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1 Introduction

Solitons and instantons are important objects in modern field theory [1–3]. Solitons in

supergravity theories are branes of various dimensions, which describe non-perturbative

states of the underlying string theories or M-theory [4–6]. Branes in turn are sources of

p-form flux fields. They can also wrap various supersymmetric cycles of special holonomy

manifolds [6], and these cycles (which are calibrated submanifolds [7]) are defined, or cali-

brated, via the p-form fluxes. Thus, fluxes play an important role in the compactification

of low-energy string theories and M-theory.
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String vacua with p-form fields along the extra dimensions (“flux compactifications”)

have been intensively studied in recent years (see [8, 9] for a review and references). In

particular, fluxes in heterotic string theories, which play a prominent role in string-theory

model building due to the easy incorporation of the standard-model gauge group, have

been considered e.g. in [10–23]. Heterotic flux compactifications have been known for

quite some time, starting from refs. [24–27] in the mid-1980s. On Calabi-Yau manifolds

the introduction of fluxes partially resolves the vacuum degeneracy problem by giving

masses to problematic moduli, but they lead to non-integrable SU(3)-structures (i.e. with

intrinsic torsion) on the internal compact 6-manifolds. Among these manifolds there are

six-dimensional nearly Kähler and half-flat manifolds [10–14, 20–23].

Heterotic supergravity, as a low-energy effective field theory, preserves supersymmetry

in 10 dimensions precisely if there exists at least one globally defined Majorana-Weyl spinor

ε such that the supersymmetry variations of the fermionic fields (gravitino λ, dilatino φ,

and gaugino ξ) vanish, i.e. the so-called BPS equations

δλ = ∇+ε = 0 , (1.1a)

δψ = γ

(
dφ− 1

2
H

)
ε = 0 , (1.1b)

δξ = γ (FA) ε = 0 (1.1c)

hold, wherein γ(ω) = 1
p!ωi1...ipΓ

i1...ip is the Clifford map for a p-form ω. The bosonic field

content is given by the metric g, the dilaton φ, the 3-form H, and the gauge field A.

Further, ∇+ is a metric compatible connection with torsion H.

The 10-dimensional space is assumed to be a product Mp−1,1×M10−p, where M10−p is

a d = (10− p)-dimensional internal manifold. Then (1.1a) translates into the existence of

an covariantly constant spinor εd on Md. Moreover, a globally defined non-vanishing spinor

exists only on manifolds Md with reduced structure group (i.e. a G-structure), which in

d = 6 amounts to an SU(3)-structure. Then a metric compatible connection, which leaves

ε6 parallel and is also compatible with the SU(3)-structure, always exists, but possibly

has torsion. In other words, a connection with SU(3)-holonomy always exists on SU(3)-

manifolds. As a consequence, manifolds with special holonomy or G-structure are essential

in string theory compactifications. Moreover, G-structures then allow for a (d− 4)-form Ψ

on Md, such that the natural choice for the 3-form flux is H = ?dΨ.

In addition, the curvature FA of a connection A on a gauge bundle has to satisfy

the generalized instanton equation (1.1c). In particular, the instanton equation can be

introduced on any manifold with a G-structure. On manifolds Md with integrable G-

structure, instantons have two crucial features. First, they solve the Yang-Mills equation

(without torsion), and, second, the Levi-Civita connection on TMd already is an instanton.

The BPS equations (1.1) have to be supplemented by the α′-corrected Bianchi identity

dH =
α′

4
[tr (R ∧R)− tr (FA ∧ FA)] (1.2)

– 2 –



J
H
E
P
0
1
(
2
0
1
5
)
0
3
0

due to the Green-Schwarz anomaly cancellation mechanism. Here R is the curvature of

a connection ∇ on the tangent bundle.1 For compactifications with dH 6= 0 one has the

additional freedom to choose a gauge bundle compared to Calabi-Yau compactifications,

wherein the vanishing of dH can be achieved by the “standard embedding” of the spin

connection ∇+ into the gauge connection A, i.e. the gauge bundle is just TMd. However,

the choice of the gauge bundle for dH 6= 0 is restricted by the Bianchi identity and the

instanton equations (which on Kähler manifolds are just the Donaldson-Uhlenbeck-Yau

equations [29–31] that correspond to a stability criterion on holomorphic bundles).

By a theorem of Ivanov [28], a solution to the BPS equations (1.1) and the Bianchi

identity (1.2) satisfies the heterotic equations of motion if and only if the connection ∇ is

an SU(3)-instanton in d = 6. In other words, R and FA are treated on the same footing in a

pure supergravity view, i.e. γ(FA)ε = γ(R)ε = 0. Therefore, in the spirit of [22, 23, 32, 33],

we study the instanton equation (1.1c) for non-integrable SU(3)-structures in order to

provide an important ingredient for full heterotic supergravity solutions.2

The construction of metric cones and sine-cones over manifolds Md with a G-structure

provides a tool to generate and link different G′-structures on (d+1)-dimensional manifolds.

Most prominently, Sasaki-Einstein 5-manifolds generate a Calabi-Yau structure on their

metric cone and a nearly Kähler structure on their sine-cone. A generalization is possible by

means of the notion of hypo geometry, in particular to hypo, nearly hypo and double hypo

SU(2)-structures; see for instance [34]. Double hypo structures lift to nearly Kähler as well

as to half-flat SU(3)-structures on the sine-cone. The described “linking” phenomenon is

well-known from the cases of cylinders, cones and sine-cones over nearly Kähler 6-manifolds,

which lead to different G2-manifolds [35]. Here we use these techniques in order to construct

6-dimensional manifolds with special SU(3)-structures that may be valuable, for example,

in flux compactifications of the heterotic string.

Supergravity in 10 dimensions allows for brane solutions which interpolate between an

AdSp+1 ×M9−p near-horizon geometry and an asymptotic geometry Rp−1,1 × C(M9−p),

where C(M9−p) is a metric cone over M9−p (see e.g. [36, 37] and references therein). These

brane solution in heterotic supergravity with Yang-Mills instantons on the metric cones

C(M9−p) have been considered in [22, 23, 38]. Here, we take the first step to generalize

them by considering sine-cones with nearly Kähler structures as well as cylinders with

half-flat structures instead of metric cones with Kähler structures.

The generalization of Yang-Mills instantons to higher dimensions (d>4) was first pro-

posed in [39] and further studied in [29–31, 40–47] (see also references therein). Some

solutions for d>4 have been found, namely Spin(7)-instantons on R8 in [48, 49] and G2-

instantons on R7 in [50–52]. For generic non-integrableG-structures, the instanton equation

implies the Yang-Mills equation with torsion. However, as shown in [22], on manifolds with

real Killing spinors the corresponding instantons solve the Yang-Mills equation without tor-

sion even if the G-structure has non-vanishing intrinsic torsion. Recently, we constructed

1Different choices for ∇, such as ∇+, are mentioned in [28].
2Choosing a different connection ∇, for example ∇+, the BPS equations together with the Bianchi

identity imply the heterotic equations of motion only up to higher α′-correction. This yields a perturbative

solution in contrast to the exact solution advocated above.
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instantons on Kähler-torsion and hyper-Kähler-torsion sine-cones over Sasakian manifolds

in [53]. In this paper we extend these studies to nearly Kähler sine-cones and half-flat

cylinders over Sasaki-Einstein manifolds.

The outline of the paper is as follows: section 2 is devoted to a review of various

SU(2)-structures, focusing on hypo geometry and investigating the 5-sphere as an example.

Section 3 then provides several cone constructions that link Sasaki-Einstein 5-manifolds to

particular SU(3) 6-manifolds. In section 4 the instanton equations on these 6-dimensional

SU(3)-manifolds are derived, and utilizing a certain ansatz for the gauge connection these

equations are reduced to matrix equations. We derive some particular solutions for these

matrix equations by the choice of a suitable matrix ansatz and discuss their corresponding

gauge field configurations.

2 SU(2)- and SU(3)-structures in 5 and 6 dimensions

2.1 Sasakian structures

We begin by introducing several geometric structures that will become important in the

constructions of this paper. As in [54], an almost contact metric manifold is an odd-

dimensional Riemannian manifold (M2m+1, g) such that there exists a reduction of the

structure group SO(2m + 1) of the bundle of orthonormal frames on TM to U(m). For

such manifolds there exist a 1-form η and a 2-form ω such that η ∧ (ω)m 6= 0. Contact

metric structures are characterized by dη = 2ω in our sign convention.

An almost contact structure is characterized by the Nijenhuis torsion tensor [55] N =

(Nσ
µν). A quasi-Sasakian structure is given by N = 0 and dω = 0. In particular, if dη = αω

with α ∈ R, then the almost contact structure is called α-Sasakian. If α = 2 the structure

is called Sasakian.

Let us now specialize to the 5-dimensional case M5, and let eµ be an orthonormal

coframe with µ = (a, 5) and a = 1, . . . , 4. Sasakian 5-manifolds are endowed with a 1-form

η, 2-form ω, 3-form P , and 4-form Q satisfying the relations

η = −e5 , ω ≡ ω3 =
1

2
η3
ab e

a ∧ eb , ηyω3 = 0 , (2.1a)

P = ω3 ∧ η , Q =
1

2
ω3 ∧ ω3 , (2.1b)

dη = 2ω3 , dP = 4Q . (2.1c)

Here η3
ab are the components of the self-dual ’t Hooft tensors [1], and the contraction of

two forms is defined as ηyω := ∗(η ∧ ∗ω) (see e.g. [56]).

2.2 SU(2)-structures in d = 5

Let M5 be 5-manifold with an SU(2)-structure, i.e. the frame bundle of M5 can be reduced

to an SU(2) principal subbundle. It has been proven in [57] that an SU(2)-structure is

determined by a quadruplet (η, ω1, ω2, ω3) of differential forms, wherein η ∈ Ω1(M5) and

ωα ∈ Ω2(M5) for α = 1, 2, 3. These forms satisfy

ωα ∧ ωβ = 2 δαβQ (2.2)

for the 4-form Q = 1
2 ω

3 ∧ ω3 with η ∧Q 6= 0.
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Moreover, it has been shown in [57] that it is always possible to choose a local or-

thonormal basis e1, . . . , e5 of forms on M5 such that

η = −e5 , ω1 = e23 + e14 , ω2 = e31 + e24 , ω3 = e12 + e34 . (2.3)

By means of the ’t Hooft symbols ηαab, one can express the 2-forms as

ωα =
1

2
ηαab e

a ∧ eb. (2.4)

Here again a, b = 1, 2, 3, 4. Among the SU(2)-structures in 5 dimensions there are sev-

eral types having particularly interesting geometry. We will now recall their definitions

following [34].

Sasaki-Einstein: a Sasaki-Einstein 5-manifold is a manifold carrying an SU(2)-structure

defined by (η, ω1, ω2, ω3), where these forms are subject to

d η = 2ω3 , dω1 = −3 η ∧ ω2 , dω2 = 3 η ∧ ω1 . (2.5)

Hypo: an SU(2)-structure on a 5-manifold is called hypo if

dω3 = 0 , d
(
ω1 ∧ η

)
= 0 , d

(
ω2 ∧ η

)
= 0 (2.6)

holds true. Hypo geometry, therefore, is a generalization of Sasaki-Einstein geometry.

Nearly hypo: an SU(2)-structure on a 5-manifold is called nearly hypo if it satisfies

dω1 = −3 η ∧ ω2 , d
(
η ∧ ω3

)
= 2ω1 ∧ ω1 . (2.7)

Note that any SU(2) structure which satisfies the first two identities of (2.5) is a nearly

hypo structure.

Double hypo: an SU(2)-structure on a 5-manifold is called double hypo if it is hypo and

nearly hypo simultaneously, i.e. if it satisfies (2.6) and (2.7). Thus, the Sasaki-Einstein

5-manifolds are a subset of the double hypo manifolds.

As shown in [57], SU(2)-structures in 5 dimensions always induce a nowhere-vanishing

spinor on M5. This will be generalized Killing if and only if the SU(2)-structure is hypo,

and Killing if and only if the SU(2)-structure is Sasaki-Einstein. In [22] it has been argued

that in the latter case there exists a one-parameter family of metrics

gM5 = e2hδab e
a ⊗ eb + e5 ⊗ e5 (2.8)

which is compatible with an su(2)-valued connection on M5 for which the Killing spinor

is parallel. For the special value exp(2h) = 4/3 the torsion of that connection is totally

antisymmetric and parallel with respect to that connection, i.e. there exists a canonical

su(2) connection. For all values of h however, this connection is an su(2) instanton on

TM5 for the respective SU(2)-structure. For h = 0, M5 is a Sasaki-Einstein manifold and

the torsion components of the canonical connection read

T a =
3

4
Paµνe

µν and T 5 = P5µνe
µν . (2.9)
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2.3 Example: the 5-sphere

We illustrate how different types of SU(2)-structures are embedded into each other with

the example of the 5-sphere written as the homogeneous space S5 = SU(3)/SU(2).

