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On positive solutions of some system
of reaction-diffusion equations with
nonlocal initial conditions

By Christoph Walker at Hannover

Abstract. The paper focuses on positive solutions to a coupled system of parabolic
equations with nonlocal initial conditions. Such equations arise as steady-state equations
in an age-structured predator-prey model with diffusion. By using global bifurcation
techniques, we describe the structure of the set of positive solutions with respect to two
parameters measuring the intensities of the fertility of the species. In particular, we establish
co-existence steady-states, i.e. solutions which are nonnegative and nontrivial in both com-
ponents.

1. Introduction

This paper is dedicated to solutions # = u(a,x) = 0 and v = v(a, x) = 0 to the system
of parabolic equations

(1.1) Oqu — Apu = —(qu+ ov)u, ac€(0,a,), xeQ,
(1.2) 040 — Apv = —(pv— Pu)v, ace(0,a,), xeQ,

subject to the nonlocal initial conditions

am

(1.3) u(0,x) =7 J bi(a)u(a,x)da, xeQ,
(1.4) v(0,x) =¢& (:f by(a)v(a,x)da, xeQ.

The operator —Ap in (1.1), (1.2) stands for the negative Laplacian on Q with subscript
D indicating that Dirichlet conditions are imposed on the boundary 0Q. Note that, due to
the nonlocal character of the initial conditions, equations (1.1)—(1.4) do not pose a proper
evolution problem.
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System (1.1)—(1.4) arises when studying stationary (i.e. time-independent) solutions to
a particular predator-prey system with age structure of the form

(1.5) Ou+ Oqu — diAyu = —(aqu+opv)u, t>0, ae(0,a,), xeQ,
(1.6) 0w+ 040 — dhAyv = —(fivo — Pou)v, t>0, ae(0,a,), xeQ,

for u = u(t,a,x) = 0 and v = v(z,a,x) = 0 subject to the constraints

am

(1.7) u(t,0,x) = [ nbi(a)u(t,a,x)da, t>0, xeQ,
0

am

(1.8) v(1,0,x) = [ &ba(a)v(t,a,x)da, t>0, xeQ,
0

and Dirichlet boundary conditions. It models the situation where a prey and a predator
with population densities # and v, respectively, inhabit the same spatial region Q and both
species are assumed to be structured by age a € (0,a,,) and spatial position x € Q. Here,
an, > 0 denotes the maximal age of the species. The constants dj,d> > 0 give the rate
at which the species diffuse. For notational simplicity they are taken to be dj =d> =1 in
(1.1) and (1.2). The mortality rates in (1.1), (1.2), (1.5), and (1.6) are given by

1y (1,0) 1=+ oo, py(u,v) = fro— Py

with positive constants o, o, ff;, and f,. Equations (1.7) and (1.8) represent the age-
boundary conditions and reflect that individuals with age zero are those created when a
mother individual of any age a € (0, a,,) gives birth with rates #b;(a) and &by(a), respec-
tively. The functions b; = b;(a) = 0 describe the profiles of the fertility rates while the
parameters #, £ > 0 measure their intensity without affecting the structure of the birth rates.
We refer to [27] for a recent survey on the formidable literature about age-structured
population models. Of course, (1.5)—(1.8) represents just a simple age-structured predator-
prey model with diffusion and other, in certain regards, biologically maybe more accurate
models (e.g. with other mortality and birth rates or different maximal ages for prey and
predator) exist as well. The main goal of the present paper is to provide a framework in
which problems of this kind including nonlocal initial conditions can be treated.

Of particular interest when studying (1.1)—(1.4) are coexistence solutions, i.e. solutions
(u, v) with both components nonnegative and nonzero.

Variants of the elliptic counterpart of equations (1.1)—(1.4) being revealed when age
structure is neglected and also related elliptic systems for, e.g., competing or cooperative
species, have attracted considerable interest in literature both in the past [3], [4], [5], [8],
[12], [13], [17], [23], [28] and, more recently, [6], [14], [18], [19], [20], [21], though both lists
are far from being complete. Methods used in the cited literature include sub-/supersolution
methods and bifurcation techniques for different parameters in order to establish positive
solutions for the elliptic equations. We should also note that the idea to regard a mea-
sure for the fertility intensity as a bifurcation parameter has been used for a single age-
structured equation without diffusion in [10], [11].



Walker, Reaction-diffusion equations with nonlocal initial conditions 151

The parabolic problem (1.1)—(1.4) has recently been investigated in [26] for slightly
different mortality rates of Holling—Tanner type (1.9) and particular birth profiles b; of
negative exponential type. To prove coexistence solutions, a bifurcation approach has
been chosen with respect to the parameters # and &. The assumption in [26] that there is
no maximal age, i.e. a,, = o0, allows one to recover the elliptic system by integrating the
parabolic equations with respect to age. In the present paper with a,, < oo, however, this
approach is no longer possible and the analysis becomes more involved. But considering
a, < oo will allow us herein to take advantage of compact embeddings of the underlying
function spaces when interpreting solutions of (1.1)—(1.4) as the zeros of some function. It
thus provides a setting, where we can apply global bifurcation techniques with respect to
the bifurcation parameters # and £. This is in contrast to [26], where merely local bifurca-
tion results have been obtained. We shall give a partial, but nevertheless rather complete
description of the bifurcation diagrams with respect to these parameters. Our results are
inspired by those of [3], [4] for the corresponding elliptic system without age structure.
Our method is based on the celebrated global alternative of Rabinowitz [22] and on the
global unilateral theorems of Lopez-Gomez [19] as well as on the local bifurcation results
of Crandall-Rabinowitz [9], [19].

As pointed out above, the mortality rates considered in [4], [26] (see also [6]) are of
Holling—Tanner type, that is, roughly of the form

u
1 +mu

(U v) = Biv—fy

v
1.9 ,0) 1=
(19) o) =t o=t
All of the present results can be deduced for these nonlinearities as well with only minor
modifications.

We shall also mention that the birth profiles »; and b, depend on age only. In princi-
ple, a spatial dependence could be included as well, but would require some additional ef-
fort. In the present paper we investigate positive solutions to (1.1)—(1.4) in dependence of
the fertility intensities # and ¢. However, one might study bifurcation of equilibrium solu-
tions with respect to other parameters, like o; and f5; for instance. For the case of a single
equation we refer to the techniques developed in [25], which may provide a template also
for system (1.1)—(1.4).

2. Main results

To set the stage, let J := [0, a,,] and let Q = R” be a bounded and smooth domain.
Throughout this paper we assume oy, o, 1, f, > 0 and that, for j = 1,2,

(2.1) bje LY (J), bj(a)>0 foranear ay,

are normalized such that

(2.2) [ bj(a)e ™" da =1,
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where 1; > 0 denotes the principal eigenvalue of —Ap on Q. For technical reasons we
introduce the solution space

W, = Lq(‘]a qu,D(Q)) N qu (‘]7 Lq(Q))

with ¢ sufficiently large, e.g. ¢ > n + 2, but point out that all our solutions will actually be
smooth with respect to both variables ¢ and x. The space WiD stands for the Sobolev space
of order 2 involving the Dirichlet boundary conditions, and we write Wq+ for the non-
negative functions in W,.

Clearly, for any choice of # and &, u = 0 solves (1.1) subject to (1.3) and v = 0 solves
(1.2) subject to (1.4). Moreover, taking v = 0 in (1.1) we obtain positive solutions for (1.1)
subject to (1.3) when regarding # as parameter (and, of course, similarly for (1.2) withu = 0
subject to (1.4) when regarding & as parameter):

Theorem 2.1.  For each 17 > 1, there is a unique solution u, € W, \{0} to

am

(2.3) Outt — Apu = —onu,  u(0,-) =75 [ bi(a)u(a,-)da.
0
The mapping (n+— uy,) belongs to C*((1,00),W,) with luylly, =0 as n—1 and
luyllw, — 0 asn — oo. If n <1, then (2.3) has no solution in W\ {0}.

