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Abstract. The standard reference in uncertainty
modeling is the ‘‘Guide to the Expression of Uncer-
tainty in Measurement (GUM)’’. GUM groups the
occurring uncertain quantities into ‘‘Type A’’ and
‘‘Type B’’. Uncertainties of ‘‘Type A’’ are determined
with the classical statistical methods, while ‘‘Type B’’
is subject to other uncertainties which are obtained
by experience and knowledge about an instrument
or a measurement process. Both types of uncertainty
can have random and systematic error components.
Our study focuses on a detailed comparison of prob-
ability and fuzzy-random approaches for handling
and propagating the di¤erent uncertainties, especially
those of ‘‘Type B’’. Whereas a probabilistic approach
treats all uncertainties as having a random nature,
the fuzzy technique distinguishes between random
and deterministic errors. In the fuzzy-random ap-
proach the random components are modeled in a
stochastic framework, and the deterministic uncer-
tainties are treated by means of a range-of-values
search problem. The applied procedure is outlined
showing both the theory and a numerical example
for the evaluation of uncertainties in an application
for terrestrial laserscanning (TLS).

Keywords. GUM, Monte Carlo methods, fuzzy
methods.

1. Introduction

The ‘‘Guide to the Expression of Uncertainty in
Measurement (GUM)’’ is a standard reference in un-
certainty modeling in engineering and mathematical
sciences, cf. ISO (1995). GUM groups the occurring
uncertain quantities into ‘‘Type A’’ and ‘‘Type B’’.
Uncertainties of ‘‘Type A’’ are determined with the
classical statistical methods, while ‘‘Type B’’ is sub-
ject to other uncertainties which are obtained by ex-
perience and knowledge about an instrument or a
measurement process. Whereas the uncertainties of
the quantities of ‘‘Type A’’ can be estimated based
on repeated measurement of the quantity of interest,
the estimated uncertainties of the quantities of ‘‘Type
B’’ are based on expert knowledge, e.g., the technical
knowledge about an instrumental error source. Both
types of uncertainty can have random and systematic
error components:

� A random error e arises from non predictable vari-
ations of some influence factors under seemingly
the same actual conditions (non reproducible ef-
fects), see, e.g., Bandemer (2006, pp. 63 ¤).

� A systematic error d is due to non controllable
e¤ects during the measurement and the preprocess-
ing steps of the measurement, it biases the output
quantity y. Although systematic errors are un-
known, they bias the measurement result in one
direction (reproducible, but unknown e¤ects), see,
e.g., Grabe (2005).

GUM defines an output quantity y as a function of
input quantities z. The input quantities can be con-
sidered as influence parameters which, e.g., can be
relevant in pre-processing steps:

y ¼ f ðz1; z2; . . . ; znÞ ¼ f ðzÞ ð1Þ
with f ð�Þ the observation model and n the number of
input quantities z:

� ‘‘. . . , whose values and uncertainties are directly
determined in the current measurement (original
measurement).’’

� ‘‘. . . , whose values and uncertainties are brought
into the measurement from external sources, like
the values from a calibration for an instrument (in-
fluence factor) (ISO 1995, Chapter 4.1.3).’’

Please note that in general the input quantities zi may
be a measurement result y themselves. In order to
have a clear representation, only the case where zi is
a measurement or an influence factor is treated in this
paper. The quantity zi can be carrier of both random
and systematic errors. GUM proposes to treat ran-
dom and systematic errors in a stochastic framework.
It introduces variances to describe their uncertainties.

Let us denote the function f ð�Þ from equation (1) as
observation model and divide the uncertain influence
factors into three groups: additional information,
sensor parameters, and model constants. Whereas
the uncertainty of the original measurement is usu-
ally of ‘‘Type A’’, the uncertainty of the influence
factors can be of ‘‘Type A’’ or ‘‘Type B’’. Figure 1
shows the interaction between the measurement, the
influence factors and the observation model. System-
atic errors of the input quantities are meaningful by
many reasons:

� The model constants are only partially representa-
tive for the given situation (e.g., the model con-
stants for the refraction index for distance measure-
ments).

� The number of additional information (measure-
ments) may be too small to estimate reliable distri-
butions for a random treatment.

� Measurement results are a¤ected by rounding er-
rors.
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The GUM, cf. ISO (1995, p. 19), describes an ap-
proach for determining the standard uncertainty uðyÞ
of the measurement result y from the standard uncer-
tainties and correlation coe‰cients associated with
the input estimates using the law of propagation of
uncertainties (LOP):

u2ðyÞ ¼
Xn

i¼1

c2
i u

2ðziÞ

þ 2
Xn�1

i¼1

Xn

j¼iþ1

cicjuðziÞuðzjÞrðzi; zjÞ; ð2Þ

where the quantities c1; c2; . . . ; cn are partial deriva-
tives of y ¼ f ðzÞ with respect to the random in-
puts Z1;Z2; . . . ;Zn evaluated at the realization
z1; z2; . . . ; zn respectively, and rðzi; zjÞ is the correla-
tion coe‰cient between Zi and Zj for i; j ¼ 1; . . . ; n
and iA j. The equation (2) delivers the combined
standard uncertainty uðyÞ of the measurement result
y from the standard uncertainties and correlation
coe‰cients associated with the input estimates using
the LOP of uncertainties.

Equation (2) can be reformulated in matrix notation,
cf., e.g., Koch (1999, p. 100):

u2ðyÞ ¼ ASzzA
T ; ð3Þ

where the matrix A contains the partial derivatives
y ¼ f ðzÞ with respect to Z1;Z2; . . . ;Zn, that is A ¼
qf
qz1

; . . . ; qf
qzn

h i
, and Szz is the uncertainty matrix of the

input quantities z.