The SU(3)-structure constants can be chosen as

f 6
31 = −f 6

24 = f 7
23 = −f 7

14 = f 8
12 = −f 8

34 =
1

2
√

3
, (2.10a)

f 8
67 = f 7

86 = f 6
78 =

1√
3
, (2.10b)

f 5
12 = f 5

34 = −1

2
, (2.10c)

by using rescaled Gell-Mann matrices as a basis of su(3). The structure constants (2.10) are

completely antisymmetric upon permutation of indices, and all other index combinations

are zero. The Cartan-Killing form is then given by

f C
AD f D

CB = δAB , A,B,C,D ∈ {1, 2, . . . , 8} . (2.11)

As local coframes eµ = (ea, e5) on the coset space we use the images of the left-invariant

1-forms on SU(3) under a pull-back along a section of the SU(2) principal bundle SU(3)→
SU(3)/SU(2). The coset with the structure constants (2.10) is equipped with the Cartan-

Killing metric, which can then be expressed as (a, b, c, d = 1, . . . , 4 and i = 6, 7, 8)

gab = f c
ad f

d
cb + 2f c

a5 f 5
cb + 2f c

ai f
i

cb = δab , (2.12a)

g55 = f c
5d f

d
c5 = δ55 . (2.12b)

The use of left-invariant objects on SU(3) enables us to explicitly compute connection

components from the Maurer-Cartan equation. The connection 1-forms Γµν and the torsion

2-forms Tµ are then given as

deµ = −f µ
iν ei ∧ eν − 1

2
f µ
νσ eν ∧ eσ = −Γµν ∧ eν + Tµ , (2.13)

such that

T σ =
1

2
T σµνe

µ ∧ eν ⇒ T σµν = −f σ
µν . (2.14)

With the Cartan-Killing metric (2.12) one obtains the totally antisymmetric components

Ta5b = −fa5b = f5ab . (2.15)

Note that

de5 = −f 5
ab e

a ∧ eb =
1

2
ω3 , (2.16)

and that SU(3)/SU(2) is endowed with an SU(2)-structure given by e5 and ωα as defined

in (2.3). As a canonical connection on SU(3)/SU(2) we have with the above choices

(c)Γab = fib
a ei = (c)Γaµb e

µ . (2.17)

– 6 –
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Now, we introduce a two-parameter family of SU(2)-structures on S5 by a rescaling of

the su(3) generators. Consider

Ia → Ĩa =
1

β
Ia , I5 → Ĩ5 =

1

γ
I5 , Ii → Ĩi = Ii (2.18)

for (γ, β) ∈ (R \ {0}) × R+. (A change of sign for β does not define a different SU(2)-

structure.) Consequently, the structure constants are changed as follows,

f a
5b → f̃ a

5b =
1

γ
f a

5b , f 5
ab → f̃ 5

ab =
γ

β2
f 5
ab , (2.19a)

f i
ab → f̃ i

ab =
1

β2
f i
ab , f a

ib → f̃ a
ib = f a

ib , (2.19b)

f i
jk → f̃ i

jk = f i
jk . (2.19c)

A rescaling of the generators of su(3) rescales the left-invariant vector fields and 1-forms

accordingly, and this is propagated to the coset via the pullback as used before. In par-

ticular, the rescaled structure constants have to be used in the Maurer-Cartan equation

in order to compute the differentials of the rescaled ẽµ. We can use (2.3) with respect to

the new coframes ẽµ to define a rescaled SU(2)-structure on S5. The differentials of the

defining forms then read

dη̃ = − γ

2β2
ω̃3 , (2.20a)

dω̃1 =
1

γ
η̃ ∧ ω̃2 , (2.20b)

dω̃2 = −1

γ
η̃ ∧ ω̃1 , (2.20c)

dω̃3 = 0 . (2.20d)

Thus, (η̃, ω̃1, ω̃2, ω̃3) is a two-parameter family of hypo SU(2)-structures on S5, as the

conditions (2.6) are satisfied for all values of β and γ. For the value (γ, β) = (−1
3 ,

1
2
√

3
) this

turns out to be nearly hypo additionally, and, as a consequence, at this value the SU(2)-

structure is double hypo. Furthermore, this particular SU(2)-structure is even Sasaki-

Einstein, as we also show by a direct calculation of the Ricci tensor below. Therefore,

the family of SU(2)-structures on S5 does not discriminate between the double hypo and

Sasaki-Einstein property. However, it shows how, by a simple rescaling of the generators

of su(3), one can induce different SU(2)-structure geometries on S5.

Note that there are many possible choices of a Riemannian metric on the coset space.

Among them are the Cartan-Killing metric and the round metric on S5, which we consider

in the following:

Cartan-Killing metric: from the definition (2.11) we obtain

gCK = δab e
a ⊗ eb + e5 ⊗ e5 . (2.21)

– 7 –
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We express this with respect to local frames ẽ adapted to the Sasaki-Einstein SU(2)-

structure (i.e. for (γ, β) =
(
− 1

3 ,
1

2
√

3

)
). Thus, we arrive at

gCK = 12 δab ẽ
a ⊗ ẽb + 9 ẽ5 ⊗ ẽ5 . (2.22)

By means of the Maurer-Cartan equations

dẽµ = −1

2
f̃ µ
νρ ẽν ∧ ẽρ − f̃ µ

iν ẽi ∧ ẽν , (2.23a)

dẽi = −1

2
f̃ i
jk ẽj ∧ ẽk − 1

2
f̃ i
µν ẽµ ∧ ẽν (2.23b)

and demanding the torsion 2-form Tµ to vanish, one obtains

CKΓab = f̃ a
ib ẽi +

1

2
f̃ a
cb ẽc (2.24)

for the connection 1-forms of the Levi-Civita connection induced by the Cartan-Killing

metric on S5 = SU(3)/SU(2). The curvature 2-form

CKRab = d CKΓab + CKΓac ∧ CKΓcb (2.25)

can be computed, and all 2-form contributions proportional to ẽj ∧ ẽk or ẽj ∧ ẽµ vanish due

to the Jacobi identity [58]. Thus, the Ricci tensor reads

CKRicab = f̃ c
ai f̃

i
cb +

1

4

(
f̃ 5
ac f̃

c
5b + f̃ c

a5 f̃ 5
cb

)
=

9

2
δab , (2.26)

CKRic55 =
1

4
f̃ c

5d f̃
d

c5 =
9

4
, CKRica5 = 0 . (2.27)

This shows that the choice of structure constants (2.10) yields an α-Sasakian manifold with

α = −1
2 (cf. equation (2.20) for γ = β = 1), but not an Einstein space.

Round metric: using again the local coframes ẽ adapted to the Sasaki-Einstein struc-

ture, the metric induced by stereographic projection from the ambient R6 reads

grnd = δab ẽ
a ⊗ ẽb + ẽ5 ⊗ ẽ5 = δµν ẽ

µ ⊗ ẽν . (2.28)

Employing the Koszul formula for the round metric and the coframes ẽµ, one can calculate

the Christoffel symbols of the Levi-Civita connection to be

rndΓρµν =
1

2
f̃ ρ
µν − 2 f̃ ρ

(µ ν) . (2.29)

As before, the computation of the Ricci tensor is straightforward, and the result for this

case is

rndRicµν = 4 (grnd)µν = 4 δµν . (2.30)

Hence, the 5-sphere endowed with the round metric is an Einstein space with Einstein

constant 4, just as expected.

– 8 –
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2.4 SU(3)-structures in d = 6

As pointed out in the introduction, one of our goals is the construction of SU(3)-structures

on 6-dimensional manifolds. Therefore, we introduce these structures and their characteri-

zation via intrinsic torsion classes. In a manner similar to subsection 2.2, an SU(3)-structure

on a 6-manifold M6 is given by a reduction of the frame bundle to an SU(3) subbundle.

An SU(3)-structure on a 6-dimensional manifold M6 is characterized in terms of a triple

(J, ω,Ω), where J is an almost complex structure, ω a (1, 1)-form, and Ω a (3, 0)-form with

respect to J . These are subject to the algebraic relations

ω ∧ Ω = 0 , (2.31a)

Ω ∧ Ω̄ = − 4i

3
ω ∧ ω ∧ ω . (2.31b)

The compatible Riemannian metric is determined by ω(·, ·) = g(J(·), ·), and the (3, 0)-form

can be split into its real and imaginary part, i.e. Ω = Ω+ + i Ω−. By an appropriate choice

of a local frame, these forms can always be brought into the form

ω = e1 ∧ e2 + e3 ∧ e4 + e5 ∧ e6 and Ω = (e1 + ie2) ∧ (e3 + ie4) ∧ (e5 + ie6). (2.32)

For SU(3)-structures in 6 dimensions, there exist several types of such structures

with different geometric behavior, which is mostly governed by the differentials dω and

dΩ. SU(3)-structures in 6 dimensions have been classified in terms of their five intrin-

sic torsion classes [59]. These are encoded in the differential of the defining forms in the

following manner:

dω =
3

2
Im
((
W+

1 − iW−1
)

Ω
)

+W3 +W4 ∧ ω , (2.33a)

dΩ =
(
W+

1 + iW−1
)
ω ∧ ω +

(
W+

2 + iW−2
)
∧ ω + Ω ∧W5 . (2.33b)

Here W±1 are real functions, W4 and W5 are real 1-forms, W±2 are the real and imaginary

part of a (1, 1)-form, respectively, and W3 is the real part of a (2, 1)-form. Note that both

W2 and W3 are primitive forms [8], i.e.

ωyW2 = 0 and ωyW3 = 0. (2.33c)

The Nijenhuis tensor gives rise to the componentsW1 andW2; thus, the almost complex

structure J of any SU(3)-structure with non-vanishing W1 or W2 is non-integrable.

To finish this section, let us list the structures of particular relevance to us.

Kähler-torsion: on any almost Hermitian manifold (M, g, J) there exists a unique con-

nection preserving this structure and having totally antisymmetric torsion [60]. This con-

nection is called the KT connection or Bismut connection [61]. Kähler-torsion (KT) 6-

manifolds are characterized by its torsion, which is given by

T = J dω (2.34)
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and which is the real part of a (2, 1)-form. From [60] one can see that KT manifolds are

complex manifolds, i.e. they enjoy

W±1 = W±2 = 0 . (2.35)

Note that in general their structure group is U(3) rather than SU(3), as they are a subclass

of almost Hermitian structures. However, they may reduce to an SU(3)-structure that is

contained in the U(3)-structure.

Calabi-Yau-torsion: if the KT connection is traceless, its holonomy is SU(3) instead of

U(3) and, therefore, the structure group is reduced to SU(3). Conversely, if one is given an

SU(3)-structure (g, ω,Ω) on M6, this is always contained in the almost Hermitian structure

defined by (g, ω). The KT connection of the latter then comprises an SU(3) connection

for the SU(3)-structure if and only if its U(1) part vanishes on the SU(3) subbundle. This

can be written as a further condition on their torsion classes of the SU(3)-structure under

consideration (see, e.g. [62]), which reads

2W4 +W5 = 0 , (2.36)

without restricting W3. SU(3)-structures that are compatible with the KT connection of

their almost Hermitian structure in this sense are called Calabi-Yau-torsion (CYT). Hence,

CYT manifolds form a subset of KT manifolds, but with SU(3) structure group.

Nearly Kähler: an SU(3)-structure on a 6-manifold is nearly Kähler if

W+
1 = W±2 = W3 = W4 = W5 = 0 . (2.37)

Note that, in general, one does not need a vanishing W+
1 , but this can be achieved by

suitable phase-transformation in Ω.

Half-flat: an SU(3)-structure on a 6-manifold which satisfies

W+
1 = W+

2 = W4 = W5 = 0 (2.38)

is called half-flat.

Note that generic nearly Kähler and half-flat 6-manifolds have a non-integrable almost

complex structure J and that nearly Kähler manifolds are a subclass of half-flat manifolds.

3 Cylinders and sine-cones over 5-manifolds with SU(2)-structure

Cylinders, metric cones, and sine-cones represent a tool for constructing (n+1)-dimensional

G′-structure manifolds starting from n-dimensional G-structure manifolds with G ⊂ G′.