To study the solutions of (1.1)—(1.4) we first keep # fixed and regard ¢ as bifurcation
parameter. We thus write (&, u,v) for a solution and suppress 7. Then Theorem 2.1 pro-
vides, in addition to the trivial branch of zero solutions

By :={(£,0,0);Ee R} = R x W; X W;,
a semi-trivial branch
By = {(£,0,00); e (1,00)} = R x W, x (W, \{0}),

where (&, v¢) is the solution to (1.2) with u = 0 subject to (1.4). If # > 1, there is another
semi-trivial branch

By = {(&uy,0);& € R} < R x (W, \{0}) x W

from which a continuum of positive coexistence solutions bifurcates. More precisely, we
have:

Theorem 2.2. For 5 <1, there is no solution (&,u,v) € R* x (W, \{0}) x W r0
(1.1)~(1.4). For n > 1, there is a unique value &y(n) > 0 such that (&y(n),u,,0) € B, is a
bifurcation point. A continuum Bz < R™ x (W \{0}) x (W, \{0}) of solutions to (1.1)—
(1.4) emanates from (50(17), Uy, 0) satisfying the alternatives

(i) B3 joins B, with By, or

(ii) B is unbounded in R* x (W, \{0}) x (W \{0}).



Walker, Reaction-diffusion equations with nonlocal initial conditions 153
Bifurcation is to the right, i.e., & > &y(n) for any (&,u,v) € Bs. If, in addition,
(2.4) bye Li(J,(1 —e™)'da)

for some s > 0, then (ii) can only occur if B is unbounded with respect to the parameter &
(i.e. the E-projection of B3 coincides with the interval (&(n),0)), and there is N € (1, 0]
such that (1) must occur for 1 <n < N.

The values of N and of &y(x) as well as the value &;(5) of ¢ associated to the point
where B3 meets B if alternative (i) occurs are related to the spectral radii of some compact
operators and will be determined precisely (see (4.1), (4.12), and Lemma 4.7). It is worth-
while to point out that in either case of the alternatives we obtain coexistence solutions;
that is, solutions (¢,u,v) with both components nonzero, i.e. u, v belonging to W,\{0}.
For those values of # for which alternative (ii) occurs there are coexistence solutions for
any ¢ > &y(n) while for those #-values leading to occurrence of alternative (i) there are
coexistence solutions for &,() < & < &;(#).

Actually, we conjecture that under the additional assumption (2.4), we can take
N = oo and thus B3 must join B, with B; for each > 1. We refer to Remark 4.8 for
further details.

Next, we regard # as bifurcation parameter and keep ¢ fixed. We thus write (7, u, v)
for a solution to (1.1)—(1.4) and suppress ¢. Suppose first that & > 1. Then Theorem 2.1
provides two semi-trivial branches

S ={(n,uy,0);n > 1}, Sy:={(n,0,v¢); € R}

with ; < R x W™ x W,". Similarly as in Theorem 2.2, a continuum of positive coexistence
solutions bifurcates from &,. In this case, however, the continuum must be unbounded:

Theorem 2.3.  For & > 1, there is a unique value ny(£) > 1 such that (ny(&),0,ve) € S,
is a bifurcation point. An unbounded continuum S; = R* x (W;\{O}) X (W;\{O}) of
solutions to (1.1)—(1.4) emanates from (ny(¢),0,ve). This bifurcation is to the right, that is,
n > no(&) for any (n,u,v) € S3. If, in addition, b, satisfies (2.4) for some s > 0, then S is
unbounded with respect to the parameter 1, i.e. the n-projection of S; coincides with the
interval (17y(), ).

Note that S; consists exclusively of coexistence solutions. If b, satisfies (2.4), then
there is a coexistence solution for any & > 1 and any # > #,(&). The exact value of 7,(¢)
will be specified later in (5.2).

The case & < 1 is more difficult, and we obtain merely a partial result. In fact, for
values of & < 1 near 1, we can show that a local continuum of positive solutions bifurcates
from &;. Observe that S, is the only semi-trivial branch in this case.

Theorem 2.4. There is 0 € [0,1) with the property that for &€ (0,1), there are a
unique value 1,(&) > 1 and ¢ > 0 such that a local continuum

Sy = {(mu,0);m (&) <n <m(&)+e} = RT x (W\{0}) x (W\{0})

of positive solutions to (1.1)—(1.4) bifurcates to the right from (n,(£),u,,),0) € S;.
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The continuum &4 consists of a continuous curve of coexistence solutions. The
precise values of ¢ and #,(¢) > 1 will be given in (5.4) and (5.5), respectively. Referring to
Remark 5.2 we conjecture that one can take 0 = 0 in the statement.

The outline of the remainder of this paper is as follows: In Section 3, we first provide
some auxiliary results including a comparison type lemma that are helpful for the study
of semi-trivial solutions. The second part of Section 3 includes the proof of Theorem 2.1.
Section 4 is dedicated to the proof of Theorem 2.2, where ¢ is regarded as bifurcation
parameter. The proofs of Theorems 2.3 and 2.4 about the bifurcation results with respect
to the parameter # are given in Section 5.

3. Semi-trivial solutions: Proof of Theorem 2.1

3.1. Notations. Given Banach spaces £ and F' we denote the set of bounded linear
operators from E into F by £ (E,F). We set (E) := ¥(E, E), and we write #'(E) for the
subspace of compact linear operators thereof. If 7 e ¥ (E), we let r(T) denote its spectral
radius. Suppose now that E is ordered by a convex cone E*. We write ¢ > 0 if ¢ € ET and
¢>0if g ET but ¢ + 0. A positive operator T € Z,(E) is an element 7 of Z(E) such
that T(E™) < E*, and we express this by 7 = 0. Then % (E) := %, (E) n 4 (E). Assume
then further that the interior int(E™) of E™ is non-empty. The following equivalence turns
out to be very useful in many circumstances: A point ¢ € E* is a quasi-interior point (i.e.
{¢',$> > 0 for all ¢’ in the dual E’ of E with ¢’ = 0 and ¢’ + 0) if and only if ¢ € int(E™).
We call T € #,(E) strongly positive provided T¢ € int(E™) for ¢ € ET\{0}. Recall that
the Krein—Rutman theorem ensures (since int(E™) # @) that the spectral radius r(7T') of a
strongly positive compact operator 7 € #(E) is positive and a simple eigenvalue with
positive eigenvector and a strictly positive eigenfunctional. Moreover, r(7) > 0 is the only
eigenvalue of T with a positive eigenvector. We refer to, e.g., [7], Appendix A.2, and [15],
Section 12, for these facts.

Recall that Q is a bounded and smooth domain of R”. We fix ¢ € (n + 2, o0) and set,
for x > 1/g,

Wip = W;p(Q) :={ue W;u=0ondQ},
where W := W (Q) stand for the usual Sobolev—Slobodeckii spaces and values on the
boundary are 1nterpreted in the sense of traces. Then W; Dz/ 7 C'(Q) by the Sobolev
embedding theorem, hence the interior of the positive cone

2-2/q,+ . _ 13722/ +
Wq7D = Wq7D qu

is non-empty. Here, L, := L (Q) is the positive cone of L, := L,() consisting of func-
tions which are nonnegative a.e. Let J := [0, a,,,]. We put

Ly = Ly(J, Ly), W, :=Ly(J, W;D) i qu (J, Ly),
and recall that

(3.1) W, < C(J, W, 5" — C(J,C1(Q))



Walker, Reaction-diffusion equations with nonlocal initial conditions 155

according to [1], III, Theorem 4.10.2. Since W, = W, (J, L,) — C'7V4(J, L,), the inter-
polation inequality in [1], I, Theorem 2.11.1, yields in fact

(3.2) W, — CV ST W), 091 —1/q.

By (3.1), the trace yyu := u(0) defines an operator y, € £(W,, W; ]_32/ 7). We then say that
an operator 4 € ¥( W;D, L,) has maximal L-regularity (on J) provided that

(Oa+ A,70) € L (W, Ly x W;BZM)

is a toplinear isomorphism. For the positive cone of L, we write [I_C‘IIr = L; (J,Ly)
(i.e. those functions u e l, for which u(a) belongs to L; for a.a. aeJ). We put
W, =W, n LS (R", L,) and use the notation W, := W,"\{0}. Note that u € W, implies
u(a) = 0 on Q for a € J due to (3.1).

Let ¢, denote the strongly positive eigenfunction to the principal eigenvalue 4; > 0 of
—Ap with |||, = 1.

