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Abstract

We consider the Hermitian Yang–Mills (instanton) equations for connections on vector bundles over a 
2n-dimensional Kähler manifold X which is a product Y ×Z of p- and q-dimensional Riemannian manifold 
Y and Z with p + q = 2n. We show that in the adiabatic limit, when the metric in the Z direction is scaled 
down, the gauge instanton equations on Y × Z become sigma-model instanton equations for maps from Y
to the moduli space M (target space) of gauge instantons on Z if q ≥ 4. For q < 4 we get maps from Y
to the moduli space M of flat connections on Z. Thus, the Yang–Mills instantons on Y × Z converge to 
sigma-model instantons on Y while Z shrinks to a point. Put differently, for small volume of Z, sigma-model 
instantons on Y with target space M approximate Yang–Mills instantons on Y × Z.
© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction and summary

The Yang–Mills equations in two, three and four dimensions were intensively studied both in 
physics and mathematics. In mathematics, this study (e.g. projectively flat unitary connections 
and stable bundles in d = 2 [1], the Chern–Simons model and knot theory in d = 3, instantons 
and Donaldson invariants [2] in d = 4 dimensions) has yielded a lot of new results in differential 
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and algebraic geometry. There are also various interrelations between gauge theories in two, 
three and four dimensions. In particular, Chern–Simons theory in d = 3 dimensions reduces to 
the theory of flat connections in d = 2 (see e.g. [3,4]). On the other hand, the gradient flow 
equations for Chern–Simons theory on a d = 3 manifold Y are the first-order anti-self-duality 
equations on Y ×R, which play a crucial role in d = 4 gauge theory.

The program of extending familiar constructions in gauge theory, associated to problems in 
low-dimensional topology, to higher dimensions was proposed by Donaldson and Thomas in 
the seminal paper [5] (see also [6]) and developed in [7–14] among others. An important role 
in this investigation is played by first-order gauge-field equations which are a generalization of 
the anti-self-duality equations in d = 4 to higher-dimensional manifolds with special holonomy 
(or, more generally, with G-structure [15,16]). Such equations were first introduced in [17] and 
further considered in [18–22] (see also the references therein).

Instanton equations on a d-dimensional Riemannian manifold X can be introduced as fol-
lows [17,5,10]. Suppose there exist a 4-form Q on X. Then there exists a (d−4)-form � := ∗Q, 
where ∗ is the Hodge operator on X. Let A be a connection on a bundle E over X with curvature 
F = dA +A ∧A. The generalized anti-self-duality (instanton) equation on the gauge field then 
is [10]

∗F + � ∧F = 0 . (1.1)

For d > 4 these equations can be defined on manifolds X with special holonomy, i.e. such that 
the holonomy group G of the Levi-Civita connection on the tangent bundle T X is a subgroup in 
SO(d). Solutions of (1.1) satisfy the Yang–Mills equation

d ∗F +A∧ ∗F − (−1)d ∗F ∧A = 0 . (1.2)

The instanton equation (1.1) is also well defined on manifolds X with non-integrable G-struc-
tures, i.e. when d� �= 0. In this case (1.1) implies the Yang–Mills equation with (3-form) torsion 
T := ∗d�, as is discussed e.g. in [23–27].

Manifolds X with a (d−4)-form � which admits the instanton equation (1.1) are usually cali-
brated manifolds with calibrated submanifolds. Recall that a calibrated manifold is a Riemannian 
manifold (X, g) equipped with a closed p-form ϕ such that for any oriented p-dimensional sub-
space ζ of TxX, ϕ |ζ ≤ volζ for any x ∈ X, where volζ is the volume of ζ with respect to the 
metric g [28]. A p-dimensional submanifold Y of X is said to be a calibrated submanifold with 
respect to ϕ (ϕ-calibrated) if ϕ |Y = volY [28]. In particular, suitably normalized powers of the 
Kähler form on a Kähler manifold are calibrations, and the calibrated submanifolds are com-
plex submanifolds. On a G2-manifold one has a 3-form which defines a calibration, and on a 
Spin(7)-manifold the defining 4-form (the Cayley form) is a calibration as well [5,6].