At first, we review the well-known Calabi-Yau cone and the previously presented Kähler-

torsion sine-cone [53] for completeness. Next, we focus on the nearly Kähler sine-cone and

the half-flat cylinder, which will provide the stage for the instanton equations considered

in this paper.
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First, let us assume we are given a 5-dimensional manifold M5 with an SU(2)-structure

defined by (η, ωα) and a Riemannian metric g5. These tensor fields induce global tensor

fields on the Cartesian product M × I, where I is an interval. Due to the properties (2.3)

of the SU(2)-structure on M5, around every point of M×I, there is a local frame such that

η = −e5 , ωα =
1

2
ηαab e

a ∧ eb and dr = e6 , (3.1)

if r is the natural coordinate on the interval I. Next, we can apply transformations to

these local frames; for example, perform a transformation like

eµ 7→ φ(r) eµ and e6 7→ e6 , (3.2a)

changing the metric on M5 × I to the warped-product metric

g = dr2 + φ(r)2 g5 on M5×φI . (3.2b)

Still, the forms (φ η, φ2 ωα, dr) will have the same components as in (3.1) with respect to

the altered frames.

Afterwards, one still has the freedom of further transformations. These need to map

one SU(2)-structure to another, which means that the defining forms need to have the stan-

dard components (2.3) with respect to the new frame. In addition, those transformations

can be chosen to preserve the warped-product metric. In other words, these admissible

transformations are given by maps from M5 × I to the normalizer subgroup of SU(2) in

GL(6,R) (or SO(6) if one wants to preserve g), i.e.

L : M5 × I → NGL(6,R)(SU(2)) . (3.3)

The crucial statement is that if we are given a set of forms (η, ωα) on M5 × I such that

around every point in M5× I there is a local frame with respect to which (3.1) holds true,

the forms defined by

ω = ω3 − η ∧ dr , (3.4a)

Ω+ = − ω1 ∧ dr + ω2 ∧ η , (3.4b)

Ω− = − ω2 ∧ dr − ω1 ∧ η (3.4c)

take the standard components (2.32) with respect to these local frames and, therefore,

define an SU(3)-structure on M5 × I. Note that ω and Ω are globally well-defined, simply

because η and the ωα are.

This provides us with a general way to construct SU(3)-structure manifolds in 6 di-

mensions. Namely we push a given SU(2)-structure on M5 forward to M5 × I and apply

transformations such that we still are given forms with components (3.1). Then we know

that there exists an extension to an SU(3)-structure given by (3.4). In the following sub-

sections we apply this procedure in several cases.
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3.1 Calabi-Yau metric cones

One result that makes Sasaki-Einstein manifolds interesting for string theorists as well

as mathematicians is that their metric cones are Calabi-Yau. Here we demonstrate this

explicitly for the 5-dimensional case. Consider a Sasaki-Einstein 5-manifold M5 with local

coframes eµ, where µ = (a, 5) and a = 1, 2, 3, 4. The metric on its metric cone reads

g = r2
(
δab e

a ⊗ eb + e5 ⊗ e5
)

+ dr ⊗ dr = r2
(
δab e

a ⊗ eb + e5 ⊗ e5 + e6 ⊗ e6
)

(3.5)

with

e6 = dτ =
dr

r
. (3.6)

The last equality in (3.5) displays the conformal equivalence to the cylinder over M5 with

the metric

gcyl = δab e
a ⊗ eb + e5 ⊗ e5 + e6 ⊗ e6 . (3.7)

We can introduce an almost complex structure J on the metric cone via

JΘ̂α = iΘ̂α for α = 1, 2, 3 with Θ̂α = ê2α−1 + iê2α , (3.8)

and we set êµ̂ = reµ̂ for µ̂ = 1, . . . , 6. The SU(3)-structure forms (ω̂, Ω̂) have the local

expressions

ω̂ = ê1 ∧ ê2 + ê3 ∧ ê4 + ê5 ∧ ê6 = r2(ω3 + e5 ∧ e6) , (3.9a)

Ω̂ = Θ̂1 ∧ Θ̂2 ∧ Θ̂3 , (3.9b)

for which a direct computation yields

dω̂ = 0 and dΩ̂ = 0 . (3.10)

Therefore, the metric cone introduced in (3.5) is indeed Calabi-Yau as all SU(3)-torsion

classes vanish.

3.2 Kähler-torsion sine-cones

Consider a Sasaki-Einstein 5-manifold M5 and the product manifold M6 = M5 × (0,Λπ)

with the metric

g = Λ2 sin2ϕ
(
δab e

a ⊗ eb + e5 ⊗ e5
)

+ dr ⊗ dr (3.11a)

= Λ2 sin2ϕ
(
δab e

a ⊗ eb + e5 ⊗ e5 + e6 ⊗ e6
)
, (3.11b)

where

ϕ =
r

Λ
and e6 = dτ =

dϕ

sinϕ
, (3.12)
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and Λ ∈ R+ is a scaling parameter. Equation (3.11b) shows that the metric on the sine-cone

is conformally equivalent to the metric (3.7) on the cylinder over M5.

The explicit solution of τ = τ(ϕ) is computed to

τ = ln
∣∣∣tan

ϕ

2

∣∣∣+ constant , (3.13)

and the integration constant can be chosen such that the sine-cone becomes the metric

cone in the limit Λ→∞. Hence, the computation yields

τ(ϕ) = ln

(
2Λ tan

ϕ

2

)
= ln

(
2Λ

√
1− cosϕ

1 + cosϕ

)
. (3.14)

Next, we introduce an almost complex structure J and the associated fundamental

(1, 1)-form ω̃ on the sine-cone as follows (α = 1, 2, 3):

JΘ̃α = iΘ̃α with Θ̃α = Λ sinϕ
(
e2α−1 + ie2α

)
, (3.15a)

JΘ̃ᾱ = −iΘ̃ᾱ with Θ̃ᾱ = Θ̃α , (3.15b)

ω̃ = Λ2 sin2ϕ
(
ω3 + e5 ∧ e6

)
, (3.15c)

where ω3 is defined in (2.3). As shown in [53], the above structure comprises a Kähler-

torsion structure on the sine-cone. That is, there exists the uniquely defined Bismut ∇B

connection, which preserves g and J , and has torsion given by

TB = J dω̃ . (3.16)

Remarks: one can also introduce a globally well-defined complex (3, 0)-form Ω̃ defined as

Ω̃ = Θ̃1 ∧ Θ̃2 ∧ Θ̃3 = Λ3 sin(ϕ)3
(
ω2 − iω1

)
∧ η − Λ2 sin(ϕ)2

(
ω1 + iω2

)
∧ dr . (3.17)

Applying the exterior differential yields

dω̃ = 2
cosϕ− 1

Λ sinϕ
ω̃ ∧ ẽ6 = − 2

Λ
tan

ϕ

2
ω̃ ∧ ẽ6 , (3.18a)

dΩ̃ = 3
1− cosϕ

Λ sinϕ
Ω̃ ∧ ẽ6 =

3

Λ
tan

ϕ

2
Ω̃ ∧ ẽ6 , (3.18b)

thus rendering the sine-cone over M5 an SU(3)-structure manifold as defined in section 2.4.

From (3.18) we immediately see that J is integrable and

2W4 +W5 = − 1

Λ
tan

ϕ

2
ẽ6 6= 0 for Λ <∞ , (3.19)

whence the Bismut connection does not preserve the SU(3)-structure unless Λ =∞. Nev-

ertheless, the condition 3W4 + 2W5 = 0 is satisfied, which is in agreement with the confor-

mal equivalence between the sine-cone over a Sasaki-Eintein 5-manifold and the Calabi-Yau

metric cone over M5 [59, 63]. That is, the conformal equivalence of the Calabi-Yau cone and

the Kähler torsion sine-cone also maps their two SU(3)-structures onto one another. We

also note that 2W4 + W5 → 0 as Λ → ∞, and the KT sine-cone becomes the Calabi-Yau

metric cone. Recall from section 2.4 that Kähler-torsion structures are U(3)-structures,

whence one has to distinguish between this and the additional SU(3)-structure.
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3.3 Nearly Kähler sine-cones

In [34] a nearly Kähler structure on the sine-cone over a Sasaki-Einstein 5-manifold has

been obtained by means of flow equations. Here, in contrast, we show that this structure

can be constructed by means of a combined rotation and rescaling of the coframes of the

cylinder over the Sasaki-Einstein 5-manifold. We will carry this construction out in the

following three steps:

1. An SU(3)-structure on the cylinder over a Sasaki-Einstein 5-manifold M5 can be

introduced via a metric (3.7), an almost complex structure J or the equivalent (1, 1)-

form ω, and a (3, 0)-form Ω. These objects are

ω = ω3 + e5 ∧ e6 = e1 ∧ e2 + e3 ∧ e4 + e5 ∧ e6 , (3.20a)

JΘα = iΘα for Θα = e2α−1 + ie2α with α = 1, 2, 3 , (3.20b)

Ω = Θ1 ∧Θ2 ∧Θ3 = −ω2 ∧ e5 − ω1 ∧ e6 + i
(
ω1 ∧ e5 − ω2 ∧ e6

)
. (3.20c)

2. Next, we consider an SO(5)-rotation of the SU(2)-structure (η, ωα) on M5. Let η2

be the matrix of the ’t Hooft symbols η2
ab and perform a rotation of the basis 1-forms

e1, . . . , e4,

E =


e1

e2

e3

e4

 7→ Eϕ = exp
(ϕ

2
η2
)
E =


cos ϕ2 0 − sin ϕ

2 0

0 cos ϕ2 0 sin ϕ
2

sin ϕ
2 0 cos ϕ2 0

0 − sin ϕ
2 0 cos ϕ2



e1

e2

e3

e4

 .

(3.21)

In the rotated frame (eaϕ, e
5) we define the SU(3)-structure forms to have the same

components as in the unrotated frame (3.20), i.e.

ωϕ = ω3
ϕ + e5 ∧ e6 , (3.22a)

Ωϕ = −ω2
ϕ ∧ e5 − ω1

ϕ ∧ e6 + i
(
ω1
ϕ ∧ e5 − ω2

ϕ ∧ e6
)
, (3.22b)

where ωαϕ = 1
2η

α
µνe

µν
ϕ . Note that this is still an SU(3)-structure on the cylinder,

because the defining forms still have the standard components (3.20) with respect to

the coframes eµϕ.

3. Last, the pullback to the sine-cone Cs(M
5) along the map establishing the conformal

equivalence to the cylinder yields

eas = Λ eaϕ sinϕ , e5
s = Λ e5 sinϕ , e6

s = Λ e6 sinϕ = Λ dϕ = dr , (3.23a)

ωαs = Λ2 ωαϕ sin2ϕ , ωs = ω3
s + Λ2 e5 ∧ e6 sin2ϕ , (3.23b)

Ωs = Λ3 Ωϕ sin3ϕ (3.23c)

as an SU(3)-structure on the sine-cone. By a direct calculation we obtain

dωs = − 3

Λ
Ω+
s , (3.24a)

dΩ+
s = 0 , dΩ−s =

2

Λ
ωs ∧ ωs , (3.24b)

which confirms that (3.23) induces a nearly Kähler structure on the sine-cone.
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Remarks: in the limit Λ → ∞, in which the sine-cone becomes the metric cone, this

nearly Kähler structure on the sine-cone is smoothly deformed to the Calabi-Yau structure

on the metric cone since

lim
Λ→∞

dωs = 0 and lim
Λ→∞

dΩs = 0 . (3.25)

Generically, the sine-cone, as a conifold, has two singularities at ϕ = 0 and ϕ = π. As

we see from (3.23), the SU(3)-structure cannot be extended to the tips, because all defining

forms vanish at these points. Hence, the sine-cone is a nearly Kähler manifold only for

ϕ ∈ (0, π), and one cannot add the singular points.

3.4 Half-flat cylinders

Consider a 5-dimensional manifold M5 endowed with a Sasaki-Einstein SU(2)-structure

defined by (η, ω1, ω2, ω3) as in section 2. For an arbitrary coframe eµ belonging to the

SU(2)-structure, consider the transformation

e1
z = e4 cos ζ + e3 sin ζ , e2

z = − e1 , (3.26a)

e3
z = e2 , e4

z = e3 cos ζ − e4 sin ζ , (3.26b)

e5
z = % e5. (3.26c)

Here ζ ∈ [0, 2π] and ρ ∈ R+ are two constant parameters. For % = 1 this can be seen

to be an SO(5)-transformation of the coframe, such that the metric on M5 is unchanged.