3.2. Preliminaries. If o >0 and i e C¢(J,C(Q)), then clearly
—Ap +he C'(J,L(W, b, Ly))
and for aeJ fixed, Ap — h(a) is the generator of an analytic semigroup on L, with
domain WiD. Hence, [1], II, Corollary 4.4.1, ensures the existence of a parabolic evolution
operator

H[h](Cl,O'), Oéaéaéanﬁ

associated with —Ap + h. That is, given ¢ e L,, w:=TIly(-,0)¢ is the unique strong
solution to

@aw — ADW + h(a)w = O, ae (U, am]v W(U’ ) = ¢

As Ap — h(a) is resolvent positive for each a € J, [1], 11, Section 6, and [15], Corollary 13.6,
entail in fact that Iy, (a,0) € Z( Wi BZ/ 7 is strongly positive for 0 < o < a £ ay,.

In the following, we put

Am

Hyy == [ bi(a)yy(a,0)da, Hyy = [ by(a)TIy(a,0) da.
0 0

Consequently, (3.2) warrants that we may write any solution (u,v) e W, x W, to (1.1)-
(1.4) equivalently in the form

(3‘3) u(a) = H[a1u+azv] (a7 0)”(0)7 ael, u(O) = 77H[a1u+oczv]u(0)7

(34)  v(a) =g pq(a,000(0), aed, v(0)=EHp, p,q0(0).
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In particular observe that u, v are nonzero and nonnegative provided that u(0), v(0) are
nonzero and nonnegative. The following information about the spectral radii of the opera-
tors Hj; and Hp, will be of great importance:

Lemma 3.1. For he C°(J,C(Q)) with 0> 0, the operator Hy e%(W /q) is
strongly positive. In particular, the spectral radius r(H[ 1) >0 is a simple ezgenualue with
an eigenvector By belonging to 1nt(Wq Dz/ e +) and a strictly positive eigenfunctional
B[’ i e (W 2 2/ q) It is the only eigenvalue of Hy, with a positive eigenfunction. Moreover, if

h,ge C? (J C(Q)) with g = h but g =% h, then r(H[q]) < r(Hy;). The same statements hold
for H.

Proof. As Ily(a,o) is strongly positive for 0 <o <a =a,, we obtain from

standard regularizing effects of H[h] and the compact embedding quk s qu 2/ 1

2Kk >2—2/q, that Hy e A (Wq 2/ ) is strongly positive (see [25], Lemma 2.1). Due to
the Krein-Rutman theorem (e.g. [15], Theorem 12.3) it then remains to prove that r(Hp,)
is decreasing in /.

Let h,ge C¢(J,C(Q)) withg = hbut g % h. Fix ¢ € W;Bz/q’+\{0} and set
z(a) == y(a,0)p, w(a) =1 (a,0)p, ael.
Let # :=z — w. Then
Oqut — Apu + h(a)u = (g(a) — h(a))w(a), u(0) =0,

SO

(3.5) u(a) = (;fll_[[h] (a,0)((9() — h(c))w(c))de =0, ael.

The strong positivity of ITy, (g, 0) ensures w(c) € int(VKiBz/ “*) for g € (0, ). Since g * /,
there is some ¢ € J such that

My (a,0)((9(0) — h(0))w(o)) eint(W,5/""), ae(o,ay), o nearap.
This together with (2.1) and (3.5) readily imply

am

(Hyy — j bi(a)u(a)da e int(W, 5/47),  pe W, 5/"\{0}.

Letting <{-,-» denote the duality pairing in Wq% 52/ 1

, we thus deduce
r(Hyy)<Bjy» B> = <{Bjy, Hy B> > {Bj), Hy Bl > = r(Hig))<Byy, B>

Therefore, }’(H[g]) < F(H[h]). ]
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The next lemma provides a comparison principle which turns out to be a key tool
to handle the nonlocal initial conditions (1.3), (1.4). To shorten notation, we set for the
remainder of this section

U:= af’bl(a)u(a) da, V:= afmbl(a)v(a) da,
0 0

for u,v e W, and we use this definition of capital letters also for other elements of W,,.
Lemma 3.2. Letn > 1 and f €. Suppose u,v e W; satisfy either
Out — Apu = —oqu® + f,  u(0) = U, 0,0 — Apv = —ov?,  v(0) =5V,
or
Oatt — Apu = —oyu?, u(0) =9yU, 0J,v— Apv = —oqv? —f, v(0) = V.
Then u = v.
Proof. Note that for z := u — v, we have
0uz—Apz+oy(u+v)z=f20, z(0)=yZ,
with u + v e W,. Thus

(3.6) z(a) = iy, (ug4)(a,0)2(0), aeJ,

and
2(0) 2 #Z Z 5 | bi(a)jy, vy (a,0) daz(0) = nHy, (444)2(0),
0

that is,
(3.7) (1 = 7H, (u+0))2(0) 2 0.
Suppose that the first alternative of the statement holds. Then
v(a) = M, (a,0)0(0), ael, v(0)=nV =nHy,v(0),

hence v(0) € int(W;BZ/q’+) since v € W;. By Lemma 3.1, this implies #r(H,,,) = 1. Also,
due to Lemma 3.1 and u e W,

I"(H[a]v]) > V(H[m(u+v)])7

whence 1 > yr(Hpy, +v)) so that (1 —nH[al(quv)])*l >0 (e.g. see [15], equation (12.8)).
Recalling (3.7), it follows z(0) = 0 and then z(a) = u(a) — v(a) 2 0 for a € J owing to
(3.6). If the second alternative of the statement holds, we conclude analogously. []
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We now focus on problems of the form
(3.8) Oqut — Apu = —oqu®,  u(0,-) = yU.

Observe that the comparison principle of Lemma 3.2 warrants uniqueness of solutions:

Corollary 3.3. For n>1, there is at most one solution u=u, € \/W+ to (3.8). If
Uy, , Uy, € W are solutions to (3. 8) with 5, > 11, then u, = u,, with u, = u,,.

The next proposition provides a global continuum of positive solutions to (2.3) and is
the basis for Theorem 2.1.

Proposition 3.4.  Problem (3.8) admits an unbounded connected set of solutions
U = {(n,uy);n eI} = (1,00) x W}

emanating from (1,0), where I is an interval in (1, 00) with left endpoint 1. There is no solu-
tion (n,uy) in R™ x W, to (3.8) if n = 1,

Proof.  Let A(u) := —Ap + oqu and A, (u) := A(u) — A(0) = oyu. Given ve [0,1)
and re[0,1 —v), it follows from [2], Theorem 1.1, that W, < Wi/, W;ﬁ)), where <«
stands for a compact embedding. Fix o, v, y, and s such that 1/¢ <o <1—v <1 and
0 <s<1—7y<n/2q. Then, by Sobolev’s embedding theorem,

(39) WC] “— an(‘]v quv) — LDC (J7 W;v)v Wf{ = W;(Jv quy) — Lq(J7 C(ﬁ))a
from which we easily deduce that
A, e CH W, WM, L (W (J, W), L))

Observe that A(0) = —Ap has maximal L,-regularity and that assumption (2.2) implies
Hypp; = ¢y so that r(Hjg) = 1 by Lemma 3.1. We are therefore in a position to apply
[24], Proposition 2.5, Theorem 2.7, and conclude the existence of an unbounded continuum
2 of solutions in (0, ) x W; emanating from (1,0). If (s, u) is a solution to (3.8) with
ue W, then z'(a) = —1,z(a) for a € J, where

z(a) :== [pu(a)dx, ael,
Q

and thus

am

0) =7 | bi(a) [ pyu(a)dadx <y T'bl(a)e%a daz(0).
0 Q 0

Since u € W;, this inequality is actually strict and x(0) > 0 by (3.3) (with v = 0). Therefore,
we have z(0) > 0 and so # > 1 by the above inequality and (2.2). This proves the assertion.
U
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Remark 3.5. Using (3.3), we have for (17, u,) € % that
uy(a) = H[xlu,,] (a,0)uy(0), aeld, uy(0)=nU,= ”H[alltq]”n(o)-
Since u,(0) € W;B%H and u,(0) = 0, this implies
(3.10) r(ﬂH[am,,]) =1
according to Lemma 3.1.
Classical regularity theory for the heat equation ensures that u, is smooth both with
respect to a and x for (y7,u,) € %. To conclude Theorem 2.1, it remains to show that the

continuum 4% is unbounded with respect to the parameter 7. We will need some further
auxiliary results. First, we give lower and upper bounds for solutions to (3.8).