Unfortunately, in many practical applications, the
models are neither linear nor can be approximated
by a linearized model using Taylor series expansions.
As a consequence of the high non-linearity, the LOP
could be di‰cult to use Hennes (2007). For cases
where the model for evaluating the uncertainty is
strongly nonlinear or highly complicated to linearize
(using Taylor series expansions), the GUM frame-
work will not be satisfied. That is because the stan-
dard GUM framework uses only a measurement

model linearized about the best available estimates of
the input quantities. For this reason the Extension of
GUM (ISO 2007) recommends the propagation of un-
certainties using a probabilistic approach. Within the
mentioned approach the propagation of uncertainties
is numerically treated by Monte Carlo (MC) techni-
ques. The di¤erence between the GUM (ISO 1995)
and the extension of GUM (ISO 2007) (the so called
probabilistic approach) in case of nonlinearity and/or
Non-Gaussianity will be not significantly di¤er in the
first and the second central moments but rather in the
estimate of the confidence region, which are reflected
in the non-Gaussian PDF of the output quantities.

The acceptance of MC techniques has significantly
increased during the last decade. Consequently, it’s
widely used within many scientific disciplines. Hennes
(2007) suggested to use MC simulations instead of
the treatment of the combined uncertainties by ap-
plying the LOP. Siebert and Sommer (2004) recom-
mended a MC based method to evaluate the mea-
surement uncertainties in non-linear models. Koch
(2008a) suggested the determination of the uncer-
tainty according to GUM by a Bayesian confidence
interval using MC simulation. The approach has
been explained in detail and applied to the results of
terrestrial laserscanning (TLS). Furthermore, the
approach has been extended in Koch (2008b) to
evaluate uncertainties of correlated measurements by
another application in TLS.

GUM assumes that random and systematic uncer-
tainties are both appropriately handled by means
of power density functions (PDFs). Neumann (2009,
pp. 24 ¤) and the references therein show that a
‘‘pure’’ probabilistic approach in some cases can
lead to a too optimistic evaluation of uncertainties.
Too optimistic evaluation means that, e.g., the confi-
dence intervals of output quantities are too narrow in
comparison to the true values. This shall be high-
lighted with two references. On the one hand McNish
(1962) presents in his paper a too optimistic estima-

Figure 1: Interaction between input quantities, the observation model and the output quantities.
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tion of confidence intervals for the measurement of
the speed of light. On the other hand Stigler (1996)
and Youden (1972) illustrate a di¤erence between
confidence intervals with the true values for the
astronomical unit. Hence, in this paper an alternative
approach for evaluating the uncertainties will be in-
troduced. In this approach the systematic component
is evaluated using fuzzy techniques (in contrast to the
‘‘pure’’ probabilistic approach). The fuzzy techniques
have proven to be an appropriate solution for the
description of uncertainties and were applied in dif-
ferent science and engineering applications.

The basic idea in this paper is related to the so-called
Fuzzy-Random-Variables (FRV) which are based
on a combination of probability theory and fuzzy
theory, see Kwakernaak (1978) and Kwakernaak
(1979) for more details. For the theory of FRV the
reader is referred to Terán (2007). Further discus-
sions of fuzzy techniques in the context of GUM can
be also found in Mauris et al. (2001). The description
of the systematic uncertainty component of the input
quantities with the fuzzy-random approach leads to a
more pessimistic uncertainty of the output quantity.
In this paper the probabilistic approach and fuzzy-
random approach shall be thoroughly compared to
each other from a theoretical point of view and using
a practical example in TLS.

The paper is organized as follows: First we will de-
scribe the general idea of MC techniques to describe
measurement uncertainties in the context of GUM;
second a fuzzy-random approach to handle these
measurement uncertainties is introduced. Then, the
computation steps of both approaches are compared
with the GUM approach. In the fifth section all three
methods are applied to TLS and the obtained results
are critically compared to each other. The paper fin-
ishes with a discussion and an outlook for further re-
search.

2. Uncertainty modeling with probabilistic
approach

In MC techniques, both the random and the system-
atic components of the uncertainty are treated as
having a random nature. Please note that not the sys-
tematic component itself is modeled as random, it is
the knowledge about the systematic component for
which a PDF is introduced (Koch 2007). The GUM
suggested in some cases to select the PDF of the in-
put quantities as rectangular, triangular, and trape-
zoidal (ISO 1995). In these cases, it is hard or even
impossible to obtain the estimate of the uncertainty
for the output quantity in a closed mathematical
form. An alternative to modeling and propagating
first and second moments according to equation (2)
or (3) is propagating PDFs of the observation model
from equation (1) by MC simulations:

Y ¼ f ðZ1;Z2; . . . ;ZnÞ ¼ f ðZÞ: ð4Þ

Here Y represents a random output quantity and
Z1;Z2; . . . ;Zn are the n random inputs.

2.1. Sampling from PDF

Any MC simulation requires random numbers. Ran-
dom numbers are generated on a computer by means
of deterministic procedures. Mostly, rectangular dis-
tributed random numbers are generated, which may
then in turn be transformed into random numbers of
random variables having other PDFs (Gentle 2003).

Starting from pseudo-random numbers u1; u2; . . . ; un,
generated by one of the standard methods such as
linear congruence method (Koch 2007, p. 183), some
random numbers x1; x2; . . . ; xn may be generated
which may be viewed as realizations of random vari-
ables X1;X2; . . . ;Xn with another PDF, for instance
as realizations x1; x2; . . . ; xn of normally distributed
random variables. This process makes in particular
use of the so-called inversion method or acceptance-
rejection method. A far more comprehensive discus-
sion of such algorithms can be found, e.g., in Gentle
(2003) or Koch (2007). Multivariate uniform, trape-
zoidal and triangular PDFs might be needed for eval-
uating the uncertainties of the measurements accord-
ing to GUM. In this paper, the inversion method
is used to generate rectangular-distributed and
triangular-distributed random numbers. The main
reason for the selection of the inversion method is its
implementation simplicity. Detailed explanation of
this method can be found, e.g., in Gentle (2003).