Nevertheless, we obtain a two-parameter family of SU(2)-structures on M5 by defining

ηz = % η, ωαz =
1

2
ηαµν e

µ
z ∧ eνz , gz = δµν e

µ
z ⊗ eνz . (3.27)

These are globally well-defined as can be seen from

ω1
z = − ω3 , (3.28a)

ω2
z = ω1 sin ζ + ω2 cos ζ , (3.28b)

ω3
z = ω1 cos ζ − ω2 sin ζ , (3.28c)

and, thus, yield a two-parameter family of SU(2)-structures on M5. Note that these struc-

tures are neither hypo nor nearly hypo any more.

With these SU(2)-structures on M5 at hand we define a two-parameter family of

SU(3)-structures on the metric cylinder (M5 × R, ḡz = gz + dr ⊗ dr) by

ωz = ω3
z − ηz ∧ dr = ω1 cos ζ − ω2 sin ζ − % η ∧ dr , (3.29a)

Ω+
z = − ω1

z ∧ dr + ω2
z ∧ ηz = %

(
ω1 sin ζ + ω2 cos ζ

)
∧ η + ω3 ∧ dr , (3.29b)

Ω−z = − ω2
z ∧ dr − ω1

z ∧ ηz = −
(
ω1 sin ζ + ω2 cos ζ

)
∧ dr + %ω3 ∧ η , (3.29c)

which yields a two-parameter family of half-flat SU(3)-structures. The non-vanishing tor-

sion classes can be computed to read

W−1 =
3 + 2%2

3%
, W−2 =

4%2 − 3

3%

(
ω3
z + 2 ηz ∧ dr

)
and

W3 =
2%2 − 3

2%

(
ω1
z ∧ dr + ω2

z ∧ ηz
)
.

(3.30)
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Structure on M5 Cone construction Structure on M6 Non-zero torsion classes

Sasaki-Einstein cone Calabi-Yau −−
sine-cone Kähler-torsion

sine-cone with rotation nearly Kähler W−1

cylinder with rotation half-flat W−1 ,W
−
2 ,W3

Table 1. Summary of cone constructions linking Sasaki-Einstein to U(3) or SU(3)-structures in

d = 6 and the non-zero torsion classes for the respective SU(3)-structures.

Furthermore, the conditions ωzyW
−
2 = 0 and ωzyW3 = 0 are satisfied for any values of the

parameters ζ and %.

3.5 Summary of cone constructions

The different cone constructions linking Sasaki-Einstein to U(3) or SU(3) 6-manifolds,

which have been presented in [53] and this paper, are summarized in table 1.

4 Instantons on conical 6-manifolds

4.1 Definition and reduction of instanton equations on conical 6-manifolds

Having constructed several 6-dimensional SU(3) manifolds in the last section, we now turn

our attention to instanton equations on such spaces. Thus, let M6 be a 6-manifold with a

connection A on the tangent bundle. The curvature 2-form F associated to A is given by

F = dA+A ∧A =: DAA , (4.1)

where DA is the covariant differential associated to A, and the Bianci identity DAF = 0

holds true. As before, we can perform the type-decomposition of a form with respect to

any almost complex structure J , yielding

F = F2,0 + F1,1 + F0,2 . (4.2)

For a given SU(3)-structure (ω,Ω) on a 6-manifold and a curvature 2-form F , the instanton

equation can be defined in two steps: first, the pseudo-holomorphicity condition reads

Ω ∧ F = 0 ⇔ F0,2 = 0 , (4.3a)

and, second, applying the covariant differential to (4.3a), and using the Bianchi identity as

well as (4.3a) yields

dΩ ∧ F =
[(
W+

1 + iW−1
)
ω ∧ ω +

(
W+

2 + iW−2
)
∧ ω
]
∧ F = 0 . (4.3b)

The last equation, although a mere consequence of (4.3a), depends strongly on the type of

SU(3)-manifold under consideration. For example, on nearly Kähler manifolds one has

dΩ ∝ ω ∧ ω (4.3b)
====⇒ ω ∧ ω ∧ F = 0 ⇔ ωyF = 0 , (4.4)
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whereas on half-flat SU(3)-manifolds this is not true as dΩ 6= κω ∧ ω. For Calabi-Yau

spaces, on the other hand, (4.3b) is trivial as dΩ = 0, and the condition ωyF = 0 is added

as an additional stability condition for the holomorphic instanton bundle [29–31].

Following [64], one considers a complex vector bundle V →M6 of rank k on which we

are given an instanton Γ with curvature RΓ. Here this vector bundle will be the tangent

bundle of 6-manifolds arising as certain conical extensions of SU(2) 5-manifolds M5, just

as we considered in the previous section. We then generalize this instanton Γ by extending

it to a connection A with curvature F by the ansatz

A = Γ +Xµe
µ and F = dA+A ∧A , (4.5)

where µ = 1, . . . , 5 and

Γ = ΓiÎi , i = 6, 7, 8 . (4.6)

Here Îi is a representation of the SU(2)-generators Ii on the fibres R6 of the bundle, and

Γi are the components of an su(2)-connection on the tangent bundle of M6. Furthermore,

Xµ are matrices from End(R6).

The computation of F with the ansatz for A yields

F = RΓ + dXµ ∧ eµ + Tµ6νXµe
6 ∧ eν +

1

2

(
[Xµ, Xν ] + T σµνXσ

)
eµ ∧ eν

+ Γi
(

[Îi, Xµ]− fνiµXν

)
∧ eµ .

(4.7)

Herein, T denotes the torsion of the connection Γ.

In order to simplify this further, we investigate the matrices Xµ and their transforma-

tion behavior under a change of e. By construction, Xµe
µ is the local representation of

an Ad-equivariant 1-form X on the gauge principal bundle, which here coincides with the

SU(3)-subbundle P of the frame bundle of M6 that constitutes the SU(3)-structure. Note

that, in the aforementioned cases, P contains a principal SU(2)-subbundle Q; the latter is

the principal bundle for the connection Γ. Now let e and e′ be two local sections of Q ⊂ P
over some U ⊂ M6 related by an SU(2)-transformation L : U → SU(2). The components

X ′µ and Xµ of X with respect to e′ and e are related via

X ′µ = Ad(L−1) ◦Xν ρ(L)νµ . (4.8)

Here ρ is the representation of SU(2) on R5 which is the typical fiber of TM5. It coincides

with the representation AdSU(3) : SU(2)→ End(m), where su(3) = su(2)⊕m and one has

the identification m ' TxM5.

Since we will search for su(3)-valued connections A, we consider the su(3)-generator

algebra

[Îi, Îj ] = f k
ij Îk , i, j, k = 6, 7, 8 (4.9a)

[Îi, Îµ] = f ν
iµ Îν , µ, ν = 1, 2, 3, 4, 5 (4.9b)

[Îµ, Îν ] = f i
µν Îi + f σ

µν Îσ; . (4.9c)
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The generators with indices i, j, k belong to the su(2) subalgebra, and the indices µ, ν, σ

correspond to its orthogonal complement m in the SU(2)-invariant splitting

su(3) = su(2)⊕m . (4.10)

Generically, only X is well-defined globally, rather than the component maps Xµ.

The latter strongly depend on the choice of the local frame e and, therefore, we have no

control over their behavior in general. That would be different, if the components Xµ were

independent of the trivialization of the involved bundles, that is, if the Xµ were invariant

under the aforementioned transformations (4.8) that change the local frames. Furthermore,

since SU(2) is connected, this is equivalent to the infinitesimal version of the invariance, i.e.

[Îi, Xµ] = ρ∗(Ii)
ν
µXν = f ν

iµ Xν . (4.11)

Note that this simplification implies that the Xµ are independent of the choice of frame

adapted to the SU(2)-structure Q; hence, we can choose them to vary with the cone

direction only. Condition (4.11) appeared, for example, in [65, 66] on coset spaces, where

equivariant connections have been constructed. We will in the following refer to (4.11) as

the equivariance condition, despite its different origin in this context.

Inserting this simplification and the accompanying consistency condition (4.11)

into (4.7), we are left with

F = RΓ +
(
Ẋµ + T ν6µXν

)
e6 ∧ eµ +

1

2

(
[Xµ, Xν ] + T σµνXσ

)
eµ ∧ eν . (4.12)

Here the dot denotes the derivation in the cone direction. In any case, the instanton

condition is the requirement that the 2-form part of F takes values in a certain subbundle

of Λ2T ∗M6, which we call the instanton bundle. Anticipating that 2-forms of the general

form e6∧eσ+ 1
2N

σ
µνe

µ∧eν , with N to be determined from the geometry under consideration,

are local sections of this instanton bundle, we add a zero to the above expression and obtain

F = RΓ +
(
Ẋµ + T ν6µXν

) (
e6 ∧ eµ +

1

2
Nµ
σρ e

σ ∧ eρ
)

+
1

2

(
[Xµ, Xν ] + T σµν Xσ −Nσ

µν

(
Ẋσ + T ρ6σXρ

) )
eµ ∧ eν .

(4.13)

As argued above, RΓ and the second term already are instantons. Thus, we are left to

require that the last term satisfies the instanton equation; this leads us to

[Xµ, Xν ] + T σµνXσ = Nσ
µν

(
Ẋσ + T ρ6σXρ

)
+Nµν , (4.14)

where N has to be an instanton on M6 that compensates for the su(2)-component of

the left-hand-side commutator. Hence, N can only be a linear combination of the three

instantons [22] f i
µν eµ ∧ eν for i = 6, 7, 8, which depends on the cone coordinate. That is,

[Xµ, Xν ] + T σµνXσ = Nσ
µν

(
Ẋσ + T ρ6σXρ

)
+ f i

µν Ni . (4.15)

In summary, we are searching for m-valued matrices Xµ that solve equations (4.11)

and (4.15), as these will give rise to new instantons on the considered manifolds.
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P

P ′

defines instantons via Ω′ ∧ F = 0 and dΩ′ ∧ F = 0

Q

Q′

RL

e

RL ◦ e

ΓP su(2)-valued here

M5×φI

π

F
(
T (M5×φI)

)

Figure 1. A schematic depiction of the different principal bundles involved in the definition of the

instanton condition: Q and P are the SU(2)- and SU(3)-bundles, respectively, which originate from

the Sasaki-Einstein structure on M5. The transformation L defines the principal bundles Q′ and

P ′, which again are SU(2) and SU(3)-bundles, respectively. All bundles under consideration are

understood as principal subbundles of the frame bundle F (T (M5×φI)).

4.2 Remarks on the instanton equation

Before proceeding with the particular cases of the nearly Kähler sine-cone and the half-flat

cylinder, one needs to clarify an important point regarding the transformations of coframes

mentioned in section 3.

The SU(2)-structure on the Sasaki-Einstein 5-manifold is understood as an SU(2)-

principal bundle Q, a subbundle of the frame bundle F (TM5). The warped product

M5×φI (cf. (3.2)) is equipped with an SU(3)-structure via (3.4) and the corresponding

principal bundle is denoted with P ⊂ F (T (M5×φI)) (cf. figure 1). However, P is not the

SU(3)-structure one is interested in, i.e. in our cases it is neither nearly Kähler nor half-

flat. The constructions of subsections 3.3 and 3.4 rely on transformations of the coframes

on M5: they generate a different SU(2)-structure Q′ that can be extended to the desired

SU(3)-structure P ′ on the warped product. An important observation is the following: for

a G-structure Q the bundle Q′ defined via Q′ = RLQ is a G-structure if and only if L is a

map from the base to the normalizer NGL(6,R)(G), cf. (3.3).

The crux of the instanton equation is the following: the defining forms (ω′,Ω′) stem

from P ′, whereas the canonical connection ΓP belongs to Q and is trivially lifted to an in-

stanton on P. Let us denote by e ∈ Γ(U,Q) an adapted frame for Q. Then by construction

e′ =: (RL ◦ e) ∈ Γ(U,Q′) is an adapted frame for Q′. By standard results, the connection
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1-forms of A transform under a change of section as

e′
∗A = Ad(L−1) ◦ e∗A+ L−1dL . (4.16)

The employed extension A = ΓP +X relies on the splitting (4.10) such that X corresponds

to m-valued 1-forms. However, this only holds in the frame e, due to the following: starting

with ΓP on Q, one has a purely su(2)-valued connection. Applying any transformation L

to Q, ΓP is generically not an su(2)-valued connection on Q′. This is due to the fact

that L−1dL, in general, takes values in the Lie-algebra of NGL(6,R)(SU(2)) instead of su(2).

Therefore, one cannot simply take e′∗ΓP as an starting point for some ansatz like e′∗A =

e′∗ΓP +X ′µe
′µ.