It is not easy to construct solutions of (1.1) for d > 4 and to describe their moduli space.1 It 
was shown by Donaldson, Thomas, Tian [5,10] and others that the adiabatic limit method pro-
vides a useful and powerful tool. The adiabatic limit refers to the geometric process of shrinking 
a metric in some directions while leaving it fixed in the others.2 It is assumed that on X there is 

1 Some explicit solutions for particular manifolds X were constructed e.g. in [21,23,25,14,27].
2 In lower dimensions, the adiabatic limit was successfully used for a description of solutions to the d=2+1 Ginzburg–

Landau equations and to the d=4 Seiberg–Witten monopole equations (see e.g. reviews [29,30] and the references
therein).
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a family �ε of (d−4)-forms with a real parameter ε such that �0 = lim
ε→0

�ε defines a calibrated 

submanifold Y of X. Then one can define a normal bundle N(Y) of Y with a projection

π : N(Y) → Y . (1.3)

The metric on X induces on N(Y) a Riemannian metric

gε = π∗gY + ε2gZ , (1.4)

where Z ∼= R
4 is a typical fibre. In fact, the fibres are calibrated by a 4-form Qε dual to �ε . 

The metric (1.4) extends to a tubular neighborhood of Y in X, and (1.1) may be considered 
on this subset of X. Anyway, it was shown [5,10,6] that solutions of the instanton equation 
(1.1) defined by the form �ε on (X, gε) in the adiabatic limit ε → 0 converge to sigma-model 
instantons describing a map from the (d−4)-dimensional submanifold Y into the hyper-Kähler 
moduli space of framed Yang–Mills instantons on fibres R4 of the normal bundle N(Y).

The submanifold Y ↪→ X is calibrated by the (d−4)-form � defining the instanton equation 
(1.1). However, on X there may exist other p-forms ϕ and associated ϕ-calibrated submanifolds 
Y of dimension p �= d−4. In such a case one can define a different normal bundle (1.3) with fi-
bres Rd−p and deform the metric as in (1.4). However, this task is quite difficult technically and 
will be postponed for a future work. As a more simple task, one may take a direct product man-
ifold X = Y×Z with dimRY = p and dimRZ = q = d−p with a p-form ϕ = volY , or consider 
non-flat manifolds Z and a (d−4)-form � defining (1.1). In string theory dimRX = 10, and cal-
ibrated submanifolds Y are identified with worldvolumes of p-branes where p varies from zero 
to ten.

In this short paper we explore the direct product case X = Y×Z with dimRY = p �= d−4 for 
Kähler manifolds X and the adiabatic limit of the Hermitian Yang–Mills equations on bundles 
over X. We will show that for even p (and hence even q) the adiabatic limit of (1.1) yields 
sigma-model instanton equations describing holomorphic maps from Y into the moduli space of 
Hermitian Yang–Mills instantons on Z. For odd p and q the consideration is more involved, and 
we describe only the case p=q=3 in which we obtain maps from Y into the moduli space of flat 
connections on Z. For the purpose of this paper, this special case sufficiently illustrates the main 
features of the odd-dimensional cases.

2. Moduli space of instantons in d ≥ 4

Bundles. Let X be an oriented smooth manifold of dimension d , G a semisimple compact Lie 
group, g its Lie algebra, P a principal G-bundle over X, A a connection 1-form on P and 
F = dA +A ∧A its curvature. We consider also the bundle of groups IntP = P ×G G (G acts 
on itself by internal automorphisms: h 
→ ghg−1, h, g ∈ G) associated with P , the bundle of 
Lie algebras AdP = P ×G g and a complex vector bundle E = P ×G V , where V is the space 
of some irreducible representation of G. All these associated bundles inherit their connection A
from P .

Gauge transformations. We denote by A′ the space of connections on P and by G′ the infinite-
dimensional group of gauge transformations (automorphisms of P which induce the identity 
transformation of X),

A 
→ Ag = g−1Ag + g−1dg , (2.1)

which can be identified with the space of global sections of the bundle IntP . Correspondingly, 
the infinitesimal action of G′ is defined by global sections χ of the bundle AdP ,
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A 
→ δχA = dχ + [A, χ] =: DAχ (2.2)

with χ ∈ LieG′ = 
(X, AdP).

Moduli space of connections. We restrict ourselves to the subspace A ⊂ A
′ of irreducible con-

nections and to the subgroup G = G′/Z(G′) of G′ which acts freely on A. Then the moduli space
of irreducible connections on P (and on E) is defined as the quotient A/G. We do not distin-
guish connections related by a gauge transformation. Classes of gauge equivalent connections 
are points [A] in A/G.

Metric on A/G. Since A is an affine space, for each A ∈ A we have a canonical identification 
between the tangent space TAA and the space �1(X, AdP) of 1-forms on X with values in the 
vector bundle AdP . We consider g as a matrix Lie algebra, with the metric defined by the trace. 
The metrics on X and on the Lie algebra g induce an inner product on �1(X, AdP),

〈ξ1, ξ2〉 =
∫

X

tr (ξ1 ∧ ∗ξ2) for ξ1, ξ2 ∈ �1(X,AdP) . (2.3)

This inner product is transferred to TAA by the canonical identification. It is invariant under the 
G-action on A, whence we get a metric (2.3) on the moduli space A/G.