To demonstrate the modeling of uncertainties with
a MC simulation in Section 5, the generation algo-
rithms of random numbers from rectangular, trian-
gular and normal PDF will be shortly described ac-
cording to Koch (2007):

� Generation of rectangular-distributed random num-
bers: In a rectangular PDF, the values of a random
variable lie within an interval ½a�; aþ�, where a�
and aþ are the distribution parameters, the upper
and the lower limits of the rectangular PDF. That
means, there is no specific knowledge about the
values within the interval, cf. Koch (2008a) (typical
examples are error bounds, rounding errors and
digitalization errors). The PDF for a continuous
random variable of the uniform PDF, can be de-
fined by (cf., e.g., Koch (2007, p. 20)):

pðx j a�; aþÞ ¼
1

aþ�a�
if a�axa aþ;

0 if x < a� and x > aþ:

�
ð5Þ

The expected value EðXÞ and the variance VðX Þ
of the rectangular PDF are given by (cf. Koch
(2008a)):

EðX Þ ¼ aþ þ a�
2

; VðX Þ ¼ ðaþ � a�Þ2

12
: ð6Þ

� Generation of triangular-distributed random num-
bers: The symmetric triangular PDF is a special
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case of the symmetric trapezoidal PDF. As an illus-
trative example for this type of distributions, the
triangular PDF is suggested as a distribution for
an addition constant of an instrument. The sym-
metric triangular cumulative distribution function
(CDF) is then given by:

F ðx j a�; aþÞ ¼
ðx�a�Þ2

2a2 if a�axa aþþa�
2 ;

1� ðaþ�xÞ2

2a2 if aþþa�
2 axa aþ;

8<
: ð7Þ

where a ¼ aþ�a�
2 . In order to generate random

numbers x1; x2; . . . ; xn from the triangular distribu-
tion, the inverse function of the CDF in equation
(7) is derived. The method is similar to the one
used to generate random variables from the uni-
form distribution. One starts with one-dimensional
vector of standard uniform-distributed random
numbers, HPUð0; 1Þ. These can be transformed
to the desired distribution using the inverse func-
tion of the CDF (7):

F�1ðhÞ ¼
a� þ

ffiffiffiffiffiffiffiffiffiffi
2ha2

p
if 0a ha 1

2 ;

aþ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a2ð1 � hÞ

p
if 0a ð1 � hÞa 1

2 :

(
ð8Þ

The expected value and the variance of the triangu-
lar PDF are given by (cf. Koch (2008a)):

EðXÞ ¼ aþ þ a�
2

; VðX Þ ¼ ðaþ � a�Þ2

24
: ð9Þ

� Generation of correlated normally-distributed ran-
dom numbers: The normal PDF is the most widely
used PDF in statistics. The one-dimensional nor-
mal PDF is fully described by its expected value m
and its variance s2, that is X PNðm; s2Þ. The mul-
tinormal PDF is a building block for the some in-
put quantities of the random variables in equation
(4). It is well known that the multinormal PDF is
fully characterized by its expected value m a Rn

and its variance-covariance matrix S a Rn�n,
where n is the length of the random vector. Con-
sider a vector Z ¼ ðZ1; . . . ;ZnÞT of independent
standard-normally distributed random variables
ZPNð0; IÞ. As S is positive definite then there ex-
ists the Cholesky decomposition S ¼ RTR, where
R is an n� n upper triangular matrix. The standard
normal numbers can be then transformed to the
desired distribution (that is XPNðm;SÞ) using
X ¼ RTZþ m. Another possibility to generate mul-
tivariate normal random variables is to factorize
the covariance matrix S using singular value de-
composition, cf., e.g., Koch (2007, p. 196).

2.2. MC technique to evaluate uncertainty

The MC techniques are of great importance for un-
certainty evaluation. With a set of generated samples
the PDF for the value of the output quantity Y in
equation (4) will be numerically approximated. MC
approaches to estimate the uncertainty include the
following steps:

� Step 1: A set of random samples z1; z2; . . . ; zn,
which have the size n, is generated from the PDF
for each random input quantity Z1;Z2; . . . ;Zn.
The sampling procedure is repeated M times for
every input quantity.

� Step 2: The output quantities y will be then calcu-
lated by:

yðiÞ ¼ f ðzðiÞ1 ; z
ðiÞ
2 ; . . . ; zðiÞn Þ ¼ f ðzðiÞÞ; ð10Þ

where i ¼ 1; . . . ;M are the generated samples of
the random output quantity Y .

� Step 3: Particularly relevant estimates of any statis-
tical quantities can be calculated:
(1) the expectation of the output quantity

ÊEð f ðzÞÞ ¼ ÊEðyÞ ¼ 1

M

XM
i¼1

f ðzðiÞÞ; ð11Þ

(2) the estimate of the variance of the output quan-
tity (Alkhatib 2007)

D̂DðyÞ ¼ 1

M

XM
i¼1

ð f ðzðiÞÞ � ÊEð f ðzÞÞÞ

� ð f ðzðiÞÞ � ÊEð f ðzÞÞÞT : ð12Þ

2.3. Confidence intervals in the MC case

To compute the confidence interval by MC simula-
tion of the output quantity with the significance level
of g (it may be denoted as yconf ;MC ¼ ½y; y�), one

has to order the independent variates yðiÞ from the
smallest to the largest. An numerically computed
100ð1 � 2gÞ% confidence interval for the random
variable Y is then given (cf. Buckland (1984)):

yconf ;MC ¼ ½y ¼ yj; y ¼ yk�; ð13Þ
where j ¼ ðM þ 1Þg and k ¼ ðM þ 1Þð1 � gÞ. The
resulting j and k are in general not integer numbers.
In order to round to the nearest integer the linear in-
terpolation between as example yi and yiþ1, where
i < j < i þ 1 is used. Another way to compute the
MC confidence region is described in Koch (2008a).