For the cases under consideration, L depends (at most) on the cone direction r. Hence,

one has that Ad(L−1) ◦ e∗A is su(2)-valued and L−1dL ∝ dr, but generically not su(2)-

valued. The immediate consequences are the following:

• For instance, on the nearly Kähler sine-cone one has to perform all calculations in

the frame e, because for the derivation of subsection 4.1 we employed a section of

the bundle on which ΓP is an su(2)-valued connection. We will, however, compute

e′∗ΓP explicitly in subsection 4.3.2 and demonstrate that it yields an su(3)-valued

instanton on the sine-cone.

• In contrast, the transformation for the half-flat cylinder (3.26) is, although a 2-

parameter family, base-point independent. Therefore, one is allowed to consider the

frames e as well as e′ for this instanton equation, as e∗ΓP and e′∗ΓP are su(2)-

valued connection 1-forms. However, this raises the question whether the two ex-

tensions Xµe
µ and X ′µe

′µ are in any sense comparable. Unfortunately, the coframe-

transformations are only required to be NGL(6,R)(SU(2))-valued, which implies that

the m-piece will, in general, not be mapped into m or even su(3). Hence, one cannot

simply compare both extensions, but it is admissible to consider both cases.

In summary, these remarks were not relevant for the cases studied for example in [22, 64]

or our earlier results [53], because the construction of the G-structures on the warped

product M5×φI followed immediately from the chosen frame on M5. In other words, no

(base-point dependent) transformation of coframes was necessary. Even on our KT- and

HKT-sine cones of [53], the relevant rescaling (3.15) does not affect the computations due

to conformal equivalence to the cylinder. However, here the situation is more involved and

a careful analysis is mandatory.

4.3 Instantons on nearly Kähler sine-cones

4.3.1 Matrix equations — Part I

The set-up for the nearly Kähler sine-cone has been described in section 3.3. In particular,

we are investigating extensions of the connection ΓP on the sine-cone in this subsection.

M6 being a nearly Kähler manifold, the instanton equation with respect to the coframe eµ
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is equivalent to

ω ∧ ω ∧ F = 0 ⇔ ωµ̂ν̂Fµ̂ν̂ = 0 , (4.17a)

Ω ∧ F = 0 ⇔ Ωσ̂µ̂ν̂Fµ̂ν̂ = 0 for σ̂ = 1, . . . , 6 . (4.17b)

The seven equations (4.17) restrict the space of admissible 2-forms, and the instanton

bundle, which is locally isomorphic3 to the subspace m, is spanned by

e5 ∧ e6 − Λ sinϕ

4

(
sinϕη1

ab + cosϕη3
ab

)
ea ∧ eb and

ea ∧ e6 − Λ sinϕ
(
sinϕη1 a

b + cosϕη3 a
b

)
eb ∧ e5 .

(4.18)

This can be seen either by direct computation or by the explicit form of the projectors

from so(6) to su(3) of [51]. Here we have used the Riemannian metric to pull up one of

the indices of η3, and from here on we use e6 = dr.

A 6-dimensional representation of m can be chosen as in [22, 64],

(Î5)ba =
1

2
η3
ab , −(Î5)6

5 = (Î5)5
6 = 1 , (4.19a)

−(Îa)
6
b = (Îa)

b
6 = δba , (Îa)

5
b = −(Îa)

b
5 = η3

ab , (4.19b)

from which one obtains the structure constants

f b
5a =

3

2
η3 b
a and f 5

ab = 2 η3
ab . (4.20)

The torsion components of the canonical su(2)-connection ΓP in the unrotated frame

eµ read

T 5
ab = −2 η3

ab = −f 5
ab , (4.21a)

T ab5 = −3

2
(η3)ab = −f a

b5 . (4.21b)

With the chosen representation and by inserting the ansatz

A = ΓP +Xµ e
µ (4.22)

into (4.17), one obtains the non-vanishing components Nρ
µν of the parametrization (4.15)

as follows:

N5
ab =

Λ sinϕ

2

(
sinϕη1

ab + cosϕη3
ab

)
and Na

b5 = Λ sinϕ
(
sinϕη1 a

b + cosϕη3 a
b

)
.

(4.23)

Finally, the matrix equations for Xµ read

[Îi, Xµ] = f ν
iµ Xν , (4.24a)

[Xa, Xb] =
Λ sinϕ

2

(
sinϕη1

ab + cosϕη3
ab

)
Ẋ5 + 2 η3

abX5 + f i
ab Ni , (4.24b)

[X5, Xa] = Λ sinϕ
(

sinϕη1 b
a + cosϕη3 b

a

)
Ẋb +

3

2
η3 b
a Xb , (4.24c)

3One employs the identification so(6) ' Λ2(R6) to obtain 2-forms from antisymmetric 6× 6-matrices.
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where the first line is just the equivariance condition (4.11). The dot-notation means

Ẏ ≡ d
drY . An obvious solution to (4.24) is Xµ ≡ 0, which yields the instanton solution

A = ΓP that is the lift of the instanton ΓP from M5 to the sine-cone Cs(M
5).

Consider the ansatz

Xa = ψ(r)
(
exp(ξ η3)

) b
a
Îb , for ξ ∈ [0, 2π) and X5 = χ(r)Î5 , (4.25)

which respects equivariance due to [ηα, η̄β] = 0. Here, ξ is a parameter, and ψ(r), χ(r) are

two functions depending only on the cone direction r. Inserting (4.25) into (4.24) yields

Ni = ψ2(r) Îi for i = 6, 7, 8 (4.26)

as well as the following differential equations

Λ

2
χ̇(r) sin(2ϕ) = 4

(
ψ2(r)− χ(r)

)
and

Λ

2
ψ̇(r) sin(2ϕ) =

3

2
ψ(r) (χ(r)− 1) ,

(4.27a)

which are subject to the constraints

Λ

2
ψ̇(r) sin2 ϕ =

Λ

2
χ̇(r) sin2 ϕ = 0 . (4.27b)

As a matter of fact, these equations (4.27) hold for any value of ξ ∈ [0, 2π). The solutions

to (4.27) are readily obtained to be the following:

• (ψ, χ) = (0, 0): this is, of course, the trivial solution of (4.24), but is still required

for consistency as it confirms that ΓP satisfies the Ωs-instanton condition on M6.

• (ψ, χ) = (1, 1): here we obtain an extension of the original instanton ΓP . Despite

being an Ωs-instanton, this newly obtain instanton is a mere lift of an instanton in

M5 as it does not have any dependence on the cone direction.

• (ψ, χ) = (−1, 1): again, we obtain an extension which is, however, a lift of an

M5-instanton. Note that the existence of this solutions follows from ξ 7→ ξ + π, as(
exp(π η3)

) b
a

= −δ b
a .

Hence, we have a one-parameter family of su(3)-valued instantons given by

A = ΓP +
(
exp(ξ η3)

) b
a
Îb ⊗ ea + Î5 ⊗ e5 . (4.28)

To summarize, the ansatz solving the matrix equations (4.24) generates isolated instanton

solutions which can all be interpreted as lifts of connections living on M5. The non-

trivial solutions are su(3)-valued connections; whereas the trivial solution is a purely su(2)-

valued connection.

Remarks: first, the family solutions (4.28) can be seen to be gauge orbit if we recall

that (η3)νµ ∝ f ν
5µ = ad(I5)νµ and then exp(ξ η3) ∝ Ad(exp(I5)). Nevertheless, this gauge

symmetry clarifies the origin of the ψ-reflection symmetry of the solutions.
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Second, in the same manner as in our previous studies [53] we can equivalently provide

the matrix equations on the conformally equivalent cylinder with coordinate τ as follows:

[Îi, Xµ] = f ν
iµ Xν , (4.29a)

[Xa, Xb] =
1

2

(
sinϕη1

ab + cosϕη3
ab

) d

dτ
X5 + 2 η3

abX5 + f i
ab Ni , (4.29b)

[X5, Xa] =
(

sinϕη1 b
a + cosϕη3 b

a

) d

dτ
Xb +

3

2
η3 b
a Xb . (4.29c)

Further, the limit Λ → ∞ (with ϕ= r
Λ → 0 and keeping r fixed) transforms the sine-

cone into the Calabi-Yau cone, as mentioned in subsection 3.3. In this limit, the matrix

equations (4.29) take the following form:

[Xa, Xb] = f 5
ab

(
X5 +

1

4
Ẋ5

)
+ f i

ab Ni and [X5, Xa] = f b
5a

(
Xb +

2

3
Ẋb

)
, (4.30)

which are exactly the same equations as on the Kähler-torsion sine-cone of our early re-

sults [53]. Applying the τ -dependent version of the ansatz (4.25) yields

χ̇(τ) = 4
(
ψ2(τ)− χ(τ)

)
and ψ̇(τ) =

3

2
ψ(τ) (χ(τ)− 1) . (4.31)

Obviously, all constant solutions found above are still instantons on the CY-cone, but the

reduced equations do not automatically enforce constant χ and ψ. Finally, note that (4.31)

is, of course, equivalent to (4.27) in the limit Λ → ∞ as the constraint on the deriva-

tives vanishes.

Third, the sine-cone is a conifold with two conical singularities, here at ϕ = 0 and

ϕ = π. One observes that the coefficient functions, i.e. cosϕ and sinϕ, of (4.24) as well

as our solutions are well-behaved at the singular points. However, recall the remark from

subsection 3.3 that the defining sections of the SU(3)-structure become trivial at these

singular points; hence, the instanton condition is not well-defined there. Yet, in principal

one could continue the gauge field to these points.

4.3.2 Nearly Kähler canonical connection

In this section we construct the canonical su(3)-connection of the nearly Kähler sine-cone.

It turns out that we obtain an instanton for the SU(3)-structure that is not the lift of an

instanton on M5; furthermore, this instanton is of the form (4.22) presented above. On

the 5-manifold M5 the Maurer-Cartan equations read

dea = −(ΓP )
a

b ∧ e
b +

1

2
T aµν e

µ ∧ eν , (4.32a)

de5 = −(ΓP )
5

5 ∧ e
5 +

1

2
T 5
µν e

µ ∧ eν , (4.32b)

where the torsion components are given by (cf. [22, 64])

T ab5 = −3

2
η3a

b and T 5
ab = −2 η3

ab . (4.33)
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In particular, the last identity implies (ΓP )
5
5 = 0 due to the Sasaki-Einstein

relation de5 = −2ω3.

Next, we are interested in the Maurer-Cartan equations for the frame eµs resulting from

the rotation (3.21) and rescaling (3.23) of the SU(2)-structure. With respect to coframes

e adapted to Q, the canonical su(2)-connection ΓP has components

(ΓP )
ν

µ = (ΓP )
i
f ν
iµ with (f b

ia ) ∝ η̄α(i) , (4.34)

where α(i) = i−5 and η̄α are the anti-self-dual ’t Hooft tensors. Noting that [ηα, η̄β] = 0

for all α, β, we see that the components of the canonical su(2)-connection are unaffected

by the homogeneous part of the transformation (4.16) with

L(r) = Λ sin(ϕ)

(
exp(ϕ2 η

2)4×4 04×2

02×4 12×2

)
∈ NGL(6,R)(SU(2)) , (4.35)

which realizes the rotation (3.21) and the rescaling (3.23). In detail, the transformation

reads (ΓP )
a
b = Lac (ΓP )

c
d (L−1)db . A straightforward computation yields

deas = −(ΓP )
a

b ∧ e
b
s −

cotϕ

Λ

(
eas ∧ e6

s + η3a
b e
b
s ∧ e5

s

)
− cotϕ

2Λ
η3a

b e
b
s ∧ e5

s (4.36a)

− 1

2Λ

(
η2a

b e
b
s ∧ e6

s − η1a
b e
b
s ∧ e5

s

)
+

1

Λ
η1a

b e
b
s ∧ e5

s ,

de5
s = −cotϕ

Λ

(
e5
s ∧ e6

s + η3
ab e

a
s ∧ ebs

)
+

1

Λ
η1
ab e

a
s ∧ ebs , (4.36b)

de6
s = 0 . (4.36c)

It is important to realize that, although the components (ΓP )
a
b used in (4.36) coincide with

the components of the lift of the canonical connection on the Sasaki-Einstein 5-manifold

to the cylinder, the transformed coframe eµs is used since we are on the nearly Kähler sine-

cone. Thus, (ΓP )
a
b no longer comprises the canonical su(2)-connection; however, it forms a

different su(2)-valued connection Γsu(2). This is because the inhomogeneous term in (4.16),

which results from the change of basis, has been split off.

