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Abstract 

Laser surgery has gained clinical importance due to numerous advantages including contact-free processing, arbitrary 

cutting geometries, and high precision. However, online process control remains a challenge for widespread clinical use. 

Therefore, we established a combined setup of a pulsed Er:YAG laser ( = 2940 nm) and an optical coherence tomogra-

phy (OCT)  ( = 930 nm) for in situ monitoring of hard tissue ablation. The optical setup facilitates an interactive control 

of the laser ablation depth and remaining tissue strength through the depth resolution of OCT. The 3D OCT data-set, 

which is acquired after ablation, provides contours and layer thicknesses.  

 

 

1 Introduction 

Laser surgery has gained clinical importance especially in 

soft tissue ablation and ophthalmology due to multiple ad-

vantages. They comprise contact-free processing, arbitrary 

cutting geometries, and high precision [1, 2]. Scanner-

guided laser ablation also provides an efficient approach to 

process hard tissue with minor thermal and mechanical 

trauma in various surgical applications [3]. A precondition 

for such an advantageous use of lasers is a proper setting 

of laser parameters which optimize ablation rate and preci-

sion while minimizing collateral damage such as coagula-

tion and carbonization [4, 5]. The efficiency of laser tissue 

interaction and amount of removal is strongly dependent 

on optical and thermal properties of the target tissue both 

of which are influenced by the extra- and intracellular wa-

ter content [6]. Moreover, the ablation rate is governed by 

the laser properties and settings such as wavelength, focus 

spot size, pulse duration and energy, and frequency [7]. Up 

to now, medical hard tissue ablation is restricted due to the 

missing depth feedback from contactless laser processing. 

For a more widespread clinical use, in situ measurement 

and monitoring of ablation geometries is mandatory and an 

important issue for processing biological tissue.  

Optical coherence tomography (OCT) is an attractive can-

didate for compact, non-invasive, and real time imaging of 

laser irradiated material [8]. This non-invasive interfero-

metric imaging modality depicts not only a topological 

profile of examined surfaces but also displays the subsur-

face structures [9, 10]. Therefore, OCT is standard tech-

nique in ophthalmology for the analysis of retinal diseases 

[11]. High resolutions are achieved without physical con-

tact and index-matching media. Resolutions of about 10 

m and penetration depths of several millimeters (depend-

ing on the optical properties of the sample) allow for dis-

tinction between different material layers. OCT combined 

with surgical lasers has been used for qualitative and quan-

titative monitoring of the laser ablation process in various 

soft and hard tissues [12, 13].  

In our work we suggest an automatic segmentation algo-

rithm for the quantitative OCT based analysis of the abla-

tion site in hard tissue. We present a combined setup of a 

pulsed Er:YAG laser
1
  ( = 2940 nm) and an OCT ( = 

930 nm) for in situ observation and control of hard tissue 

ablation. We have developed an automatic method based 

on deformable models for determining depth maps of tis-

sue surfaces captured by OCT. Furthermore, the method is 

applicable to detect critical anatomical structures and 

boundaries within the range of the advancing ablation front 

and to calculate the thickness of the remaining tissue layer.  

With such quantification, our approach is a step towards 

image-based control and safe processing, enabling to ab-

late a predefined depth at specific positions and protecting 

near-surface as well as underlying anatomical structures in 

laser surgery. 

2 Methods 

The optical setup facilitates a combined and rigid configu-

ration of OCT and Er:YAG laser. First, the laser beams 

both pass independent scanners and focussing optics. The 

optical path of the cutting laser is modelled to fit the re-

quirements of compactness of the whole setup as well as 

beam and focus quality. Finally, OCT and Er:YAG laser 

are combined by a custom designed dichroic mirror in or-

der to co-propagate onto the target. Spatial overlap of OCT 

and addressable focus positions of the cutting laser com-

prise a volume of (10 x 10 x 10) mm
3
. To determine the 

spatial relations between components, the Er:YAG scan 

head origin is registered to the OCT coordinate system by 

detecting ablation hole centres from single laser pulses.   

2.1 Tissue Ablation 

Our procedure was evaluated by processing and analyzing 

biological hard tissue samples of a porcine femoral bone. 

                                                 
1 DPM 15 Laser Module (Pantec Engineering/3m.i.k.r.o.n) 
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These were cut into 20 mm thick slices while frozen. 

Thereafter, specimens were thawed to room temperature 

one hour before laser ablation, and kept moist until pro-

cessing. Additionally, periosteum, adherent soft tissue, and 

bone marrow were removed to avoid burning and charring. 

The inner bone surface was slightly polished with fine 

grain sandpaper for an improved detection of boundary 

layers in OCT imaging. 

 

 

 

 

 

 

 

                        (a)                                       (b)   

Image 1: (a) Thawed and cleaned porcine bone specimen. 