Instantons. Suppose there exists a (d−4)-form � on X which allows us to introduce the instan-
ton equation

∗F + � ∧F = 0 (2.4)

discussed in Section 1. We denote by N ⊂ A the space of irreducible connections subject to 
(2.4) on the bundle E → X. This space N of instanton solutions on X is a subspace of the affine 
space A, and we define the moduli space M of instantons as the quotient space

M = N /G (2.5)

together with a projection

π : N G→ M . (2.6)

According to the bundle structure (2.6), at any point A ∈N , the tangent bundle TAN → N
splits into the direct sum

TAN = π∗T[A]M⊕ TAG . (2.7)

In other words,

TAN � ξ̃ = ξ + DAχ with ξ ∈ π∗T[A]M and DAχ ∈ TAG , (2.8)

where ξ̃ , ξ ∈ �1(X, AdP) and χ ∈ �0(X, AdP) = 
(X, AdP). The choice of ξ corresponds to 
a local fixing of a gauge.

Metric on M. Denote by ξα a local basis of vector fields on M (sections of the tangent bundle 
TM) with α = 1, . . . , dimRM. Restricting the metric (2.3) on A/G to the subspace M provides 
a metric G = (Gαβ) on the instanton moduli space,

Gαβ =
∫

tr (ξα ∧ ∗ξβ) . (2.9)
X
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Kähler forms on M. If X is Kähler with a complex structure J and a Kähler form ω(·,·) =
g(J · ,·), then the Kähler 2-form � = (�αβ) on M is given by

�αβ = −
∫

X

tr (J ξα ∧ ∗ξβ) . (2.10)

It is well known that the moduli space of framed instantons3 on a hyper-Kähler 4-manifold X
(with three integrable almost complex structures J i) is hyper-Kähler, with three Kähler forms

�i
αβ = −

∫

X

tr (J iξα ∧ ∗ξβ) . (2.11)

3. Hermitian Yang–Mills equations

Instanton equations. On any Kähler manifold X of dimension d = 2n there exists an integrable 
almost complex structure J ∈ End(T X), J 2 = −Id, and a Kähler (1, 1)-form ω(·, ·) = g(J ·, ·)
compatible with J . The natural 4-form

Q = 1
2ω ∧ ω (3.1)

and its dual � = ∗Q allow one to formulate the instanton equation (2.4) for a connection A on 
a complex vector bundle E over X associated to the principal bundle P(X, G). The fibres CN

of E support an irreducible G-representation. For simplicity, we have in mind the fundamental 
representation of SU(N). One can endow the bundle E with a Hermitian metric and choose A to 
be compatible with the Hermitian structure on E.

The instanton equations in the form (2.4) with � = 1
2 ∗ (ω ∧ ω) may then be rewritten as the 

following pair of equations,

F0,2 = −(F2,0)† = 0 (3.2)

and

ωn−1 ∧F = 0 ⇔ ω �F = ωμ̂ν̂Fμ̂ν̂ = 0 , (3.3)

where μ̂, ν̂, . . . = 1, . . . , 2n, and the notation ω� exploits the underlying Riemannian metric of X
for raising indices of ω. Eqs. (3.2)–(3.3) were introduced by Donaldson, Uhlenbeck and Yau [19]
and are called the Hermitian Yang–Mills (HYM) equations.4 The HYM equations have the fol-
lowing algebro-geometric interpretation. Eq. (3.2) implies that the curvature F = dA +A ∧A is 
of type (1, 1) with respect to J , whence the connection A defines a holomorphic structure on E. 
Eq. (3.3) means that E → X is a polystable vector bundle. The moduli space MX of HYM con-
nections on E, the metric G = (Gαβ) and the Kähler form � = (�αβ) on MX are introduced as 
described in Section 2 after specializing X to be Kähler.

Direct product of Kähler manifolds. The subject of this paper is the adiabatic limit of the HYM 
equations (3.2)–(3.3) on a direct product

3 Framed instantons are instantons modulo gauge transformations which approach the identity at a fixed point.
4 Instead of (3.3) one sometimes finds ω �F = i λ IdE with λ ∈ R. We take λ = 0, i.e. assume c1(E) = 0, since one 

may always pass from a rank-N bundle of non-zero degree to one of zero degree by considering F̃ = F − 1 (trF)1N .