Introducing an almost complex structure J via demanding

Θ1
s = e1

s + ie2
s , Θ2

s = e3
s + ie4

s , Θ3
s = i(e5

s + ie6
s) (4.37)

to be (1, 0)-forms yields

d

Θ1
s

Θ2
s

Θ3
s

=−

Γ̂su(2)
1
1 + i cotϕ

2Λ e5
s Γ̂su(2)

1
2 − cotϕ

Λ Θ1
s − 1

2ΛΘ2̄
s

Γ̂su(2)
2
1 Γ̂su(2)

2
2 + i cotϕ

2Λ e5
s −

cotϕ
Λ Θ2

s + 1
2ΛΘ1̄

s
cotϕ

Λ Θ1̄
s + 1

2ΛΘ2
s

cotϕ
Λ Θ2̄

s − 1
2ΛΘ1

s − i cotϕ
Λ e5

s


︸ ︷︷ ︸

canonical su(3)-connection Γ̂su(3) on sine-cone

∧

Θ1
s

Θ2
s

Θ3
s

− 1

Λ

Θ2̄3̄
s

Θ3̄1̄
s

Θ1̄2̄
s


︸ ︷︷ ︸
NK-torsion T̂

.

(4.38)

Here we used the shorthand notation Θᾱβ̄ ≡ Θᾱ ∧Θβ̄.

The connection 1-forms Γ̂su(2)
β
α with α, β = 1, 2 are defined via the components (ΓP )

b
a

by employing (4.32) and (4.36) as well as the change to the complex basis (4.37). We
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use the hat to indicate that we are considering the connection forms with respect to the

complex basis Θs rather than the real basis es. Thus, the corresponding Maurer-Cartan

equations read

dΘα
s = −Γ̂su(3)

α
β ∧Θβ

s + T̂α and dΘᾱ
s = −Γ̂su(3)

ᾱ
β̄ ∧Θβ̄

s + T̂ ᾱ . (4.39)

Note that Γsu(3) = diag
(
Γ̂su(3), Γ̂

∗
su(3)

)
is indeed a connection on TM6, which can be seen

from (4.39) and the fact that T̂ transforms as a tensor. Furthermore, Γsu(3) is an instanton

because it satisfies the conditions of proposition 3.1 of [22].

The above result (4.38) can be brought into a more suggestive form by rewriting it as

Γ̂su(3) = Γ̂su(2) +
1

2Λ

 0 0 −2 cotϕ

0 0 1

2 cotϕ −1 0

 e1
s +

i

2Λ

 0 0 −2 cotϕ

0 0 −1

−2 cotϕ −1 0

 e2
s

+
1

2Λ

0 0 −1

0 0 −2 cotϕ

1 2 cotϕ 0

 e3
s +

i

2Λ

0 0 1

0 0 −2 cotϕ

1 −2 cotϕ 0

 e4
s (4.40a)

+
i

2Λ

cotϕ 0 0

0 cotϕ 0

0 0 −2 cotϕ

 e5
s

= Γ̂su(2) +Bµ ⊗ eµs , (4.40b)

which reflects exactly the Xµ-ansatz from (4.22). One can check that the matrices Bµ
satisfy the equivariance condition (4.11). Thus, as Γsu(3) is a connection on TM6, one can

infer by the same arguments as in section 4.1 that Γsu(2) is a well-defined connection on

TM6. An alternative way to see that is to check that the inhomogeneous part, which has

been split off in the transformation law (4.16) for the components of ΓP , glues to globally

well-defined 1-forms with values in the adjoint bundle of P. This, however, holds due to

the fact that the transformation L given in (4.35) commutes with the SU(2) subgroup of

GL(6,R), i.e. takes values in centralizer CGL(6,R)(SU(2)).

Note that in the limit Λ → ∞ (i.e. ϕ = r
Λ → 0) the torsion on C(M5) vanishes, and

Γ̂su(3) coincides with the connection corresponding to the χ = ψ = 1 case of [22], which has

been stated to be the Levi-Civita connection of the cone. Furthermore, this is consistent

with the observation that as Γ̂su(3) preserves the metric and as in the above limit its torsion

vanishes, Γ̂su(3) has to converges to the Levi-Civita connection of the CY-cone.

4.3.3 Matrix equations — Part II

As pointed out above, there are two different su(2)-valued connections on the nearly Kähler

sine-cone. On the one hand, there is the lift of the canonical connection ΓP of the Sasaki-

Einstein 5-manifold; on the other hand, there is Γsu(2). Remarkably, the respective curva-

ture 2-forms coincide, i.e.

RΓP = RΓsu(2)
. (4.41)

– 25 –



J
H
E
P
0
1
(
2
0
1
5
)
0
3
0

This stems from the fact that the generators of the two transformations (3.21) and (3.23),

which lead from the cylinder to the sine-cone, commute with su(2). In other words, the

inhomogeneous part of (4.16) yields an abelian flat part proportional to e6
s. As a conse-

quence, Γsu(2) is another su(2)-valued instanton on the sine-cone, since ΓP is an instanton

itself.4 Therefore, we can use Γsu(2) in the procedure described in section 4.1: one extends

Γsu(2) by some suitable 1-form Xµ e
µ
s and investigates the conditions on Xµ such that the

new connection is an instanton on the sine-cone.

However, we have to adjust the equations (4.24) due to the different torsion of Γsu(2).

Denoting by T the torsion of ΓP , the torsion of Γsu(2) reads

T µ̂su(2) = T µ̂ +
1

Λ

(
δµ̂ν̂ cotϕ+

1

2
η2µ̂

ν̂

)
e6
s ∧ eν̂s , (4.42)

where we defined η2
µ̂ν̂ = η2

ab for µ̂, ν̂ = a, b ∈ {1, . . . , 4} and η2
µ̂ν̂ = 0 whenever µ̂ ≥ 5

or ν̂ ≥ 5. The components of N are the same as in subsection 4.3.1 and, by inserting

everything into (4.13), we obtain the matrix equations

[Îi, Xµ] = f ν
iµ Xν , (4.43a)

[Xa, Xb] =
1

2
η3
abẊ5 +

1

2Λ

(
5 cotϕη3

ab − 4 η1
ab

)
X5 + f i

ab Ni , (4.43b)

[X5, Xa] = η3 b
a Ẋb +

1

2Λ

(
5 cotϕη3 b

a − 3 η1 b
a − η3 c

a η2 b
c

)
Xb , (4.43c)

with the notation Ẏ = d
drY . Next, we use the matrices in (4.40) for the extension of

Γsu(2). Recall that we had defined auxiliary matrices Bµ that solve the equivariance con-

dition (4.11) by writing (4.40) in the form

Γ̂su(3) = Γ̂su(2) +Bµe
µ
s , (4.44)

and that the Bµ explicitly depend on ϕ = r
Λ . Hence, we may set

Xa := ψ(r)Ba and X5 := χ(r)B5 (4.45)

as in the usual procedure.5 The equivariance condition enforces the same coefficient func-

tion ψ(r) for all four Ba. Inserting this Xµ-ansatz in the matrix equations (4.43), one can

first of all read off

Ni = ψ(r)2 1 + 4 cot2ϕ

4Λ2
Ii , for i = 6, 7, 8 , (4.46)

which is compatible with the assumptions on N used in subsection 4.1. Using this explicit

form, we obtain the algebraic equation

ψ(r)2 − χ(r) = 0 . (4.47)

4Recall subsection 4.2, ΓP is a connection on the SU(2)-bundle Q, whereas Γsu(2) is a connection on the

SU(2)-bundle Q′.
5Note that in (4.40) we have Bµ ∈ End(C3). Here we used the identification C ' R2 to obtain Bµ ∈

End(R6), which are necessary for the ansatz (4.5).
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This then reduces the remaining equations to

χ̇(r) = ψ̇(r) = 0 and ψ(r)
(
χ(r)− 1

)
= 0 . (4.48)

Let us now comment on the three solutions to this system:

• (ψ, χ) = (0, 0): to start with, there is the obvious trivial solution of (4.43). This is

required for consistency, since Γsu(2) is an instanton.

• (ψ, χ) = (1, 1): this second solution is very important because it reproduces Γsu(3)

from subsection 4.3.2. We already knew from proposition 3.1 of [22] that this partic-

ular connection is an instanton on the nearly Kähler sine-cone, but here we confirmed

it directly, using techniques completely different than those employed in [22]. In ad-

dition, this provides us with another way of constructing the canonical connection of

the nearly Kähler sine-cone than the one we followed in subsection 4.3.2, namely as

the extension of an su(2)-valued instanton.

• (ψ, χ) = (−1, 1): third, there is again the solution which results from the invariance

of (4.43) under the simultaneous sign-flip Xa 7→ −Xa for a = 1, 2, 3, 4. Nevertheless,

this solution is an additional instanton.

In summary, the solutions we obtained here are isolated su(3)- and su(2)-valued connections

on M6 that cannot be traced back to lifts of connections on M5. In contrast to e.g. [35],

there are no instanton solutions that interpolate between these isolated instantons.

Remarks: First, the CY-limit Λ→∞ of (4.43) is given by

[Xa, Xb] = f 5
ab

(
X5 +

1

4

d

dτ
X5

)
+ f i

ab Ni and [X5, Xa] = f b
5a

(
Xb +

2

3

d

dτ
Xb

)
,

(4.49)

wherein one requires the rescaling Xµ 7→ 1
rXµ, which can be seen from Xµe

µ
s → Xµ re

µ for

Λ → ∞. Further, recall that in the limit Λ → ∞ we have dτ = 1
rdr. The above matrix

equations coincide with the ones obtained in Kähler-torsion case of [53] as well as with

the limit (4.30) of subsection 4.3.1. Remarkably, the two reductions of subsections 4.3.1

and 4.3.3 used the different su(2)-instantons ΓP and Γsu(2) as starting point; however, in

the above limit the difference

ΓP − Γsu(2)
Λ→∞−−−−→ 1⊗ dr

r
∈ Ω1(M6,End(R6)) (4.50)

becomes an abelian flat part, which contributes to the instanton equation via the al-

tered torsion.

Second, note the explicit impact of the conical singularities at ϕ = 0 or ϕ = π in the

matrix equations (4.43) as well as the Bµ-matrices of (4.40). However, we do not have to

consider these singularities, as there is no well-defined instanton equation.
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4.3.4 Transfer of solutions

The previous subsections considered the nearly Kähler sine-cone from two perspectives:

in subsection 4.3.1 we extended the instanton ΓP , which is a connection on Q; whereas,

subsection 4.3.3 was concerned with Γsu(2), being an su(2)-valued connection on Q′, as

a starting point for our ansatz (4.5). The local representations of these are related via

a transformation L as considered in (4.35). Due to the properties of L we arrive at the

following statement (cf. subsection 4.2):

e′
∗
Γsu(2) = e′

∗
ΓP − L−1dL = e∗ΓP , (4.51)

implying that Γsu(2) and ΓP have the same components with respect to their adapted

coframes e′ and e. Observe that the inhomogeneous part that is split off in the connection

1-form enters in the torsion (4.42) of Γsu(2), thus altering the matrix equations. However,

from (4.13) one can check that the local expressions of the respective field strengths of the

extension of both ΓP and Γsu(2) by Xµ ⊗ e′µ = XµL
µ
ν ⊗ eν coincide. Consequently, every

instanton extension Xµ of Γsu(2) gives rise to an instanton extension XνL
ν
µ of ΓP and vice

versa. In other words, we have the relation

Xµ solves (4.43)
1:1⇐===⇒ XνL

ν
µ solves (4.24) . (4.52)

As a remark, the above is true if and only if L takes values in the centralizer

CGL(6,R)(SU(2)), as then L−1dL gives rise to a well-defined equivariant 1-form.

However, one should not naively expect that the solutions obtained in subsections 4.3.1

and (4.3.3) are related via (4.52), as this does not necessarily transform the employed

ansätze into one another.

The benefit from observation (4.52) is that we can generate further instanton solutions

from our previous ones.

On the one hand, we can apply the above to (4.28) and obtain the ansatz

Xa =
ψ(r)

Λ sin( rΛ)

(
exp

(
r

2Λ
η2

)
exp(ξη3)

) b

a

Îb and X5 =
χ(r)

Λ sin( rΛ)
Î5 , (4.53)

which inserted into (4.43) has precisely the solutions (ψ, χ) = (0, 0), (±1, 1), just as one

would expect from the above arguments. This is another non-constant instanton extension

for Γsu(2).