Lemma 3.6. If (7,uy) € U, then

/11 71—1
u"(a)é06_117(6’11“—1)—1—1—e*’“(‘l"«*")(pl onQ, ael.

Moreover, there is k > 0 such that

1
uy(a)ll . = , aeld,
(@l S e
fOV (177 u’?) € %
Proof. Let (1,u,) € % be fixed and put
_l]am
_an—e 7 %
cy = o " — 1 > B .
Then
Al — 1
(3.11) o1 il = Co/llej'la — 1 ; C()ll — o > 0,

cohred — oy T peha’
fora e J. Thus, z := fp, e W', where

)\,1
fla) =————, acel,
coxhe’%“ — o

solves the ode f + A1 f = —oy f2. Since z = fp, < f, we obtain

0uz — Apz = —0yz> — F, F:= az(f—z) =2 0.
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Also observe that, by (2.2) and (3.11),

am 1 am CO/ll — o
1 = b da < b —d
”J 1(61);76;44, a_ﬂbf 1(61)60/11%“_“1 a,
whence
A “"’ Al
z(0) CO)LI_O“%_’?J l(a)colleﬂl“—oq ag,=n

Now the comparison principle of Lemma 3.2 implies u, = z and the lower bound on u,
follows from the definition of z.

For the second assertion set

1

Via) = ara + ||luy (0)

-1 )
o0

for (n,u,) € % given. Then

Y= —uy?, P(0) = [luy(0)]|., Z u(0) on €.

Let w:=  — u,. Clearly, we C'2(J x Q) and

0aw — Apw = —o (Y +uy)w onJ x Q,
w(0,) =0 onQ, w(a,-)=y(a) >0 ondQ, aecl.

Hence, the parabolic maximum principle (e.g. see [15], Theorem 13.5) yields w = 0 on
J x Q, that is,

(3.12) uy(a,x) S Y(a), (a,x)ed x Q.
Using this we derive from the initial condition u,(0) = U, that

Am

Syt ilbly
O < 1. Cona+ o @)11) ™ dr =221 toga 01+ 1)

from which we easily deduce ||u,(0)||., < (n)* for some x > 0. Combining this with esti-
mate (3.12), we conclude also the upper bound on u,. []

3.3. Proof of Theorem 2.1. To finish the proof of Theorem 2.1 note first that, owing
to Proposition 3.4, problem (3.8) does not admit a solution u in W;“ if 7 < 1. Also recall
that, again by Proposition 3.4, there is an unbounded continuum % of solutions to (3.8)
and that uniqueness of solutions is provided by Corollary 3.3. In particular, there are
(177, uy,) € U with [|(17;, uy, ) || gy, — o0 as j — co. Since % is connected, the existence of a

unique solution u, € Wq+ to (3.8) for each value > 1 will be established provided we can
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show that 7; — co. Suppose otherwise, i.e. let 7; < #, for some 7, > 1. Then necessarily
[y, l, — 0. However, Lemma 3.6 implies

(3.13) ||u,7f(a)||w§xiyf, aeldJ, jeN,

for some x > 0. The positivity of u, and (3.8) ensure 0 < u, (a) < u,,(0) on Q for ae J,
and thus '

am

= II( ) * dx da <am||u,7( )qu JjeN.
0Q

Using the property of maximal L,-regularity for —Ap in (3.8), it follows that

(3.14) = (]

2
2 lle, + [y, (0)] W:sz/") =< ¢([fuy, (0)17,, + !Iun,(O)IIW(iBz/:,)

for j € N and some constant ¢ independent of u, . Writing the solution u, to (3.8) in the
form

(@) = e, (0) — oy [ % (1, ()’ do,
0

we see that

Am am a

uy, (0) = n; bf b1(a)e"ADu,7],(0) da — an; j by ( J (a=0)Ap (u,,/(a))zdada.

Taking into account that ||e“AD||y w2y = < ca'"! for a > 0, e.g. due to [1], we derive

from (3.13) that (u,7 (0)) oy Stays bounded in W2 2/4_ But then (t4,);cn stays bounded
in W, by (3.14) in contradlctlon to our observatlon above. Therefore, 7, — co and we
conclude that (3.8) admits for each value of # > 1 a unique solution u, € W+

Next, we show that ||uy ||y, — o0 asy — oo. Indeed, if [|uy |y, < ¢ < oo forally > 1,
then ||u,(0)||., would be bounded with respect to # by (3.1). Thus un(O) = nU, would 1mp1y
that ||U, ||, tends to zero as n — oo contradicting the fact

A1 n—1 1
061(1 — €_)']am) n P é ;uﬂ(o) = Ur/ on Q,

and [|¢,]|, = 1 according to Lemma 3.6.

Finally, it remains to prove that ( — u,) € C*((1, 20), W,). For, set

L(n,u) = (qu — Apu + oy, u(0) — nU)
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and note that I' € C* ((1, c0) x W, L, x W ) with T'(57,u,) = (0,0) for n > 1. In fact,
if 7 > 1and ¢ € W,, then

(7, ”ﬂ)¢ = (aa¢ — Ap¢ + 20 u,, $(0) — ’7(1))-

Thus, T (17, u,)¢ = (¥, ®) with (,0) € L, x W, 5/* if and only if

$(a) = My, (a,0)$(0) + Ofn[zmu,,] (a,0)Y(0)do, acel,

and

am a

(1 = nHpy,))9(0) =11 6[ bl(a)bf iy, (a, )¢ (0) do + ©.

Invoking (3.10) and Lemma 3.1, we see that 1 > r(nH|y,,,,]), whence 1 —nHpy, | is inver-

tible. This readily implies that I', (17, u,) is bijective and so I',(17,u,) € L (W, L, x W2 2/ 7
is an isomorphism by the open mapping theorem. The implicit function theorem then
yields some ¢ >0 and a function (e C*((n—e¢n+e),W,) such that {(y) =u, and
I'(s,{(s)) = 0 for |s — | < &. Since the solution to I'(s,u) = 0 is unique by Corollary 3.3,
we derive {(s) =u, and so (7 u,) e C*((1,00),W,). This completes the proof of
Theorem 2.1.

o . 0
Actually, we can say more about the derivative of u, with respect to 5. Set z := —u,.
. .. . 6]7
Differentiation of the equation

Oqtty — Aplty = —oclui, u,(0) = nU,

with respect to 7 and interchange of the smooth derivatives yield

0uz — Apz = “20quyz, z(0) = U, +nZ,
whence

z(a) = M2y, (a,0)2(0), aeJ, (1 —nHpyy,))z(0) = U,

Since, as above, 1 —nHy,,,| is invertible, we conclude

2(0) = (1 = nHipyy,)) Uy e int(W, 574 7)
and thus

Corollary 3.7. Ifn > 1, then — d uy(a) e 1nt(W2 291 foraeJ.

on'"

3.4. Further auxiliary results. We end this section with two results regarding non-
trivial nonnegative solutions to (1.1)—(1.4). Given 7, > 1, let u, € WJr denote the unique
solution to (1.1) and (1.3) with v = 0 and, accordingly, let v: € W; denote the unique solu-
tion to (1.2) and (1.4) with u = 0, both solutions being provided by Theorem 2.1.



163

Walker, Reaction-diffusion equations with nonlocal initial conditions

Lemma 3.8. Let &, > 1 be given and suppose that (u,v) € W; X W; solves (1.1)

(1.4). Then
0=<u(a)=uy(a) onQ, acl,

and if v e W+ then
v(a) Zve(a) onQ, acel.