(b) Laser drilled hole (8 mm diameter) after repeated ap-

plication of circular scan patterns.  

 

The tissue surface was placed within focal distance of the 

cutting laser. A circular area of 8 mm diameter was ablated 

using the laser scanning system. Scan trajectories were 

composed of concentric circles which are defined as a 

function of spot diameter, total diameter, and pulse over-

lap. In consideration of minimal thermal damage, the re-

quired laser settings were empirically determined a priori. 

Pulse duration of p =150 μs, repetition rate of p =150 Hz, 

and scanning speed of vs = 20 mm/s were selected. Regard-

ing a focal spot diameter of 2 w0
 

= 300 µm, the radiant ex-

posure was approximately  = 6 J/cm². The irradiated area 

was moistened with water after every second area pro-

cessing step to avoid thermal damage. In total, the scan tra-

jectories were applied repeatedly for ten times (depth map) 

and thirty times (tissue thickness) respectively to visualize 

the boundaries in OCT imaging. 

2.2 Image processing 

The workflow of our implemented image processing con-

sists of four general steps: acquisition, preprocessing, 

segmentation, and surface reconstruction. The OCT is cal-

ibrated before application compensating for intrinsic im-

age distortions. 

2.2.1  Acquisition 

For the acquisition of datasets, a Thorlabs Ganymede 

Spectral Domain OCT with 930 nm center wavelength was 

employed. For the presented example of depth map extrac-

tion, a spoke scan pattern was preferred over stacking pat-

terns in order to reduce computational costs. After each 

scan, a rotation of 3° is executed. A total of 60 B-scans 

(512 px lateral; 1024 px axial) was acquired using a scan 

width of 10 mm, in accordance with a lateral resolution of 

19 µm. The detection of subsequent boundaries was evalu-

ated on single B-scans (512 px lateral; 1024 px axial) with 

2 mm scan width and a lateral resolution of 4 µm. In order 

to achieve precise measurements, the region of interest is 

reduced to the bottom of the ablation crater. The axial 

resolution was 2.7 µm (in air) in both setups. 

2.2.2  Preprocessing 

Segmentation performance is mainly defined by the edge 

map obtained from the raw image. Since all acquired im-

ages are subject to noise and artifacts, a preprocessing step 

with speckle noise reduction is required to improve the 

edge map. A nonlinear anisotropic diffusion filter [14] is 

preferred over traditional Gaussian or mean filtering. In 

this case, the Perona-Malik model was implemented using 

a conduction coefficient of  = 50 and 20 iterations. 

2.2.3  Segmentation 

The presented work is based on traditional Kass snakes 

[15] which have been adapted to meet our requirements. A 

snake is a parametric curve )(sc


 = (x(s), y(s)) which is 

normalized to the arc length s [0, 1] within the image 

domain I(x, y). The deformation and movement of the 

curve is driven by local minimization of an energy func-

tional  
     

(1) 

 

which is composed of internal and external energies. Inter-

nal energy   
 
(2) 
 
is equal to potential energy caused by tension and bending 

along the curve. This intrinsic condition is described phys-

ically as the sum of the square magnitudes of first and se-

cond order derivatives of the parametric curve, similar to a 

generalization of Hooke's law and elastic bending [11]. 

In contrast, external energy considers only image depend-

ent properties. The traditional model sets  
 
(3) 
 
evaluating the contour )(sc


 on the squared magnitude 

gradient of the image I(x, y). The individual contribution of 

the energy terms is adjusted and balanced by weighting 

factors  ,  and  . 

The application of calculus of variations to the snake ener-

gy involves finding a minimum of the integral and leads to 

an Euler-Lagrange differential equation  
 

(4)   
 

To overcome the poor abilities of outlining concave 

boundaries and to enlarge the capturing range of edges, we 

substitute the traditional formulation of gradient-based en-

ergies with a gradient vector flow (GVF) field ),( yxw


 

[16] and artificial vertical pressure n


. Implicit Euler time-

stepping is applied to solve the dynamic system numerical-

ly and to compute snake evolution to a local equilibrium  
 

(5)  
 

Derivatives are approximated by central finite differences.  

After each step of evolution, boundary conditions con-
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strain the first and last contour point to vertical translation, 

and resampling of all contour points to equidistant spacing 

is applied for numerical reasons.  

Before employing the snake algorithm, an initialization 

must be determined automatically. After capturing the raw 

image, anisotropic filtering reduces speckle noise. A fixed 

threshold of 0.5 is used to binarize the normalized image. 

Subsequently, the binary image is morphologically dilated 

using a 10 px by 10 px square structuring element to close 

holes and smooth boundaries. Binary labeling is used to 

detect connected components and eliminate isolated re-

gions which do not comply with an area threshold. The ini-

tial contour is obtained from extracting and median filter-

ing the specific boundary of the binary blob. After deter-

mination of the initial setup, the GVF field is calculated 

from the preprocessed raw image and the aforementioned 

snake algorithm is applied. So far, the proposed workflow 

uses unoptimized MATLAB code. 