3. A fuzzy-random approach to uncertainty
modeling

In this section, a fuzzy-random approach to uncer-
tainty modeling in the context of GUM is intro-
duced. Fuzzy techniques have proven to be an appro-
priate solution for the description of uncertainties.
Recently, many procedures have been introduced in
di¤erent engineering applications, cf., e.g., Fellin
et al. (2005), Kreinovich et al. (2006), Möller and
Beer (2004). This includes discussions about com-
bined approaches in fuzzy theory, interval mathemat-
ics and probability theory (Ferson et al. 2002) and
linguistic motivations, see, e.g., Kreinovich (2007).

In the fuzzy-random approach we distinguish be-
tween random and systematic errors in the propaga-
tion process of the uncertainties of the input quanti-
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ties to the output quantity y. Whereas the random
part is treated with the LOP or with the MC tech-
nique, systematic errors are propagated by means of
a range-of-values search problem (see Section 3.2).
Both types of uncertainty are modeled in a compre-
hensive way, using fuzzy intervals (see Section 3.1).
This procedure is in full accordance with the recom-
mendations of the GUM. However, the di¤erence is
in the treatment of the uncertainty about the system-
atic errors, for which no variances but interval radii
are introduced.

A comprehensive modeling of uncertainties from the
observations to the parameters of interest (including
statistical tests) with the approach used here is given
in Neumann and Kutterer (2006) and Neumann and
Kutterer (2009).

3.1. Uncertainty modeling using fuzzy intervals

The random and systematic components of the un-
certainties are characterized with a special case of
fuzzy theory, the so called Fuzzy-Randomness
(Möller and Beer 2004, Viertl 1996). Each uncertain
quantity zi is exclusively modeled in terms of fuzzy
intervals. A fuzzy interval ~AA is uniquely defined by
its membership function m ~AAðxÞ over the set R of
real numbers with a membership degree between 0
and 1:

~AA :¼ fðx;m ~AAðxÞÞ j x a Rg
with m ~AAðxÞ : R ! ½0; 1�: ð14Þ

The membership function of a fuzzy interval can
be described by its left Lð�Þ and right Rð�Þ reference
function (see also Figure 2):

m ~AAðxÞ ¼
L Xm�x�r

cl

h i
for x < Xm � r;

1 for Xm � raxaXm þ r;

R x�Xm�r
cr

h i
for x > Xm þ r;

8>>><
>>>:

ð15Þ

with Xm denoting the midpoint, r its radius, and cl , cr
the spread parameters of the monotonously decreas-
ing reference functions (convex fuzzy intervals).

The a-cut ~AAa with a a ð0; 1� of a fuzzy interval ~AA is
defined by

~AAa :¼ fx a R jm ~AAðxÞbag: ð16Þ
Each a-cut represents in case of monotonously de-
creasing reference functions an interval. The lower
~AAa;min and the upper bound ~AAa;max of an a-cut and

its radius ~AAa; r are

~AAa;min ¼ minð ~AAaÞ;

~AAa;max ¼ maxð ~AAaÞ;

~AAa; r ¼
~AAa;max � ~AAa;min

2
:

ð17Þ

The a-cut with a ¼ 1 is called the core of ~AA (see Fig-
ure 2) with coreð ~AAÞ :¼ fx a R jm ~AAðxÞ ¼ 1g, and the
set with a positive membership function is the sup-
port of ~AA, that is suppð ~AAÞ :¼ fx a R jm ~AAðxÞ > 0g.
The membership function can also be constructed on
the a-cuts:

m ~AAðxÞ ¼ sup
a A ð0;1�

a �m ~AAa
ðxÞ: ð18Þ

In this concept fuzzy intervals serve as basic quanti-
ties; their midpoints Xm are considered in the follow-
ing as random variables and their spreads cl , cr de-
scribe the range of the uncertainty about systematic
errors. If one component has random uncertainty
only, then this input quantity only consists of a single
midpoint as core with radius r ¼ 0 and without a
left and right reference function. In contrast to the
probabilistic approach, the membership function of
a fuzzy interval cannot be interpreted in a probabilis-
tic meaning. Therefore the propagation of the sys-
tematic uncertainties has to be modified accordingly
(see Section 3.2). In the fuzzy case, we model the in-
fluence of a systematic component of the uncertainty
on the output quantity y. Figure 3 shows the inter-
pretation of a fuzzy interval in the here presented
approach. The construction of the membership func-
tion can be based on expert knowledge. Each expert
provides a range-of-values (an interval) for a system-
atic error which he considers as realistic. The core of
a fuzzy interval describes the range-of-values where
all experts agree that these values are possible (mostFigure 2: Fuzzy interval and its a-cut.

Figure 3: Interpretation of a fuzzy interval.

71Uncertainty modeling by means of Monte Carlo and fuzzy techniques

Bereitgestellt von | Technische Informationsbibliothek (TIB)
Angemeldet

Heruntergeladen am | 02.02.16 08:50



optimistic case). The support represents the most
pessimistic expert opinion for the range-of-values
for the systematic error. The above described proce-
dure to construct fuzzy intervals is based on the
theory of nested sets, see Nguyen and Kreinovich
(1996) for a detailed explanation and Neumann
(2009) in the context of uncertainty propagation in
parameter estimation, and in the context of hypothe-
sis tests.

3.2. Uncertainty propagation with the extension
principle

The propagation process of the random and system-
atic errors is separated in two parts. Whereas the ran-
dom components are treated with the LOP (GUM,
Chapter 5.2) or with the MC technique (see Section
2), the propagation of the systematic errors is a
range-of-values search problem. The extension prin-
ciple introduced by Zadeh (1965) serves as basic rule
to propagate both types of uncertainty.