On the other hand, the same can be done for (4.45) in the other direction. There one

derives the ansatz

Xa = ψ(r) Λ sin

(
r

Λ

)
exp

(
− r

2Λ
η2

) b

a

Bb(r) and X5 = χ(r) Λ sin

(
r

Λ

)
B5(r) . (4.54)
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Rewritten in a linear combination of the Îµ, the ansatz (4.54) is given as

X1 = ψ(r)

(
cos3

(
r

2Λ

)
Î1 − sin3

(
r

2Λ

)
Î3

)
,

X2 = ψ(r)

(
cos3

(
r

2Λ

)
Î2 + sin3

(
r

2Λ

)
Î4

)
,

X3 = ψ(r)

(
cos3

(
r

2Λ

)
Î3 + sin3

(
r

2Λ

)
Î1

)
,

X4 = ψ(r)

(
cos3

(
r

2Λ

)
Î4 − sin3

(
r

2Λ

)
Î2

)
,

X5 = χ(r) cos

(
r

Λ

)
Î5 .

(4.55)

One can check that this, again, produces the solutions (ψ, χ) = (0, 0), (±1, 1). Remarkably,

the two non-trivial instanton solutions correspond to non-constant extensions of ΓP .

4.4 Instantons on half-flat cylinders

Let us now return to the half-flat 6-manifolds constructed in section 3.4 and apply the

ansatz developed above to the instanton equation on these spaces. The instanton equation

on spaces with non-vanishing W2 was introduced in (4.3). In a local coframe adapted to

the SU(3)-structure imposing the pseudo-holomorphicity condition

Ωz ∧ F = 0 (4.56)

yields the set of six equations, precisely as it has been in the nearly Kähler case. But the

additional equation implied by the pseudo-holomorphicity condition reads

dΩz ∧ F = 0 ⇔ F12 + F34 +
4

3
%2F56 = 0 (4.57)

in the rotated frame ez. Note that for % = ±
√

3
2 this coincides with the nearly Kähler

instanton equation of subsection 4.3.1, although the SU(3)-structure is not nearly Kähler

(see for example the torsion classes (3.30)).

It is important to recall that the lift of the canonical connection of the Sasaki-Einstein

M5 provides an instanton on the cylinder that one can extend by some X in our ansatz

to su(3)-valued connections, being defined either on P or P ′. We will do so in two set-

ups: first, we formulate the matrix equations in the frame eµ and, second, the analogous

computation is performed in the adapted frame eµz for the half-flat SU(3)-structure.

4.4.1 Matrix equations — Part I

In the unrotated frame eµ the instanton bundle is locally spanned by

e5 ∧ e6 − %

3

(
cos ζ η1

ab − sin ζ η2
ab

)
ea ∧ eb and ea ∧ e6 − %

(
cos ζ η1a

b − sin ζ η2a
b

)
eb ∧ e5 ,

(4.58)

from which we can extract the components of (Nρ
µν) to be

N5
ab =

2%

3

(
cos ζ η1

ab − sin ζ η2
ab

)
and Na

b5 = %
(
cos ζ η1a

b − sin ζ η2a
b

)
. (4.59)
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As the torsion components are unchanged we can directly formulate the matrix equations

[Îi, Xµ] = f ν
iµ Xν , (4.60a)

[Xa, Xb] =
2%

3

(
cos ζ η1

ab − sin ζ η2
ab

)
Ẋ5 + 2 η3

abX5 + f i
ab Ni , (4.60b)

[X5, Xa] = %
(

cos ζ η1 b
a − sin ζ η2 b

a

)
Ẋb +

3

2
η3 b
a Xb . (4.60c)

The ansatz

Xa = ψ(r)
(
exp(ξ η3)

) b
a
Îb for ξ ∈ [0, 2π) and X5 = χ(r)Î5 (4.61)

satisfies, again, the equivariance condition of (4.60) and we obtain

Ni = ψ2(r) Îi , for i = 6, 7, 8 (4.62)

as well as the set of equations

ψ̇(r) = χ̇(r) = 0 , ψ2(r) = χ(r) , and ψ(r) (χ(r)− 1) = 0 . (4.63)

for the two functions ψ and χ, and the equations hold for all values of ξ. Interestingly, the

solutions to these equations are identical to the nearly Kähler case (4.27)

• (ψ, χ) = (0, 0): the trivial solution appears again for consistency.

• (ψ, χ) = (±1, 1): these two extensions of the lift of ΓP are newly obtained Ωz-

instantons; however, they correspond to lifts of M5-instantons because they are in-

dependent of the cylinder direction. Recall that (ψ, χ) = (−1, 1) can be generated

from (ψ, χ) = (+1, 1) by the shift ξ 7→ ξ + π.

Identically to the nearly Kähler case, one obtains the one-parameter family (4.28) as

a solution.

As a matter of fact, these instanton solutions are identical to the ones obtained in sub-

section 4.3.1. The explanation is as follows: first, note that nearly Kähler 6-manifolds are a

subset of half-flat 6-manifolds; thus, any nearly Kähler instanton solution must necessarily

appear in the half-flat scenario. Second, the matrix equations (4.24) and (4.60) differ only

in their derivative parts, i.e. in the coefficients of Ẋµ, which implies that both sets have

coinciding constant solutions.

4.4.2 Matrix equations — Part II

Contrary to the previous subsection, here the focus is on the formulation of the instanton

equations in the adapted coframe eµz for the SU(3)-structure on the cylinder. As with

respect to these, the SU(3)-structure forms have their standard components, one only has

to compute the components of its torsion with respect to the transformed basis.

The space m is now spanned by the 2-forms

e5
z ∧ e6

z −
1

3
%2 η3

ab e
a
z ∧ ebz and eaz ∧ e6

z − η3a
b e
b
z ∧ e5

z , (4.64)
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which follows from direct evaluation of (4.56) and (4.57). In the coframe ez the torsion

components of the lifted canonical connection of the Sasaki-Einstein manifold are

T̃ 5
ab = 2% η1

ab and T̃ ab5 =
3

2%
η1a

b . (4.65)

In addition, we need the tensor N that appeared in (4.15). Since the instanton equations

take a slightly different form here, its components now read

Na
µν =

2

3
fµν

a and N5
µν =

1

3
%2 fµν

5 , (4.66)

wherein we have used the same su(3) structure constants as in (4.20). With these alter-

ations (4.15) can be written as

[Îi, Xµ] = f ν
iµ Xν , (4.67a)

[Xa, Xb] = − 2% η1
abX5 +

2

3
%2 fab

5 Ẋ5 +Ni fabi , (4.67b)

[Xa, X5] =
3

2%
η1 b
a Xb +

2

3
fa5

b Ẋb . (4.67c)

One can employ the following ansatz:

Xa = ψ(r)
(
exp(ξ η1) exp(θ η2)

) b
a
Îb , for θ, ξ ∈ [0, 2π) and X5 = χ(r)Î5 , (4.68)

which, again, satisfies the equivariance condition. The insertion of (4.68) into (4.67) yields

for the su(2)-part

Ni = ψ2Ii , (4.69)

as the projection of [Xa, Xb] onto su(2) in su(3) is independent of θ and ξ. Further, for the

functions ψ and χ one derives the set of equations

χ̇ =
3

%2
ψ2 (cos2θ − sin2θ) , (4.70a)

χ =
2

%
ψ2 cos θ sin θ , (4.70b)

ψ̇ cos θ =
3

2
ψ

(
1

%
sin θ + χ cos θ

)
, (4.70c)

ψ̇ sin θ = − 3

2
ψ

(
1

%
cos θ + χ sin θ

)
. (4.70d)

Note that the equations are independent of ξ. These equations are mutually compatible

only for θ=π
4 or θ=3π

4 . For these values of θ the first two equations yield ψ̇ = χ̇ = 0

and the last two equations coincide. The system (4.70) admits, besides the trivial solution

(ψ, χ) = (0, 0), only the following solutions:

θ =
π

4
: ψ = ±1 , χ = +

1

%
, (4.71a)

θ =
3π

4
: ψ = ±1 , χ = −1

%
. (4.71b)
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Hence, we again have a whole family of solutions given by

A = Γ +
(
exp(ξ η1) exp(θ η2)

) b
a
Îb ⊗ eaz ±

1

%
Î5 ⊗ e5

z , for θ ∈
{
π

4
,
3π

4

}
, ξ ∈ [0, 2π) .

(4.72)

As the corresponding instantons on the cylinder over M5 do neither depend on the cone

coordinate nor contain dr, they are actually lifts of instantons on M5, which live on the

pull-back bundle of the SU(3)-bundle on the slices of the cylinder.

5 Conclusions

We investigated the geometry of cylinders, cones and sine-cones over 5-dimensional SU(2)-

manifolds. On the resulting 6-dimensional conical SU(3)-manifolds we formulated gener-

alized instanton equations and reduced them to matrix equations via the ansatz (4.5). In

particular, we focused on nearly Kähler and half-flat SU(3)-manifolds, whereas previous

work [53] had dealt with the Kähler-torsion (KT) and hyper-Kähler-torsion (HKT) cases.

In particular, we constructed a nearly Kähler 6-manifold as a sine-cone over an ar-

bitrary Sasaki-Einstein 5-manifold by means of a rotation of the SU(2)-structures on the

slices. Employing the ansatz (4.22), the instanton equation was reduced to the set (4.24)

of matrix equations, for which we found a family of non-trivial, but constant solutions.

All of these correspond to lifts of M5-instantons to Cs(M
5). In addition, in subsection

4.2.2 we obtained an instanton solution on the manifold Cs(M
5) by the construction of

its su(3)-valued canonical connection. We decomposed this connection Γsu(3) into another

su(2)-valued instanton Γsu(2) plus an additional part resembling the ansatz used before.

Using this decomposition and, again, carrying the reduction of the instanton equation out,

we obtained a set of four equations for two functions which parametrize the ansatz. Its

three solutions, for which the scalar functions take certain constant values, correspond to

three instantons on the nearly Kähler sine-cone that cannot be constructed as lifts of in-

stanton connections on M5. As a by-product, we explicitly confirmed the nearly Kähler

canonical connection to be an instanton. In addition, observing a correspondence between

the solutions, we transferred the solutions of the two cases to new r-dependent instanton

extensions of ΓP as well as Γsu(2). Remarkably, the extension found for ΓP does not seem

to correspond to a lift of an instanton from M5.

Furthermore, we introduced a two-parameter family of half-flat structures on the cylin-

der over a generic Sasaki-Einstein 5-manifold. Again employing the ansatz (4.5) on these

cylindrical half-flat 6-manifolds, we were able to deduce the matrix equations (4.67) on the

two local frames eµ̂ and eµ̂z . Moreover, we provided families of constant, but non-trivial

solutions. In that case, the instantons obtained this way do correspond to lifts of instantons

on M5.

It would be interesting to extend the methods presented here, i.e. the reduction of

the instanton equation to matrix equations and the construction of higher-dimensional G-

structure manifolds from lower-dimensional ones, to other scenarios that appear in sting

theory. For example, in M-theory desirable (internal) manifolds are 7-dimensional and are

endowed with a G2-structure. Therefore, the study of certain SU(3)-structures seems to
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be promising, as one could hope to a obtain interesting G2-geometries as well as explicit

instanton solutions via the procedures employed here.

Returning to the heterotic supergravity point of view, we expect that our solutions to

the instanton equations can be lifted to full solutions of the heterotic equations of motions

via the BPS equations (1.1) and the Bianchi identity (1.2). The gaugino equation (1.1c)

is already solved by the instanton solutions above. The remaining equations should be

solvable in a manner similar to [22, 23, 32, 33], which may look as follows:

1. The dilatino equation (1.1b) may be solved by a suitable ansatz such as choosing the

dilaton φ = φ(τ) and the 3-form H ∝ dφ
dτ P where P is the canonical 3-form on the

Sasaki-Einstein 5-manifold.

2. The gravitino equation (1.1a) requires a spin connection with SU(3)-holonomy and

torsion H. Therefore, one can take an ansatz similar to (4.5) from which we know it

to be an SU(3)-instanton. The remaining task is then to check the correct torsion for

this connection. One choice might be the canonical connection Γsu(3) on the nearly

Kähler sine-cone, whose torsion is by definition skew-symmetric and we know Γsu(3)

is an instanton.

3. The theorem of Ivanov requires a connection ∇ on TM6 which is an instanton.

Here, the instantons constructed in this paper provide a valuable choice, i.e. by an

extension of the canonical connection. Then the connection ∇, together with the

gauge connection A, needs to satisfy the Bianchi identity (1.2).