Proof. Since u,ve W, we have

Oatt — Apu = —oqu® — auv < —oqu’, 0)=n# fmbl(a)u(a) da,
0

and so u(a) < uy(a) for a € J by Lemma 3.2. Similarly,

Am

040 — Apv = — 0% + Bouv = — 0%, =¢ [ by(a)v(a) da,
0
and so v(a) = ve(a) forae Jifv£0. [
Next we give constraints on the parameters # and ¢ for solutions to (1.1)—(1.4)
Lemma 3.9. Let &5 > 0 be given and suppose that (u,v) e Wy x W solves (1.1)
(1.4).
(i) Ifn > 1 and v £ 0, then

]
E=—— €(0,1).
r(H{(-pu,)

(i) IfE>1andu %0, thenn = 1, and if also v £ 0, then

1

—— e (1, ).
r(H[szv;]) ( )

[\

n

Proof. (i) It follows from Lemma 3.8 that

0,0 — Apv = —ﬁlvz + pouv < Bruyv,  0(0) =EV,

and so v(a) = I1_g,,(a,0)v(0) for a € J. Hence

am

< 6 ‘f b2 H[ —Batty] (a O) da U(O) éH[_ﬁzuv]v(O)

(1- fI:I[ fou,))0(0) = 0. Suppose é > r(H[ —pyu,))- Then 1 belongs to the resolvent set
> 0 by [15], equatlon (12.8), yielding v(0) < 0. Since

of CH|_p,,,], whence (1 — éH [ Boty) )
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ve W, by assumption, this gives v(0) = 0 and so v = 0 from (3.4). From Lemma 3.1 and
(2.2) we deduce r(H|_p,,,)) > r(Hp) = 1.

(1) The first assertion is shown as in the last step of Proposition 3.4. Since

2

Ogu — Apu = —oqu” — opuv < — 0 Ug, u(O) =nU,

by Lemma 3.8 if v £ 0, we conclude the second assertion as in (i). []

4. Bifurcation for the parameter &: Proof of Theorem 2.2

In this section we present the proof of Theorem 2.2. Regarding & as bifurcation
parameter in (1.1)—(1.4) and keeping # fixed, we write (&, u, v) for a solution to (1.1)—(1.4)
and thus suppress # since no confusion seems likely. First recall that Theorem 2.1 warrants
for any value of # the existence of the semi-trivial branch

By = {(670?05);66 (17 OO)} c R™ x W; X W;a

where (&, vg) is the unique solution to (1.2) with u = 0 subject to (1.4). In addition, if > 1,
then there is another semi-trivial branch

By = {(&,uy,0); ¢ e R} = R x W x W]
Let # > 1 be fixed. By using Rabinowitz’ global alternative [22] and the global uni-

lateral theorems of Lopez-Gomez [19], we now show that a continuum of coexistence
solutions bifurcates from the point (éo (n), uy, O) € B,, where the choice

1
4.1 =_—
(4.1) So(m) A )

is suggested by Lemma 3.9(i). Due to Lemma 3.8,

e (0,1)

(& u,0) = (& uy —w,0) e RT x W x W,
solves (1.1)-(1.4) if and only if (&, w,v) € R* x W, x W, with w < u, solves

(4.2) 0aw — Apw = oyw? — 2equ,w + o (uy — w)v,  w(0) =W,
(4.3) 0av — Apv = —B,v* + By (uy — w)v, v(0) =&V,

where we slightly abuse notation by writing

W .= ?lbl(a)w(a) da, V.= Z]ﬂmbz(a)v(a) da

when w,v € W,. We shall use this notation also for other capital letters since it will always
be clear from the context, which of the profiles | or b, is meant. Since the interval J is
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compact and u, € W, it follows from (3.1) and [1], I, Corollary 1.3.2, III, Theorem 4.8.7,
III, Theorem 4.10.10, that

Zy = (0a — Ap + 2011y, 79) ' € L(Ly x W51 W),
Zs = (04 — Ap — Bouy, ) e Z(L, x qu,Bz/qv W),
due to maximal regularity. Equations (4.2) and (4.3) may then be restated equivalently as
(4.4) (w,v) — K(&)(w,v) + R(w,v) =0

by setting

aw? — oW
ke = ("5 ) o= 4 o)

for (w,v) e W, x W,. Obviously, K({) e Z(W, x W,).

Lemma 4.1. Let CeR If pz1 is an eigenvalue of K(&) with eigenvector
(w,0) e Wy x W, then =+0, and u/C is an eigenvalue of H| g, with eigenvector
0(0) e W, 5.

Proof. Letu =1and (w,v) e W, x W,\{(0,0)} with K(&)(w,v) = u(w,v). Suppose
v = 0. Then

0aWw — Apw + 20u,w =0, w(0) = n
u

w,
from which

W(a> = H[leu,,] (a7 O)W(0)7 ael, W(O) = %H[2oclu,7]w(0)'

In particular, w(0) # 0 since otherwise (w,v) = (0,0), and hence u < nr(Hp,,,)) contra-
dicting the fact that 1 = r(nHy,,,)) > ,Lrlr(nH[zwn]) by (3.10) and Lemma 3.1 because
i = 1. Therefore, v £ 0. But from

040 — Apv — fruyv =0, v(0) = /% v,
it follows
_ _<5
v(a) = _p,,)(a,0)0(0), ael, v(0)= ;H[_ﬁzun]v(O),

and so v(0) + 0 and & + 0 since otherwise v = 0. Consequently, 4/¢ is an eigenvalue of
H{_g,,, with eigenvector v(0). []
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Lemma 4.2. (i) K(&) e A (W, x W,), R, is a continuous family of compact
operators.

(i) Re C(W, x Wy, W, x W,) is compact with R(w,v) = o(||(w,v)
(w,v) — (0,0).

q) as

(i) The set X := {& e R;dim(ker(1 — K(&))) = 1} is discrete.
Proof. 1t follows from (3.9) that the mapping

(4.5) W, x W, — L, (w,v) — wv iscompact,

2-2/q

and, since W;D — W, p'", we easily deduce that

K& e LW, xW,) and Re C(W, x W,, W, x W,)

are compact. Finally, if ¢ € Z, then u = 1 is an eigenvalue of K(¢) and so 1/ is an eigen-
value of H [pou,) due to Lemma 4.1. But the spectrum of the compact operator H (o] 18
discrete. []

In order to apply the global alternative of Rabinowitz, the next lemma will be funda-
mental. For a summary about the fixed point index we refer, e.g., to [19], Section 5.6.

Lemma 4.3. Let &y(n) be defined in (4.1). Then the fixed point index Ind(O, K (f)) of
zero with respect to K(&) changes sign as & crosses &y().

Proof. Recall that Ind(0,K(¢)) = (—1)), where {(&) is the sum of the algebraic
multiplicities of all real eigenvalues of K(¢) greater than one. First, let 0 < & < &y(y7) and
suppose there is an eigenvalue x = 1 of K(&). Then, since u/¢ is an elgenvalue of H B
according to Lemma 4.1, we get from (4.1) the contradiction /& < &(5) . Thus

Ind(0,K(&) =1, 0<&<&®m).

Baty)

Next, observe that, since H [pou,) 18 compact and strongly positive, there is some ¢ > 0 such
that the interval (50(17)_l — & oo) contains only one eigenvalue of H [ pou,)> Damely the sim-

ple eigenvalue &y(7) ~! Fix ¢ such that 50(77)_1 —e< &l < fo(’?)_l. Then, there is a unique
. = Twith/u, = &o(n). Clearly, if 1 = 1 is an eigenvalue of K(¢), then necessarily p = g, .
We claim that 4, is a simple eigenvalue of K(¢). Indeed, since w, /¢ = r(H|_p,,,)), we may

choose Y, € 1nt(W 2/4: Y with ppy = EH (pyu,Wo- Setting

‘/j* = 22(07 lpO) = H[fﬁzun]('vo)l/jo € W;—v
we obtain
(4.6) wab, = Z>(0,E¥.)

as in the proof of Lemma 4.1. We then seek ¢, € W, with u, ¢, = Zi(c2u,p,, n®.,), ie. a
solution to

o
aa¢* - AD¢* + 20(1Mn¢* = ILTzuﬂlp*v ¢* (0) = Iulq)*

*
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or, equivalently,
¢.(a) = My, (a,0)¢.(0) + (NY.)(a),  (Ny.,)(a) = % g My, (a,0) (uy (o), (o)) do
for a € J with

(1= Haa).00) = ¥ brta) (9. ) 0) e

*

Since ¢, = 1 it follows from (3.10) and Lemma 3.1 that 1 — MalW”] is invertible and the
equation for ¢, (0) is uniquely solvable. Thus, define ¢, € W; 52/ % and ¢, € W; by

1

o=

¢* = H[Za]u,]](‘,0)¢0 + Nlp* = Zl (Nlpw ¢0)

