c0 A kerð1 � xĤH ½�b2uh1

�ÞX intðW 2�2=q;þ
q;D Þ;
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and

f� :¼ P½2a1uh1
�ð�; 0Þf0 þ Nc�; f0 :¼ h1ð1 � h1H½2a1uh1

�Þ�1 Ðam

0

b1ðaÞðNc�ÞðaÞ da;

with

ðNc�ÞðaÞ :¼ a2

Ða
0

P½2a1uh1
�ða; sÞ

�
uh1

ðsÞc�ðsÞ
�

ds; a A J:

Thus,

ker
�
Gðw; vÞðh1; 0; 0Þ

�
¼ spanfðf�;c�Þg:

As the derivative of G has the form Gðw; vÞðh1; 0; 0Þ ¼ 1 � T̂T with a compact operator T̂T (see
(4.5)), we also get from this that the codimension of rg

�
Gðw; vÞðh1; 0; 0Þ

�
equals one. To

check the transversality condition of [9], suppose that

Gh; ðw; vÞðh1; 0; 0Þðf�;c�Þ A rg
�
Gðw; vÞðh1; 0; 0Þ

�

and let v A Wq be with

v � Tðb2uh1
v; xVÞ ¼ �Tðb2u 0

h1
c�; 0Þ:

Since c0 A intðW 2�2=q;þ
q;D Þ we may choose t > 0 such that tc0 � vð0Þ A intðW 2�2=q;þ

q;D Þ.
Setting p :¼ tc� � v and observing c ¼ Tðb2uh1

c; xCÞ, it follows

p ¼ Tðb2uh1
p þ b2u 0

h1
c�; xPÞ;

that is,

qa p � DDp ¼ b2uh1
p þ b2u 0

h1
c�; pð0Þ ¼ xP;

from which

ð1 � xĤH ½�b2uh1
�Þpð0Þ ¼ xb2

Ðam

0

b2ðaÞ
Ða
0

P½�b2uh1
�ða; sÞ

�
u 0
h1
ðsÞc�ðsÞ

�
ds da:

This contradicts the fact that this equation has no positive solution pð0Þ ¼ tc0 � vð0Þ
owing to [15], Corollary 12.4, and (5.5) since the right-hand side belongs to intðW 2�2=q;þ

q;D Þ
thanks to (2.1), Corollary 3.7, and the strong positivity of the operator P½�b2uh1

�ða; sÞ for
0e s < ae am. Consequently,

Gh; ðw; vÞðh1; 0; 0Þðf�;c�Þ B rg
�
Gðw; vÞðh1; 0; 0Þ

�
:

We are thus in a position to apply [9], Theorem 1.7, and deduce the existence of a con-
tinuum S 0

4 of solutions to (1.1)–(1.4) bifurcating from ðh1; uh1
; 0Þ, where S 0

4 is of the form

S 0
4 ¼

��
hðeÞ; eðf�;c�Þ þ e

�
y1ðeÞ; y2ðeÞ

��
; jej < e0

�
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for some e0 > 0 with hð0Þ ¼ h1, yjð0Þ ¼ 0, and yj A C
�
ð�e0; e0Þ;Wq

�
. Clearly, it follows

from (3.3) and (3.4) that, if e0 > 0 is su‰ciently small, then the points ðh; u; vÞ of S 0
4 asso-

ciated to values e A ð0; e0Þ in the representation above satisfy ðu; vÞ A _WWþ
q � _WWþ

q since both
f�ð0Þ ¼ f0 and c�ð0Þ ¼ c0 belong to intðW 2�2=q;þ

q;D Þ. Letting

S4 :¼ S 0
4 X ðRþ � _WWþ

q � _WWþ
q Þ

it is easy to check that S4 bifurcates from ðh1; uh1
; 0Þ to the right in view of (4.1), (5.3), and

(5.5). The proof of Theorem 2.4 is therefore complete.

Remark 5.2. Similarly as in Remark 4.8 we conjecture that lim
h!y

rðĤH ½�b2uh�Þ ¼ y,
whence d ¼ 0 in Theorem 2.4.
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