Therefore the mapping t : y ¼ f ðzÞ, z a Rn ! y a R
can be extended to the case of fuzzy intervals
~tt : JðRnÞ ! JðRÞ with JðRnÞ the fuzzy intervals
over the real numbers in Rn and JðRÞ the fuzzy in-
tervals in R (Dubois and Prade 1980, p. 37):

~yya;min ¼ min
zi a ½~zzia �

f ðzÞ; ~yya;max ¼ max
zi a ½~zzia �

f ðzÞ; ð19Þ

with

~yya ¼ ½~yya;min; ~yya;max�; m~yyðxÞ ¼ sup
a A ð0;1�

a �m~yyaðxÞ:
ð20Þ

The computation of the membership function for
the measurement results is based on the a-cuts ~zza of
the input quantities, within the optimization problem
of equation (19). The approximate midpoint of the
fuzzy interval for the output quantity ym is

ym ¼ f ðz1m ; z2m ; . . . ; znmÞ ¼ f ðzmÞ: ð21Þ

In general, the solution in equation (21) is only cor-
rect for su‰ciently linear functions f ð�Þ. For practi-
cal applications linear reference functions for the
membership function of the input quantities and a
linear function f ð�Þ are of interest. In these cases, the
propagation process only needs to be applied for the
a-cuts with a ¼ 0 and a ¼ 1.

3.3. Confidence intervals in the fuzzy case

The computation of confidence intervals in the fuzzy-
random approach is also based on the extension prin-
ciple. Let kðZ1;Z2; . . . ;ZnÞ ¼ kðZÞ be a confidence
function for the output quantity Y and the realiza-
tions of the random variables Z are given by fuzzy
intervals ~zz1; ~zz2; . . . ; ~zzn. Then the membership function
m~yyconf ; fuzzy

of the fuzzy confidence interval ~yyconf ; fuzzy for

the output quantity is given by

~yyconf ; fuzzy ¼ ~kkð~zz1; . . . ; ~zznÞ ¼ ~kkð~zzÞ ¼ m~yyconf ; fuzzy
ðyÞ

¼ sup
ðz1;...; znÞ aR1�����Rn

y a kðz1;...; znÞ

minðm~zz1
ðz1Þ; . . . ;m~zznðznÞÞ

Ey a R: ð22Þ

A geometric interpretation of equation (22) for non-
linear functions is di‰cult. In case of su‰ciently
linear functions f ðzmÞ the fuzzy confidence interval
~yyconf ; fuzzy for the output quantity based on equation
(22) is obtained by the combination of both uncer-
tainty components (Kutterer 2002):

~yya; conf ; fuzzy½y� ~yya; r; yþ ~yya; r�

with ~yya; r ¼
~yya;max � ~yya;min

2
: ð23Þ

Whereas the a-level of zero corresponds to the pessi-
mistic case, the optimistic case is obtained for a ¼ 1.
Please note that only the random uncertainty compo-
nents from the input quantities z contribute to the
lower and upper bound of the MC confidence inter-
val ~yyconf ;MC ¼ ½y; y�.

4. Compilation of the GUM, probabilistic,
and fuzzy-random approach

In this section a short compilation of the calculation
steps in the GUM, probabilistic, and fuzzy-random
approach is given. Figure 4 shows a diagram with
the treatment of random and systematic errors of
each technique.

In GUM (the left column of Figure 4) the output
quantity Y (cf. equation (4)) is treated as a random
variable with a specified PDF. The probability func-
tion is assumed (or approximated) to be the normal
(Gaussian) PDF. The probabilistic approach of y is
based on propagating PDFs by numerical MC simu-
lation of the observation model (4) (the middle
column of Figure 4). Only if the assumption is ful-
filled that the PDFs for all random input quantities
X1; . . . ;Xn are full specified, a PDF of the output
quantity Y can be computed numerically. On the ba-
sis of the generated PDF, the expected value EðyÞ
and its uncertainty uMCðyÞ can be determined. The
systematic error as well as the random error are fully
described in the probabilistic approach by means
of PDFs/CDFs. In contrast to the probabilistic ap-
proach, the fuzzy-random approach distinguishes be-
tween random and systematic errors within the un-
certainty propagation process. Whereas the random
component is treated as random variable with, e.g.,
the MC simulations, the systematic component is
propagated as a range-of-value search problem. The
two di¤erent propagation principles of random and
systematic errors in the fuzzy-random approach can
be covered with the so called FRV from Section 3.
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This leads to the uncertainty propagation given in
equation (19).

5. Numerical example for an application to
TLS

In this section a short numerical example for the
comparison of the two approaches from Section 2
and 3 is presented. The aim was to detect the vertical
displacements of the bridge under load, e.g., due to
tra‰c or train crossings (Strübing 2007). For this
reason, a laserscanner of type Leica HDS 4500 was
placed beneath the bridge; the measurements in the
‘‘Profiler Mode’’ span the green plane in Figure 5.
The discrepancies to the standard case of normal dis-
tributed measurements are meaningful by many rea-
sons (see also Section 1). The laserscanner carries
out very fast measurements and the measurements
are influenced by vibrations due to the tra‰c load of
the bridge. The time series of the vertical height ht
of the bridge at the stations 7.28 m and 21.90 m can
be expressed in the local coordinate system of the
laserscanner by the following equation:

ht ¼ st � cosðztÞ; ð24Þ

with the slope distance st and the zenith angle zt,
measured by the laserscanner. The number of mea-
sured epochs q is 100. The vertical displacements wt

of the bridge are obtained by subtracting the mean
height of the bridge from the time series in equation
(24):

wt ¼ ht �
1

q

Xq

t¼1

ht ¼ st � cosðztÞ �
1

q

Xq

t¼1

st � cosðztÞ:
ð25Þ

The equation (25) is evaluated for two points. The
first point 1831 is at station 7.28 m and point 8987
at station 21.90 m (see Figure 5).