-1 am
(1 _n HW"O [ b1(a)(Ny,)(a) da,
y2 0

*

Then K(&)(o,,¥,) = u.(4,,¥,) and it remains to prove that g, is simple. Clearly, the pre-
ceding discussion shows

ker(K(¢) — 1) = span{ (.. v1.)}-

Suppose that (¢,,v,) e rg(K(¢) —u,). Then Z»(0,&V) — pv =y, for some veW,,
that is,

1 1
04 — Apv — BHu,v = _;(aal//* — ApY, — Boug,) =0, 0(0) = ﬂé V- ;Wu

This readily implies

& - 1
(15 B )o0) =~ 00
so that we obtain the contradiction

¢

*

Wy € ker(l Fl[ﬂzuqo N rg(l - jﬁ[ﬁm]) = {0}

since u, /& = r(ﬂ[_ﬁzun]) is a simple eigenvalue of H[—ﬁzu»;]- Thus (¢,,¥,) ¢ rg(K(f) — ,u*)
and u, is indeed a simple eigenvalue of K(&). This ensures

Ind(0,K(¢)) = -1, 0=¢&—¢&(n) <1,

and the assertion follows. [
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Taking ¢ = &y(n) and u, = 1, the proof of Lemma 4.3 reveals

Corollary 4.4. u, = 1 is a simple eigenvalue of K (fo(n)). Thus
W, x W, = ker(1 - K(&(n)) @rg(l - K (o)), ker(l - K (&(n))) = span{(¢,,¥,)}
with yr, = Z2(0,1) € W, o = &(n) ¥ € int(W, 5/, and ¢, e W,

Owing to Lemmas 4.2 and 4.3 we are now in a position to apply Rabinowitz’ global
alternative [19], Corollary 6.3.2, to (4.4) and obtain a (closed) continuum € of solutions

(&,w,v) to (4.2), (4.3) in R x W, x W, emanating from (&(7),0,0) and satisfying the
alternatives

(i) €is unbounded in R x W, x W,, or
(i) there is & € Z\{&y(n)} with (£,0,0) € €.

In addition, from Corollary 4.4 and [19], Lemma 6.4.1, it follows that for (&, w,v) € € near
the bifurcation point (éo (n),0, 0) we have

(4.7) (w,0) = &((¢, ¥.) + (o(1),0(1)))
in W, x W, as ¢ — 0. Moreover, according to [19], Theorem 6.4.3, and Corollary 4.4, the
continuum € consists of two subcontinua €* both emanating from (éo (n),0, O) such that

€" contains those (&, w,v) € € with & > 0 sufficiently small in (4.7) and satisfies the same
alternatives as € or contains a point (&, w, v) with

(w,8) e rg(1 = K (So(n)))\{(0,0)}.
We then set
By = {(&uy —w,v); (&, w,0) € €N\ {(&(n), uy, 0) }.

Observe that (&, u,v) € B; is a solution to (1.1)—(1.4) with & > &y(5) by (4.1) and Lemma
3.9, and close to (&y(1),uy,0) we can write (u,v) in the form

(u,v) = (uy — ep, — eo(1), ey, + ¢o(1))

in W, x W, as ¢ — 0*. In particular, since u,(0) € int( Wli;)z/"”L), we derive from (3.1) that
u(0) = 1, (0) — &9, (0) — eygo(1) € int(W, /"),

for ¢ > 0 sufficiently small. Hence, using (1.1) and (3.3), the strong positivity of the evolu-

tion operator implies u € W; Since ¥, € int( qu BZ/ “*) we similarly get from (3.1)

0(0) = ey + eygo(1) € int(W, /™)

for ¢ > 0 sufficiently small and thus v e W; by (1.2) and (3.4).
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Therefore, points on the continuum B close to (60(17),14,770) € B, belong to
T X W, x W, . Furthermore, defining

By =B (R x W, x W),
we have

Lemma 4.5. The continuum B either joins By with By, or is unbounded in
RT x W; X W;.

Proof. Suppose that B is contained in R* x W+ X W;, that is, B = B;. Then,
according to the alternatives satisfied by €%, either

(i) B; is unbounded in R x W, x W,, or

(i) B; contains a point (&,u,,0) with & e \{&y(n)}, or

(iii) B3 contains a point (&, u, — w,v) with (w,v) e rg(1 — K(&(n)))\{(0,0)}.
Clearly, since B; = R" x W; X W; by assumption, alternative (ii) is impossible. We

now show that alternative (iii) can also be ruled out. Suppose otherwise and let
(& uy —w,v) € By and (f,g) € W, x W, with

(0,0) = (w,v) = (1 = K(&0))(f9)-

As veW;, we obtain from (3.4) and (1.2) that v(0) = éVelnt(W2 /41 Due to
Corollary 4.4, ,(0) :tpoeint(qu Dz/ ) and so we may choose r>0 such that
g(0) — v(0) + eint(W; 2/4:1) Note that

V=g — Z2(O>60(77)G)7 lp* = 22(0750(’7)T*)= p=g—v+ Tlp* = Z2(0750(77)(G+ TIP*))

The last equality reads

0ap — App — Pouyp =0,  p(0) = & () (G + ¥.) = E(n) P+ o)V

from which we deduce that
(4.8) (1= &M H _pyu)) p(0) = Eo(m)V € int(W, /4 ™)

with p(0) € int( W; ]32/ “7) by the choice of 7. However, (4.8) has no positive solution owing
to [15], Corollary 12.4, and the definition of &,(#) in (4.1). This contradiction ensures
that alternative (iii) is also impossible. Consequently, if B is completely contained in
RT x WJr WJr then B; = B; is necessarily unbounded. It remains to verify that if B;
1s not contalned in RT x W+ X Wq , then B; joins B, with By.

Supposing that 85 is not completely contained in R™ x W; X W;, there are

(& ujv) e R X W x W) and  (&u,0) € B3, (u,0) ¢ W) x W)
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with
(& ujv5) — (Su,v) in R x W, x W,

As (3.1) ensures u(0) = 0 and v(0) = 0, whence u, v € W, by (3.3), (3.4), the only possibil-
ity that (u,v) does not belong to W+ X \/\/+ is that u = 0 or v = 0.

Assume that both u = 0 and v = 0. Then (&, u,v) = (£,0,0) € By. But the only non-
trivial, nonnegative solutions to (1.1)—(1.4) close to By lie on the branch

By = {(&,0,v¢); € € (1, 0)},
that is, (&;,u;,v;) belong to By which is impossible since u; € W;.

Next, assume that u = 0 but v = 0. Then the uniqueness statement of Theorem 2.1
yields u = u,. So (£,0,0) is a bifurcation point for (4.2), (4.3), or equivalently, for (4.4).
Thus [19], Lemma 6.1.2, implies & € X, whence ¢ = 1 is an eigenvalue of K(¢). Setting
w; == u, — uj, it follows from the properties of K(&) and R stated in Lemma 4.2 exactly as
in the proof of [19], Lemma 6.5.3, (see also [4], Theorem 3.1) that

(W v)

10wz, 0) llw, xw,

converges to an eigenvector (i,7) € W, x W of K(&) corresponding to the eigenvalue 1.
Lemma 4.1 shows that #(0) is a positive eigenvector to H|_g,,| associated to the eigenvalue
1/¢& and thus & = &(n) since 1/&y(#) is the only eigenvalue with positive eigenvector. But
then (&,u,v) = (&y(n), uy,0) and this is not possible.

Thus, the only possibility is that # = 0 but v = 0 so that, due to the uniqueness state-
ment of Theorem 2.1, (é u,v) = (£,0,0¢) € B;. Consequently, B3 joins B, with B; and, as
B, leaves RT x W+ X W+ only when meeting B, the same must be true for B;. []

We also need to show that if b, additionally satisfies (2.4), then B; can be unbounded

only if it is unbounded with respect to the parameter £. This is the content of the next
lemma.

Lemma 4.6. Let b, satisfy (2.4). For M > 1, there is ¢(M) >0 such that
[ullw, + [vllw, < (M) whenever (&,u,v) € RT x W' x W is a solution to (1.1)~(1.4)
with E £ M.