Finally, one has to solve the differential equations that appear for the degrees of freedom

in the different ansätze for H, ∇+, and ∇. We hope to report on this process and embed

our solutions into heterotic supergravity in the future.
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[37] P. Koerber, D. Lüst and D. Tsimpis, Type IIA AdS4 compactifications on cosets,

interpolations and domain walls, JHEP 07 (2008) 017 [arXiv:0804.0614] [INSPIRE].

[38] C. Nölle, Instantons, five-branes and fractional strings, arXiv:1207.7268 [INSPIRE].

[39] E. Corrigan, C. Devchand, D.B. Fairlie and J. Nuyts, First order equations for gauge fields in

spaces of dimension greater than four, Nucl. Phys. B 214 (1983) 452 [INSPIRE].

[40] M. Mamone Capria and S.M. Salamon, Yang-Mills fields on quaternionic spaces,

Nonlinearity 1 (1988) 517.

[41] R.R. Carrión, A generalization of the notion of instanton, Diff. Geom. Appl. 8 (1998) 1.

[42] L. Baulieu, H. Kanno, and I.M. Singer, Special quantum field theories in eight and other

dimensions, Commun. Math. Phys. 194 (1998) 149 [hep-th/9704167] [INSPIRE].

– 35 –

http://dx.doi.org/10.4310/ATMP.2013.v17.n4.a3
http://arxiv.org/abs/1202.5046
http://inspirehep.net/search?p=find+EPRINT+arXiv:1202.5046
http://dx.doi.org/10.1016/0370-2693(86)90544-7
http://inspirehep.net/search?p=find+J+Phys.Lett.,B167,51
http://dx.doi.org/10.1016/0370-2693(86)91393-6
http://inspirehep.net/search?p=find+J+Phys.Lett.,B178,357
http://dx.doi.org/10.1016/0550-3213(86)90286-5
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B274,253
http://dx.doi.org/10.1016/j.physletb.2010.01.050
http://dx.doi.org/10.1016/j.physletb.2010.01.050
http://arxiv.org/abs/0908.2927
http://inspirehep.net/search?p=find+EPRINT+arXiv:0908.2927
http://dx.doi.org/10.1007/JHEP04(2012)114
http://arxiv.org/abs/1202.1278
http://inspirehep.net/search?p=find+EPRINT+arXiv:1202.1278
http://dx.doi.org/10.1007/JHEP11(2013)182
http://arxiv.org/abs/1308.1955
http://inspirehep.net/search?p=find+EPRINT+arXiv:1308.1955
http://arxiv.org/abs/math/0602160
http://inspirehep.net/search?p=find+EPRINT+math/0602160
http://dx.doi.org/10.1007/JHEP09(2011)103
http://arxiv.org/abs/1108.3951
http://inspirehep.net/search?p=find+EPRINT+arXiv:1108.3951
http://arxiv.org/abs/hep-th/9808014
http://inspirehep.net/search?p=find+EPRINT+hep-th/9808014
http://dx.doi.org/10.1088/1126-6708/2008/07/017
http://arxiv.org/abs/0804.0614
http://inspirehep.net/search?p=find+EPRINT+arXiv:0804.0614
http://arxiv.org/abs/1207.7268
http://inspirehep.net/search?p=find+EPRINT+arXiv:1207.7268
http://dx.doi.org/10.1016/0550-3213(83)90244-4
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B214,452
http://dx.doi.org/10.1007/s002200050353
http://arxiv.org/abs/hep-th/9704167
http://inspirehep.net/search?p=find+EPRINT+hep-th/9704167


J
H
E
P
0
1
(
2
0
1
5
)
0
3
0

[43] M. Blau and G. Thompson, Euclidean SYM theories by time reduction and special holonomy

manifolds, Phys. Lett. B 415 (1997) 242 [hep-th/9706225] [INSPIRE].

[44] B.S. Acharya, J.M. Figueroa-O’Farrill, B.J. Spence and M. O’Loughlin, Euclidean D-branes

and higher dimensional gauge theory, Nucl. Phys. B 514 (1998) 583 [hep-th/9707118]

[INSPIRE].

[45] S. Donaldson and R. Thomas, Gauge theory in higher dimensions, in The geometric

universe, S.A. Huggett et al. eds. Oxford University Press, Oxford U.K. (1996).

[46] S. Donaldson and E. Segal, Gauge theory in higher dimensions, II, in Surveys in differential

geometry, N.C. Leung and S.-T. Yau eds., International Press of Boston, Boston U.S.A.

(2009), arXiv:0902.3239 [INSPIRE].

[47] G. Tian, Gauge theory and calibrated geometry. 1, Annals Math. 151 (2000) 193

[math/0010015] [INSPIRE].

[48] D.B. Fairlie and J. Nuyts, Spherically symmetric solutions of gauge theories in

eight-dimensions, J. Phys. A 17 (1984) 2867 [INSPIRE].

[49] S. Fubini and H. Nicolai, The octonionic instanton, Phys. Lett. B 155 (1985) 369 [INSPIRE].

[50] T.A. Ivanova and A.D. Popov, Selfdual Yang-Mills fields in D = 7, 8, octonions and Ward

equations, Lett. Math. Phys. 24 (1992) 85 [INSPIRE].

[51] T.A. Ivanova and A.D. Popov, (Anti)selfdual gauge fields in dimension d ≥ 4, Theor. Math.

Phys. 94 (1993) 225 [INSPIRE].

[52] M. Günaydin and H. Nicolai, Seven-dimensional octonionic Yang-Mills instanton and its

extension to an heterotic string soliton, Phys. Lett. B 351 (1995) 169 [Addendum ibid. B

376 (1996) 329] [hep-th/9502009] [INSPIRE].

[53] S. Bunk, T.A. Ivanova, O. Lechtenfeld, A.D. Popov and M. Sperling, Instantons on

sine-cones over Sasakian manifolds, Phys. Rev. D 90 (2014) 065028 [arXiv:1407.2948]

[INSPIRE].

[54] J. Sparks, Sasaki-Einstein manifolds, Surveys Diff. Geom. 16 (2011) 265 [arXiv:1004.2461]

[INSPIRE].

[55] C.P. Boyer and K. Galicki, Sasakian geometry, Oxford University Press, Oxford U.K. (2008).

[56] D. Harland, T.A. Ivanova, O. Lechtenfeld and A.D. Popov, Yang-Mills flows on nearly

Kähler manifolds and G2-instantons, Commun. Math. Phys. 300 (2010) 185

[arXiv:0909.2730] [INSPIRE].

[57] D. Conti and S. Salamon, Generalized Killing spinors in dimension 5, Trans. Amer. Math.

Soc. 359 (2007) 5319 [math/0508375].

[58] F. Müller-Hoissen and R. Stückl, Coset spaces and ten-dimensional unified theories, Class.

Quant. Grav. 5 (1988) 27 [INSPIRE].

[59] S. Chiossi and S. Salamon, The intrinsic torsion of SU(3) and G2 structures, J. Diff. Geom.

(2002) [math/0202282] [INSPIRE].

[60] T. Friedrich and S. Ivanov, Parallel spinors and connections with skew symmetric torsion in

string theory, Asian J. Math 6 (2002) 303 [math/0102142] [INSPIRE].

[61] J.-M. Bismut, A local index theorem for non Kähler manifolds, Math. Ann. 284 (1989) 681

– 36 –

http://dx.doi.org/10.1016/S0370-2693(97)01163-5
http://arxiv.org/abs/hep-th/9706225
http://inspirehep.net/search?p=find+J+Phys.Lett.,B415,242
http://dx.doi.org/10.1016/S0550-3213(97)00727-X
http://arxiv.org/abs/hep-th/9707118
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B514,583
http://arxiv.org/abs/0902.3239
http://inspirehep.net/search?p=find+EPRINT+arXiv:0902.3239
http://dx.doi.org/10.2307/121116
http://arxiv.org/abs/math/0010015
http://inspirehep.net/search?p=find+EPRINT+math/0010015
http://dx.doi.org/10.1088/0305-4470/17/14/030
http://inspirehep.net/search?p=find+J+J.Phys.,A17,2867
http://dx.doi.org/10.1016/0370-2693(85)91589-8
http://inspirehep.net/search?p=find+J+Phys.Lett.,B155,369
http://dx.doi.org/10.1007/BF00402672
http://inspirehep.net/search?p=find+J+Lett.Math.Phys.,24,85
http://dx.doi.org/10.1007/BF01019334
http://dx.doi.org/10.1007/BF01019334
http://inspirehep.net/search?p=find+J+Theor.Math.Phys.,94,225
http://dx.doi.org/10.1016/0370-2693(95)00375-U
http://arxiv.org/abs/hep-th/9502009
http://inspirehep.net/search?p=find+EPRINT+hep-th/9502009
http://dx.doi.org/10.1103/PhysRevD.90.065028
http://arxiv.org/abs/1407.2948
http://inspirehep.net/search?p=find+EPRINT+arXiv:1407.2948
http://dx.doi.org/10.4310/SDG.2011.v16.n1.a6
http://arxiv.org/abs/1004.2461
http://inspirehep.net/search?p=find+EPRINT+arXiv:1004.2461
http://dx.doi.org/10.1007/s00220-010-1115-7
http://arxiv.org/abs/0909.2730
http://inspirehep.net/search?p=find+EPRINT+arXiv:0909.2730
http://arxiv.org/abs/math/0508375
http://dx.doi.org/10.1088/0264-9381/5/1/011
http://dx.doi.org/10.1088/0264-9381/5/1/011
http://inspirehep.net/search?p=find+J+Class.Quant.Grav.,5,27
http://arxiv.org/abs/math/0202282
http://inspirehep.net/search?p=find+EPRINT+math/0202282
http://arxiv.org/abs/math/0102142
http://inspirehep.net/search?p=find+EPRINT+math/0102142


J
H
E
P
0
1
(
2
0
1
5
)
0
3
0

[62] D. Harland and A.D. Popov, Yang-Mills fields in flux compactifications on homogeneous

manifolds with SU(4)-structure, JHEP 02 (2012) 107 [arXiv:1005.2837] [INSPIRE].

[63] G. Lopes Cardoso et al., NonKähler string backgrounds and their five torsion classes, Nucl.

Phys. B 652 (2003) 5 [hep-th/0211118] [INSPIRE].

[64] T.A. Ivanova and A.D. Popov, Instantons on special holonomy manifolds, Phys. Rev. D 85

(2012) 105012 [arXiv:1203.2657] [INSPIRE].

[65] S. Kobayashi and K. Nomizu, Foundations of differential geometry, volume 2, reprint of the

1969 original, John Wiley & Sons, Inc., New York U.S.A. (1996).

[66] D. Kapetanakis and G. Zoupanos, Coset space dimensional reduction of gauge theories, Phys.

Rept. 219 (1992) 4 [INSPIRE].

– 37 –

http://dx.doi.org/10.1007/JHEP02(2012)107
http://arxiv.org/abs/1005.2837
http://inspirehep.net/search?p=find+EPRINT+arXiv:1005.2837
http://dx.doi.org/10.1016/S0550-3213(03)00049-X
http://dx.doi.org/10.1016/S0550-3213(03)00049-X
http://arxiv.org/abs/hep-th/0211118
http://inspirehep.net/search?p=find+EPRINT+hep-th/0211118
http://dx.doi.org/10.1103/PhysRevD.85.105012
http://dx.doi.org/10.1103/PhysRevD.85.105012
http://arxiv.org/abs/1203.2657
http://inspirehep.net/search?p=find+EPRINT+arXiv:1203.2657
http://dx.doi.org/10.1016/0370-1573(92)90101-5
http://dx.doi.org/10.1016/0370-1573(92)90101-5
http://inspirehep.net/search?p=find+J+Phys.Rept.,219,4

	Introduction
	SU(2)- and SU(3)-structures in 5 and 6 dimensions
	Sasakian structures
	SU(2)-structures in d=5
	Example: the 5-sphere
	SU(3)-structures in d=6

	Cylinders and sine-cones over 5-manifolds with SU(2)-structure
	Calabi-Yau metric cones
	Kähler-torsion sine-cones
	Nearly Kähler sine-cones
	Half-flat cylinders
	Summary of cone constructions

	Instantons on conical 6-manifolds
	Definition and reduction of instanton equations on conical 6-manifolds
	Remarks on the instanton equation
	Instantons on nearly Kähler sine-cones
	Matrix equations — Part I
	Nearly Kähler canonical connection
	Matrix equations — Part II
	Transfer of solutions

	Instantons on half-flat cylinders
	Matrix equations — Part I
	Matrix equations — Part II


	Conclusions