5.1. Uncertainties for the measurements and
influence factors

The uncertainty of output quantity yxwt depends
on the following input quantities zi:

� accuracy of the distance (z1, Type A), and its addi-
tional constant (z2, Type B),

� distance depending term for the accuracy of the dis-
tance measurement (z3, Type B),

� spatial direction of incidence angle of the measured
distance under the bridge with respect to the object
surface (z4, Type B),

Figure 4: Comparison of the GUM, the probabilistic, and the fuzzy-random approach.
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� accuracy of the zenith angle (z5, Type A) and the
vertical index error (z6, Type B),

� vertical resolution for the zenith angle (the step
width of the motor) (z7, Type B).

The uncertainties described by the PDF/membership
function for the input quantities zi are given in Table
1. The assumptions for the uncertainties of z1, z5, and
z6 are based on the technical data from the manufac-
turer and for the uncertainties of z2, z3, and z4 on
Schulz and Ingensand (2004) and for z7 on Reshe-
tyuk (2006). The input quantities z3 and z4 have a
correlation of 0:5, according to Koch (2008a). The
numbers 8987 and 1831 in the brackets represent the
point number (see Figure 5). In order to have an
easier representation, each input quantity is modeled
either as random or as systematic. In general the un-
certainty budget of each input quantity may consist
of both a random and systematic component. Please
note that the uncertainties of the input quantities of
z2, z6, and z7 are fully described with their distribu-
tion parameters (in this case the upper limit aþ and
the lower limit a�).

5.2. Specification and discussion of the numerical
results

This study focuses on the comparison of the three
di¤erent techniques to model and propagate the oc-
curring uncertainties in Table 1. The PDFs and the
order of magnitude of the uncertainties from Table 1
are in our opinion realistic regarding typical situa-
tions in the applications. Their description must be
carefully examined in future work, but this is not
part of the paper. First the LOP-technique (accord-
ing to GUM) is used to propagate the uncertainties
(Section 5.2.1). Then the MC- and the fuzzy tech-
nique from Sections 2 and 3 were applied.

5.2.1. Uncertainties obtained by the GUM approach

The propagation process of the uncertainties in the
GUM approach is separated into two steps. In the
first step, the combined uncertainty

u2
ht
¼ ASzzA

T ; ð26Þ

for the vertical height ht of the bridge is computed.

Figure 5: Position of the laserscanner beneath the bridge (Strübing 2007).

Table 1: Uncertainties for the input quantities z.

Input quantity Error component PDF=m~yyðziÞ Type Uncertainty uðziÞ for GUM

z1 random normal A s ¼ 3 mm uðz1Þ ¼ 3 mm
z2 systematic triangular B ðaþ � a�Þ=2 ¼ 3 mm

~zza¼0; r ¼ 3 mm
uðz2Þ ¼ 1:225 mm

z3 random normal B s ¼ 0:2 mm (1831)
s ¼ 0:9 mm (8987)

uðz3Þ ¼ 0:2 mm (1831)
uðz3Þ ¼ 0:9 mm (8987)

z4 random normal B s ¼ 2:6 mm (1831)
s ¼ 7:2 mm (8987)

uðz4Þ ¼ 2:6 mm (1831)
uðz4Þ ¼ 7:2 mm (8987)

z5 random normal A s ¼ 20 mgon uðz5Þ ¼ 20 mgon
z6 systematic triangular B ðaþ � a�Þ=2 ¼ 20 mgon

~zza¼0; r ¼ 20 mgon
uðz6Þ ¼ 8:165 mgon

z7 systematic rectangular B ðaþ � a�Þ=2 ¼ 10 mgon
~zza¼0; r ¼ 10 mgon

uðz7Þ ¼ 5:774 mgon
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The matrices from equation (3) are given by

A ¼

cos zt
cos zt
cos zt
cos zt

�st sin zt

�st sin zt

�st sin zt

2
66666666664

3
77777777775
;

Szz ¼

u2ðz1Þ 0 0 0 0 0 0

0 u2ðz2Þ 0 0 0 0 0

0 0 u2ðz3Þ 0:5uðz3Þuðz4Þ 0 0 0

0 0 0:5uðz4Þuðz3Þ u2ðz4Þ 0 0 0

0 0 0 0 u2ðz5Þ 0 0

0 0 0 0 0 u2ðz6Þ 0

0 0 0 0 0 0 u2ðz7Þ

2
666666666664

3
777777777775
:

ð27Þ

For an easy presentation we assume that the heights
of di¤erent epochs t are uncorrelated and their uncer-
tainties are assumed to be equal. Using the LOP
from equation (26) for equation (25) then leads to:

u2
wt

¼ q� 1

q

� �2

u2
ht
þ ðq� 1Þ

u2
ht

q2

¼ q2 � 2qþ 1 þ ðq� 1Þ
q2

u2
ht

¼ q� 1

q
u2
ht

ð28Þ

for the combined uncertainty u2
wt

of the vertical dis-
placements wt. The uncertainty uwt

using equation
(28) are evaluated regarding to the uncertainties of
the input quantities given in Table 1. We obtain
0.0043 m and 0.0059 m for the points 1831 and
8987, respectively.

5.2.2. Uncertainties obtained by the probabilistic
approach

In the probabilistic approach the random and sys-
tematic components from Table 1 are treated as
having a random nature. In order to compare the
performance of the MC technique to compute the un-
certainties for the output quantities, the statistical
moments of the PDF for every input quantities zi
can be computed either analytically based on the
statistical moments or can be estimated numerically
from the generated MC samples. The analytical mo-
ments of input quantities, which are rectangular or
triangular distributed are evaluated analytically ac-
cording to equation (6) and (9), respectively. The ex-
pected values and variances of the normally distrib-
uted input quantities are given according to a prior
knowledge or expert statements. As above men-
tioned, the statistical moments of all input quantities
are computed also with the aid of generated MC
samples (refer to equations (11) and (12)). The results
are given by Table 2.