The weighting factors of the snake were set to 4 , 

5.0 , and 4 . The GVF regularization factor was 

set to 1.0  and 20 iterations were performed. The arti-

ficial pressure was set to                         for each evolution. 

These parameters were determined empirically.  

2.2.4 Surface reconstruction 

The segmented contours )(sc


 are defined locally in the 

image domain I(x, y) of each specific B-scan. In order to 

visualize and reconstruct the depth map from rotationally 

acquired datasets, a conversion between local and global 

coordinates was performed. Thus, local coordinates were 

transformed to a global Cartesian coordinate system and 

interpolated using cylindrical coordinates, based on the 

acquisition angle of each B-scan. Additionally, scaling 

was applied in accordance to the selected OCT settings.   

3 Results 

We present our experimental results to prove the suitability 

of the snake algorithm to outline surface and underlying 

anatomical boundaries. Regarding the selected laser set-

tings, no charred tissue could be visually identified causing 

shadows or artifacts in the examined OCT datasets. There-

fore, the system is applicable for gentle processing of bio-

logical hard tissue with minor thermal damage. 

3.1 Depth information 

For evaluation of our proposed workflow we use OCT im-

ages presenting the bone surface before and after laser ab-

lation. The snake algorithm was performed on a specific 

set of 60 rotationally acquired OCT images for each condi-

tion. Image 2 shows the performance of the snake for an 

acquisition angle of 90°. In this case, the surface was out-

lined successfully by automatic initialization close to the 

boundary. Although the surface topography changes sig-

nificantly within datasets, it should be pointed out that on-

ly few outliners occurred and only close to the image 

boundaries. Therefore, the region of interest (ablation ge-

ometry) was not affected. After conversion from local to 

global coordinates, the surface reconstruction was applied. 

Image 2: Cropped OCT B-scan of bone surface with pro-

cessed circular pattern (8 mm diameter) and segmentation 

Yellow and red lines indicate initialization of the snake 

and final boundary respectively. 

 

The reconstructed surfaces of raw and processed bone are 

shown in image 3 (a) and (b) respectively. In order to de-

termine the ablation depth exclusively, the difference of 

raw and processed surface was calculated. Therefore, the 

representation in image 3 (c) only contains depth infor-

mation concerning the laser ablation. The depth chart in 

image 3 (d) displays a homogeneous ablation and clarifies 

the influence of tissue properties on laser processing. 

 
          (a)                     (b) 

 
         (c)          (d) 

Image 3: (a) Reconstruction of raw bone surface. (b) Re-

construction of bone surface after laser ablation. (c) Dif-

ference of surfaces in (a) and (b). (d) Depth chart of circu-

lar ablation showing mostly uniform depth and a small 

ridge on the right due to inhomogeneous bone tissue. 

3.2 Second boundary detection 

For the purpose of protecting underlying anatomical struc-

tures, we evaluated the feasibility of automatic detection 

and quantitative thickness determination of remaining tis-

sue using OCT imaging and snakes. Twice, the proposed 

snake algorithm was applied to the same B-scan displaying 

a specific section of the bottom of the ablation crater and 

underlying anatomical boundary. Image 4 (a) shows the 

detection performance with outlined boundaries. The 

thickness profile in image 4 (b) was calculated by undistor-

tion of the vertical distance between upper and lower 

 px 1 ,0 n

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boundary and a refractive index of 1.55 for bone [17]. This 

enables to identify regions which should be excluded from 

further processing. 

(a) 
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(b) 

Image 4: (a) OCT image and segmentation of remaining 

tissue. Yellow and red lines indicate initialization of the 

snake and final contour respectively. (b) Thickness profile 

of the tissue layer  

 

Penetration depth of OCT is strongly dependent on tissue 

water content. Dehydration caused by preceding laser abla-

tion promotes strong scattering in the surface layer, result-

ing in decreased imaging depth. Therefore, a thin layer of 

water was applied. Scattering was observed only until the 

water was absorbed. Underlying concavities and bounda-

ries became detectable. Thus, moistening is essential for 

successful imaging of subsurface structures in bone. 

4 Conclusion 

This paper demonstrates the feasibility of interactive 

depth measurements during laser tissue ablation. Robust-

ness of our approach for surface topology segmentation 

using adapted snakes algorithm and 3D reconstruction is 

proven on laser ablated bone specimen. A depth chart is 

obtained as a prospective instrument for interactive abla-

tion control. In order to improve process safety, we also 

present the means to determine remaining bone thickness 

by adapting our algorithm to identify a second tissue 

boundary in OCT imaging. Future research will focus on 

minimizing computational time necessary to extract abla-

tion depth information as well as on the implementation 

of adaptive algorithms to automate parameterization. 
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