Proof. Let (¢,u,v) e R" x W, x W be any solution to (1.1)-(1.4) with ¢ < M.
Since

u(a) L uyla) <wy?, ael,

by Lemmas 3.6 and 3.8, we have

040 — Apv = —/3102 + fouv < —51”2 +/))2K”20, v(0) =<V
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Put m := B,xn* and

f(@) = mlp(O)lL. (Bi[[o(O) . (1 = &™) +me™) !, ae,

so that

49)  f'==BifP+mf, f(0) =00, fla) < 0(0)]| €™, aed.
Let z := f — v and observe that

04z —Apz = —p(f +v)z+mz onJ xQ,
z20 onJxdQ, z(0,-)=0 onQ,

from which we get z > 0, i.e. v(a) < f(a) on Q for a € J owing to the parabolic maximum
principle [15], Theorem 13.5. Since we may assume that m = s with s from (2.4), we have

. m m
N2 e = ga—emy “7°

and so it follows from & < M that

am

v(0) = M [ by(a)f(a)da < %L}mbg(a)(l — e da < oo,
0 1 0
whence
(4.10) [u(@)ll., +[lv(@)l, = e(M), ael,

for some ¢(M) > 0 by (4.9). Next, using the maximal regularity property of —Ap, we derive
from (1.1) and (4.10) that there is ¢o(M) > 0 such that

el = €(le(Olyp2 20 + los? + o]y, < co(M) ([[u(0) 12 210 +1)-

Writing (1.1) in the form

u(a) = ¢u(0) + [ ¢ (“au(0)? — mu(o)(0)) do, a e,
0

and using ||e"AD||3,( < ca'/4~! for a > 0, we obtain from (1.3) and (4.10)

2-2/q
qu VV,L D )

am
A
(Ol 220 = nllbrlle J 11 W g, 22 14(O)]l ., da
X 0 » g,

am a - 5
+nllb1]], J 6[”e(a U)AD”:Z(L‘” ”Cff;zm)HdlM(G) + oczu(o)v(a)HLq do da
< a(M)

and consequently [|ul[y,, < ¢(M). Since & < M, we similarly deduce vy, < c¢(M). O
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Next, we show that B3 connects B, with B; for certain values of #. To state the pre-
cise result observe that r(Hp,,,)) is a strictly decreasing function of £ on (1, c0) according to
Lemma 3.1 and Corollary 3.3. Since v depends continuously on ¢ in the topology of W,
we obtain from (1], II, Lemma 5.1.4, that the evolution operator 1|, (a,0) and hence
H\,,,,) depend continuously on ¢ in the corresponding operator topologies. Together with

the fact that the spectral radius considered as a function ¢ (W;]_Dz/ 7y — R™ is continuous
(see [16], Theorem 2.1), we conclude that

(4.11) (&= r(Hppp)) € C((1, ), (0, 00)) is strictly decreasing.
By Theorem 2.1, the continuum {(&, v¢); £ > 1} emanates from (1,0) and
r(Hjgye) < r(Hygp) =1
thanks to Lemma 3.1 and (2.2), hence lin} r(Hpy,,,)) = 1. Defining N € (1, o] by

—

1
T lim F(H[“zvg]) ’

{—o

(4.12)

we thus find for any # € (1, N) fixed a unique &; := &;() > 1 with

1

(4.13) n=———.
r(H, [ﬁzb‘cfl])
For values of # less than N we can improve Lemma 4.5:

Lemma 4.7. Suppose b satisfies (2.4). If n € (1, N), then Bs joins up with B, at the
point (£1,0,v¢,).

Proof. If (&,u,v) e RT x W; X W; solves (1.1)—(1.4), then v = v: by Lemma 3.8

while Lemma 3.9(ii) shows 1 < »r(H|,,,)). Thus, by definition of N, if # < N, then neces-
sarily there must be some M (y) > 0 such that & < M () for all

(& u,v) e B3 = R x W; X W;.
Now Lemmas 4.5 and 4.6 imply that B3 must join up with B, say, at the point (f, 0, vé).
To determine & note first that, due to Lemma 3.8,
(& u,0) = (& uve +w) e RY x W x W,
solves (1.1)—(1.4) if and only if (& u, w) € RT x W, x W solves

(4.14) Oatt — Apu = —ou® — oa(ve + w)u, u(0) = U,

(4.15) O,w — Apw = —[31w2 = 2B 0w + By(ve + wiu, w(0) =<EW,
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where we put
U= [ bilau(@)da, W= [ bya)w(a)da
0
Introducing

T:=(0a— A7) ' € L(Ly x W51, W,)

and the operators

. B T(—ovzu,nU) - o T (—oqu® — apuw,0)
K& w) = (T(—Zﬁlvgw +ﬁzvfuva))’ Rl w) = _< T(=pw* + ouw, 0)>

acting on (u,w) € W, x W, equations (4.14) and (4.15) are equivalent to

(4.16) (u, w) — K(&)(u, w) + R(u, w) = 0.
The operators K(¢) and R possess the properties stated in Lemma 4.2(i), (ii). Now, if
(&, uj,v7); is a sequence in B; converging to (€,0 vf) set w; := v; — ve,. As vg depends con-

tinuously on &, formulation (4.16) and the properties of K (&) and R readlly imply (see, e.g.,
the proof of [19], Lemma 6.5.3, or [4], Theorem 3.1) that

(u, wy)
Iy, wy) |

W, xW,

converges to some eigenvector (¢, ) € W+ X W*\{(O 0)} of K (é) associated to the eigen-
value 1 and thus satisfying (4.14), (4.15) w1th ¢ = & when higher order terms are neglected:

aa¢ - AD¢ = _azquﬂu ¢(0) = }//(Da
o — Ao = —2B0a0 + P, Y(0) = EW

Observing that

A

L= r(EHp,) > r(EHpy,,y)

by the analogue of (3.10) and Lemma 3.1, it follows by a contradiction argument exactly as
in the proof of Lemma 4.1 that ¢ £ 0. In particular, this shows that (1 — NH [y, )$(0) =0
with ¢(0) > 0. Hence 7! = r(Hpy,y,) due to Lemma 3.1 and so E=¢, by (4 13). This
proves the lemma. []

Gathering Lemmas 4.5, 4.6, and 4.7, the proof of Theorem 2.2 is complete since there
is no solution (&, u,v) in Rx W} x W/ if n <1 and bifurcation of B3 at (&(1), uy,0)
must be to the right according to Lemma 3.9.

Remark 4.8. Note that |[vglly, — © as ¢— oo by Theorem 2.1 (in fact:
lve(0)]|,, — co by Lemma 3.6) suggesting that r(H|,,,) tends to zero as ¢ approaches
infinity or, equivalently, that N = oo in (4.12), whence also in Theorem 2.2.
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5. Bifurcation for the parameter #: Proof of Theorems 2.3 and 2.4
This section is dedicated to the proofs of Theorems 2.3 and 2.4. We thus regard # as
bifurcation parameter in (1.1)—(1.4) and keep & fixed. We write (#,u,v) for a solution to
(1.1)—(1.4) and suppress & since no confusion seems likely.
5.1. Proof of Theorem 2.3. The argument used in the proof of Theorem 2.2 is simi-
lar to that for the proof of Theorem 2.3 and we thus merely sketch the latter pointing out

the main modifications to be made. Let & > 1 be fixed. Then Theorem 2.1 ensures the exis-
tence of the semi-trivial branches

S ={0nu, 0in> 1}, S ={(,0,v);7 € R}
of solutions to (1.1)~(1.4) in R x W, x W Recall from (4.14) and (4.15) that
(7, u,0) = (n,u,ve +w) € R x W x W,
solves (1.1)~(1.4) provided that (17, u, w) € R" x W, x W satisfies
(5.1) (u, w) — K(n)(u, w) + R(u, w) = 0,

with

K — Zl (077]U) > o 21(—011142 — opwu, 0)
Klmw,w) = (ZZ(,Bzvéu, cv) >’ Rw,v) = (ZZ(—ﬁlvz + fouw, 0))

for (w,v) € W, x W,, where Z; € £(L, x W;Bz/q, W,) are given by
Zi:= (0a—Ap+ e, 70) "' Za = (00 — Ap + 2B1ve,70)

The operators K(7) and R possess the properties stated in Lemma 4.2(i), (ii). Analogously
to Lemma 4.1 one shows that, given 7 € R, if u > 1 is an eigenvalue of K () with eigenvec-
tor (u,v) e W, x W,, then # # 0, and u/n is an eigenvalue of H,, with eigenvector
u(0) e W;Bz/q. As in Lemma 4.3, if