The confidence intervals of every input quantity are
computed only by MC simulations (refer to Section
2.2) for g ¼ 5%. We identify 100 000 MC runs as nec-
essary to obtain the estimates of the statistical mo-
ments of the PDF with at least three or four signi-
ficant digits. The same results were numerically
proven in Koch (2008a).

According to Section 2 we obtain the uncertainty and
the confidence interval of the output quantity yxwt

for M ¼ 100 000 runs. The results are given in Table 3.

Comparison of uncertainties, calculated by GUM,
with the result of probabilistic approach for the
points 1831 and 8987, exhibits small di¤erences of
the uncertainty values and confidence intervals. The
confidence bounds for point 8987 is slightly asym-

Table 2: Comparison of the statistical values (expected values, variances and confidence intervals) of the analytical PDF and the
empirical PDF using MC simulations for the input quantities z.

PDF EðziÞ [m or gon] VðziÞ [m2 or gon2] 95% confidence intervalInput
quantity

analytical empirical analytical empirical lower limit upper limit

z1 normal 2.87400000 2.87400001 0.00000900 0.00000918 2.879800 2.868000
z2 triangular 0.00000000 0.00000325 0.00000150 0.00000151 �0.002322 0.0023398
z3 normal 0.00000000 0.00000000 0.00000003 0.00000003 �0.000340 0.0003435
z4 normal 0.00000000 �0.00000001 0.00000670 0.00000674 �0.005021 0.0051029
z5 normal 0.00000000 0.00000000 0.00048400 0.00047041 �0.042459 0.0427390
z6 triangular 14.5240000 14.5239607 0.00006667 0.00006613 14.508000 14.539000
z7 rectangular 0.00000000 �0.00000562 0.00083333 0.00083499 �0.047558 0.047073

Table 3: Uncertainties and confidence interval obtained by the MC-technique.

MC-result Point 1831 (7.28 m) Point 8987 (21.90 m)

ŝsy 4.4 mm 5.9 mm
yconf ;MC ¼ ½y; y� with g ¼ 5% [�8:6 mm, 8.6 mm] [�11:6 mm, 11.7 mm]
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metric due to deviation of the evaluated PDF of the
output quantity from the normal PDF and due to
propagating of the MC samples through the nonlin-
ear observation model. In the probabilistic approach
the systematic component of the uncertainty can be
reduced by repeated measurements. In order to spec-
ify this statement an illustrative example will be help-
ful. In general by a simple computation of the mean
value the variance may be reduced if the measure-
ment process is repeated. For more details, the reader
is referred to Neumann (2009).

5.2.3. Uncertainties obtained by the fuzzy-random
approach

In the fuzzy-random approach the treatment of the
random and systematic components in the propaga-
tion process of the uncertainties is di¤erent to the
probabilistic approach, see Section 3. According to
Section 3 we obtain the systematic uncertainty of
the output quantity yxwt for a ¼ 0 and a ¼ 1 with
equations (17), (19) and (21). The results are given in
Table 4.

The a-level of zero refers to the pessimistic case and
the a-level of one to the optimistic case (see Figure
3). Within the propagation process of the systematic
component, the radius ~zza; r of all random components
zi from Table 1 is zero. In the presented propaga-
tion process a systematic error component cannot
be reduced by repeated measurements. The range-
of-values for the systematic uncertainties cannot be
decreased by mean value computation due to the
mathematic rules of fuzzy theory, see Neumann
(2009). The small systematic error for the Point 1831
is due to the small influence of the systematic errors
of the zenith angle. For the propagation process of
the random components with the methods described
in Section 2, the uncertainty of the input quantities
with a systematic error component are set to zero.

As a result, we obtain the uncertainty and the confi-
dence interval of the output quantity yxwt for
M ¼ 100 000 runs. The results are summarized in
Table 5.

Finally, we obtain the confidence interval for the
fuzzy-random approach with equation (23) for a ¼ 0
and a ¼ 1. The results are shown in Table 6.

In comparison to Table 3 the random component
of the uncertainties of the output quantity in the
fuzzy-random approach are smaller. This is due to
the reason that only the input quantities with a ran-
dom uncertainty component contribute to the ran-
dom uncertainty of the output quantity. These input
quantities which are only a¤ected by systematic un-
certainties were not taken into account in the propa-
gation process of random uncertainties.

In this example the reference value for the vertical
height of the bridge is obtained by the mean value
of the heights from each epoch. As discussed in this
section in the probabilistic approach the systematic
uncertainty component for the output quantity can
be reduced be a mean value computation. In the
fuzzy-random approach the uncertainty of a system-
atic component cannot be reduced by the mean
value computation. This leads to a significant larger
confidence interval in the fuzzy-random approach
from Table 6 in comparison to Table 3. This can es-
pecially be highlighted for the pessimistic case with
a ¼ 1.

5.3. A best and worst case scenario

The last example deals with a case study for di¤erent
magnitudes for the occurring uncertainties. In order
to evaluate the consequences of changing magnitudes
for the uncertainties, two scenarios are computed: A
best case scenario with a small uncertainty of the
input quantity z7 : ðaþ � a�Þ=2 ¼ 20 mgon (the step
width of the motor, see Table 1), and a worst case

Table 4: Rang of values of the systematic uncertainty obtained by the fuzzy technique.

fuzzy result (systematic component) Point 1831 (7.28 m) Point 8987 (21.90 m)

~yya¼1; r ¼ ð~yya¼1;max � ~yya¼1;minÞ=2 0.2 mm 4.8 mm
~yya¼0; r ¼ ð~yya¼0;max � ~yya¼0;minÞ=2 10.3 mm 16.1 mm

Table 5: Random component of the uncertainty obtained by the fuzzy technique.

fuzzy result (random component) Point 1831 (7.28 m) Point 8987 (21.90 m)

ŝsy 3.9 mm 5.4 mm
yconf ;MC ¼ ½y; y� with g ¼ 5% [�7:6 mm, 7.6 mm] [�10:6 mm, 10.7 mm]

Table 6: Confidence interval obtained by the fuzzy technique.

fuzzy result (confidence interval) Point 1831 (7.28 m) Point 8987 (21.90 m)

yconf ; fuzzy ¼ ½y� ~yya¼1; r; yþ ~yya¼1; r� [�7:8 mm, 7.8 mm] [�15:4 mm, 15.5 mm]
yconf ; fuzzy ¼ ½y� ~yya¼0; r; yþ ~yya¼0; r� [�17:9 mm, 17.9 mm] [�26:7 mm, 26.8 mm]
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scenario with high uncertainties of the input quantity
z7 : ðaþ � a�Þ=2 ¼ 50 mgon. The assumption about
the high uncertainties in the worst case scenario are
realistic for very fast measurements of the laser-
scanner (ZollerþFröhlich 2007).

5.3.1. Comparing the probabilistic approach with
the GUM

Figure 6 shows the MC simulations resulting histo-
gram for the best and the worst case scenario with
corresponding theoretical normal fit and the 95%
confidence interval. In the best case scenario, the nu-
merical results of the MC-technique and of the LOP
don’t show any significant di¤erences. In the left part
of Figure 6 the resulting MC PDF of the output
quantity yxwt is compared with the GUM PDF,
which is assumed to be Gaussian. The worst case
scenario is introduced to find out how much the
computed MC PDF and its confidence interval di¤er
from the classical Gaussian PDF and its confidence
interval. A comparison pointed out a significant
di¤erence between the uncertainty calculated by
means of LOP in GUM and by means of MC tech-
niques. The maximum di¤erence in the worst case
scenario is obtained in the confidence interval:
max½jyMC � yGUMj; jyMC � yGUMj� ¼ 1:25 mm. Ad-
ditionally, as we can see from Figure 6, the variation
in the form of both PDFs (numerical MC and Gaus-
sian PDF) is perceivable.

This di¤erence between the GUM and the probabilis-
tic approach is due to the nonlinear observation
model and non-Gaussian PDF of the output quan-
tity. As mentioned before, this di¤erence will not be
significantly in the mean and the variance but rather
in the estimate of the confidence interval. Overall, the
probabilistic approach can be considered as an accu-
rate and reliable approach for evaluating the uncer-
tainty of the output quantities and its confidence

interval, if the PDFs for the input quantities are
known and the observation model (1), which interre-
lates input and output quantities, is nonlinear.

5.3.2. Comparing the fuzzy-random approach with
the GUM

A geometrical interpretation of the systematic error
of the height di¤erence yxwt (output quantity) in
the fuzzy-random approach is given in Figure 7. The
range of values for the systematic error can be seen as
a shift in the distribution of the random component.
For a clear representation the distribution of the
random errors of the output quantity (obtained by
the MC-technique) is shown at the lower and upper
bound of the systematic error. The results for the a-
levels 0 (pessimistic case) and 1 (optimistic case) are
shown. When comparing the results of the fuzzy con-
fidence interval with the results of the GUM one can
clearly see, that the fuzzy confidence intervals are sig-
nificantly larger. This is due to the reason that in the
here presented example the systematic errors domi-
nate the uncertainty budget. The larger the systematic
errors are in comparison to the random errors, the
stronger is the di¤erence between the GUM confi-
dence interval and the fuzzy confidence interval. This
is clearly visible in Figure 7, where the left part shows
the example with the best case scenario and the right
part the worst case scenario. The di¤erence of the
GUM confidence interval and the fuzzy confidence in-
terval is significantly larger in the worst case scenario.

6. Summary and outlook

In this paper, a measurement equation was analyzed
with multidimensional input quantities and a one-
dimensional output quantity. The input quantities
are carrier of random and systematic errors. A prob-
abilistic and a fuzzy-random approach were intro-
duced to handle and to propagate both types of un-

Figure 6: Comparison between the numerically computed MC-PDF and the Gaussian-PDF of the output quantity yxwt, left
the best case scenario with small uncertainties and right the worst case scenario with high uncertainties of the input quantity z7.
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certainties. In the probabilistic approach both types
of errors were handled as having a random nature,
whereas in fuzzy-random approach the propagation
process distinguishes between the random and the
systematic error components. Due to the random
nature in the probabilistic approach, the uncertainty
of the systematic component can be reduced by
averaged/repeated measurements. Therefore, it is a
more optimistic representation of the uncertainties
than in the fuzzy-random approach, where the sys-
tematic component of the uncertainties cannot be
reduced by averaged/repeated measurements due to
the mathematic rules of fuzzy theory.

Three important information can be stated from the
results obtained in the paper: First, in case of strong
di¤erences from a Gaussian PDF for the random
errors, the need for a more sophisticated error propa-
gation process than in the GUM is beneficial. Sec-
ond, the fuzzy-random approach allows to deal with
a pessimistic and optimistic outcome for the uncer-
tainty of the output quantity. Third, both techniques
provide a rigorous consideration of all the informa-
tion contained in a PDF within the propagation
process of the random uncertainties to the output
quantity.

Further work has to deal with an extended discussion
of the presented fuzzy-random approach with input
quantities having both types of uncertainties, a ran-
dom and systematic component. Additionally, the
bias of the output quantity resulting from the evalua-
tion of non-linear functions has to be discussed in
detail, especially in the fuzzy-random approach.
Furthermore, extensions of probabilistic and fuzzy-
random approaches to handle with multidimensional
correlated uncertainties in the input as well as in
the output quantities have to be taken into consider-
ation. Especially, the construction of multidimen-
sional MC- and fuzzy confidence regions needs fur-
ther studies.
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