1
(5.2) no(&) == m > 1,

then Ind(O,K(n)) changes sign as 7 crosses 7,(¢), and g, = 1 is a simple eigenvalue of

K (ny(¢)). Invoking again [19], Corollary 6.3.2, we obtain a continuum
S cRx W, xW,

of solutions to (1.1)—(1.4) bifurcating from (77y(¢), 0, v¢). By definition, (17,(¢),0, v¢) ¢ 5.
Further, &} satisfies the alternatives

(i) &;is unbounded in R x W, x W,, or
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(ii) @} contains a point (7,0, v:) such that 1 is an eigenvalue of K(i7) but 7 = 1,(¢),
or

(iii) S} contains a point (17, u, ve + w) with (u,w) € rg(1 — K (179(¢)))\{(0,0)}.
Moreover, points on & close to (#7y(¢), 0, ve) belong to R x W; X W; In fact, we have:
Lemma 5.1. Let G5 := &in (RT x W, x W)). Then S; = €.
Proof.  Suppose €; is a proper subset of ;. Then there are
(m;,uj,v7) € RY x W; X W;, (n,u,v) € S5, (u,0) ¢ W; X W;
with
(mj,uj,v7) — (n,u,v) in R x W, x W,

As (3.1) ensures u(0) = 0 and v(0) > 0, whence u, v € W, by (3.3), (3.4), the only possibil-
ity that (u, v) does not belong to W+ X WJr is that u = 0 or v = 0. However, since v; € W+
and thus vj(a) = ve(a) for ae J owmg to Lemma 3.8, ve W; and so necessarily u = 0
Hence v = v: by the uniqueness statement in Theorem 2.1. But then, (#,0,0) is a bifurca-
tion point for (5.1) and it follows from [19], Lemma 6.5.3, exactly as in the proof of Lemma
4.5 that this implies 7 = 74(¢). Thus (17, u,v) = (19(&),0,vs) what is not possible. []

Now, as &) = S5 = R x W; X W;, alternative (ii) above is impossible, while alter-
native (iii) can be ruled out by using an argument analogous to that in the proof of Lemma
4.5. Therefore, 3 is unbounded in R* x W, x W, That bifurcation at (r5(¢),0, v¢) is
to the right, is a consequence of Lemma 3.9(ii). Finally, let b, satisfy (2.4) and suppose
there is some M > 0 with n < M for (n,u,v) € S;. Combining Lemmas 3.6 and 3.8, we
obtain ||lu(a)||, < kM? for a € J and we may then proceed as in Lemma 4.6 to show that
w, t lIvllw, = (M) for some (M) > 0 independent of (n,u,v) € S3. This completes
the proof of Theorem 2.3.

5.2. Proof of Theorem 2.4. We now focus on the proof of Theorem 2.4. Let & < 1.
Then Theorem 2.1 implies that

S = {(n,u,,0);n > 1}

is the only semi-trivial branch of solutions to (1.1)—(1.4). The same arguments leading to
(4.11) show that

. n—r(H_g,.1) € ,0), (0, 00)) is strictly increasing
5.3 Hi g, c((1 0 1

with lim r(H[_4,,]) = 1. Defining d € [0, 1) by

n—1

(5.4) 0= ;,

lim r(H - ﬁzun]>

n—x0
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it follows that for any & € (9, 1) fixed we find a unique 7, :=#,(&) > 1 with

|
55 f—
>3 r(H_gu,))

To demonstrate that local bifurcation from &; occurs at the point (#,,u,,,0), we apply the
theorem of Crandall-Rabinowitz [9]. Introducing

T = (0. — Ap,70) " € L(Ly x W5 W,),

we observe from (4.2) and (4.3) that (n,u,v) = (n,u, —w,v) € R" x W x W solves
(1.1)=(1.4) if and only if (1, w,v) € R* x W x W, with w < u, is a zero of the function

w— T (cyw? — 2oy + 02 (tty — w)v, g W) )

Gl w,0) = < v — T (=p10° + Ba(uy — wo,EV)

where we again agree here and for the remainder of this subsection upon the slight abuse of
notation

W .= jinbl(a)w(a) da, V.= Cj" by(a)v(a) da,
0 0

being used for other capital letters as well since it will always be clear from the context,
which of the profiles b1 and b, we mean. Theorem 2.1 warrants

GeC'((1,00) x W, x Wy, W, x W,)
with partial Frechét derivatives at (17, w,v) = (#,,0,0) given by

¢ — T(—200uy, ¢ + ooy, ;D) >

G(w,v) (11,0,0)(¢, y) = ( v — T(ﬁzu;ﬁ ¥, ¢Y)

and

—T(=20qu ¢+ au |y, D) P
G”a(”’vv)(nl70’0)(¢7 lp) = < _T(%zu’; QD,OSYI ), u}; = %un
1

for (¢,y) e W, x W,. We claim that the kernel of G, ,(#,,0,0) is one-dimensional.
Indeed, for (¢, ) € ker(Gy,,,)(77,0,0)) we have

(5'6) 0up — Apgp = _2051”171¢ + O‘2un1¢a ¢(O) = 771d),
(57) aal// - ADlp = ﬁZumlljv l//(0) = é‘P)

and so an argument similar to that used in the proof of Lemma 4.3 (with x, = 1) shows
that (¢, ) must be a scalar multiple of (4,,,) e W, x W', where

A . 2-2/q,
l//* = H[*ﬁzum](WO)lpO? lpO € ker(l - éH[fﬂZ”’ll]) n lnt( Wq’D X +)7



Walker, Reaction-diffusion equations with nonlocal initial conditions 177

and
b= Ty (0o + Ns o= 1 (1 =1 i ) fbl )(VY,)(a) da
with
(NY.)(a) == azf M (@) (1, (W0 (0)) dor, e J.
Thus,

ker(G(W,y) (7]1 ) 07 0)) = span{(¢*, lp*)}

As the derivative of G has the form G, ,)(#,,0,0) = 1 — T with a compact operator T (see
(4.5)), we also get from this that the codimension of rg(G, ,(#;,0,0)) equals one. To
check the transversality condition of [9], suppose that

G (w,v) (77170 0)(¢*,lﬂ*) erg( (w,v) (77170 0))
and let v € W, be with

- T(ﬁZ”ﬂlvviV) = _T(ﬂ2u;/71'70*70)'

(W2 2/q,+ w2 2/q,+

Since ) € int ) we may choose 7 >0 such that 7, —v(0) € int(W, 5" ").
Setting p := tf, — v and observing = T'(S,uy, y, EP), it follows

= T(Byuy,p ‘f’ﬁz“,;l V., EP),
that is,
aap - ADp = ﬁZump +ﬁ2u;,711p*7 p(O) = EP

from which

(1= EH o )90) = £, bo(@)] T (0.0 0, (010, (0) dr

This contradicts the fact that this equation has no positive solution p(0) = Tlﬁo —v(0)
owing to [15], Corollary 12.4, and (5.5) since the right-hand side belongs to 1nt(Wq 2/4: )
thanks to (2.1), Corollary 3.7, and the strong positivity of the operator IT_ . |(a, ) for
0 =0 <a = a,. Consequently,

Gi], (w,v) (’71 ) Ov 0)(¢*a ‘ﬁ*) ¢ rg(G(w,v) (771 ) 0, O)) .

We are thus in a position to apply [9], Theorem 1.7, and deduce the existence of a con-
tinuum &, of solutions to (1.1)—(1.4) bifurcating from (1, u,,,0), where €, is of the form

S} = {(n(e), e, 1) + £(01(e), 02(2))); lel < &0}
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for some & > 0 with #(0) =7, 6;(0) =0, and 0, € C((—&, &), W, ). Clearly, it follows
from (3.3) and (3.4) that, if & > 0 is sufficiently small, then the points (1, u, v) of S, asso-
ciated to values ¢ € (0, &) in the representation above satisty (u,v) € W+ X W+ since both
$.(0) = ¢, and ¥, (0) = i, belong to 1n‘[(W2 /41 Letting

64::€4m(R+xW;xW;

it is easy to check that S, bifurcates from (7;,u,,,0) to the right in view of (4.1), (5.3), and
(5.5). The proof of Theorem 2.4 is therefore complete.

Remark 5.2. Similarly as in Remark 4.8 we conjecture that hm r(H (Bouy]) = 9O,
whence 0 = 0 in Theorem 2.4.
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