N
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X = Y × Z (3.4)

of Kähler manifolds Y and Z. The dimensions p and q of Y and Z are even, and p +q = 2n. Let 
{ea} with a = 1, . . . , p and {eμ} with μ = p+1, . . . , 2n be local frames for the cotangent bundles 
T ∗Y and T ∗Z, respectively. Then {eμ̂} = {ea, eμ} with μ̂ = 1, . . . , 2n will be a local frame for 
the cotangent bundle T ∗X = T ∗Y ⊕ T ∗Z. We introduce on Y × Z the metric

g = gY + gZ = δab ea ⊗ eb + δμν eμ ⊗ eν = δμ̂ν̂ eμ̂ ⊗ eν̂ (3.5)

and an integrable almost complex structure

J = JY ⊕ JZ ∈ End(T Y ) ⊕ End(T Z) , J 2
Y = −IdY and J 2

Z = −IdZ , (3.6)

whose components are defined by JY ea = J a
b eb and JZeμ = J

μ
ν eν . Likewise, the Kähler form 

ω(·,·) = g(J · ,·) on Y × Z decomposes as

ω = ωY + ωZ (3.7)

with components ωY = (ωab) and ωZ = (ωμν).

Splitting of the HYM equations. We introduce on X = Y × Z local coordinates {ya} and {zμ}
and choose ea = dya , eμ = dzμ. Any connection on the bundle E → X is decomposed as

A = AY +AZ = Aadya +Aμdzμ , (3.8)

where the components Aa and Aμ depend on (y, z) ∈ Y × Z. The curvature F of A has compo-
nents Fab along Y , Fμν along Z, and Faμ which we call “mixed”.

Note that the holomorphicity conditions (3.2) may be expressed through the projector

P̄ = 1
2 (Id + iJ ) , P̄ 2 = P̄ (3.9)

onto the (0, 1)-part of the complexification of the cotangent bundle T ∗X = T ∗Y ⊕ T ∗Z as

P̄ P̄F = 0 , (3.10)

which in components reads

(
δσ̂
μ̂

+ iJ σ̂
μ̂

)(
δλ̂
ν̂

+ iJ λ̂
ν̂

)
F

σ̂ λ̂
= 0 . (3.11)

From (3.6) it follows that these equations split into three parts:

(
δc
a + iJ c

a

)(
δd
b + iJ d

b

)
Fcd = 0 ⇔ F0,2

Y = 0 , (3.12)(
δσ
μ + iJ σ

μ

)(
δλ
ν + iJλ

ν

)
Fσλ = 0 ⇔ F0,2

Z = 0 , (3.13)

and

FaνJ
ν
μ + J c

aFcμ = 0 ⇔ Faμ − J c
a J ν

μFcν = 0 . (3.14)

Finally, with the help of (3.7) the stability equation (3.3) takes the form

ωY �FY + ωZ �FZ = ωabFab + ωμνFμν = 0 . (3.15)
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4. Adiabatic limit of the HYM equations for even p and q

Moduli space MZ . In order to investigate the adiabatic limit of (3.12)–(3.15), we introduce on 
X = Y × Z the deformed metric and Kähler form

gε = gY + ε2gZ and ωε = ωY + ε2ωZ , (4.1)

while the complex structure J = JY ⊕ JZ does not depend on ε according to (3.6). Since JY and 
JZ are untouched, (3.12)–(3.14) keep their form in the adiabatic limit ε → 0. In particular, (3.12)
implies that F0,2

Y = 0, i.e. the bundle E → Y ×Z is holomorphic along Y for any z ∈ Z.5 On the 
other hand, (3.15) for ε → 0 becomes

ωZ �FZ = ωμνFμν = 0 , (4.2)

which together with (3.13) means that AZ is a HYM connection (framed instanton) on Z for any 
given y ∈ Y . We denote the moduli space of such connections by

MZ = NZ/GZ , (4.3)

where NZ is the space of all instanton solutions on Z for a fixed y ∈ Y , and GZ consists of 
the elements of G with the same fixed value of y. We here suppress the y dependence in our 
notation. The moduli space MZ is a Kähler manifold on which we introduce the metric G and 
Kähler form � with components

Gαβ =
∫

Z

tr (ξα ∧ ∗Zξβ) and �αβ = −
∫

Z

tr (JZξα ∧ ∗Zξβ) (4.4)

similar to (2.9) and (2.10) but now with ξα ∈ �1(Z, AdP) and the Hodge operator ∗Z defined 
on Z. Note that for dimRZ = 2 the HYM equations (3.13) and (4.2) enforce FZ = 0, i.e. MZ be-
comes the moduli space of flat connections on bundles E(y) over a two-dimensional Riemannian 
manifold Z.

A map into MZ . The bundle E(y) is a HYM vector bundle over Z for any y ∈ Y . Letting the 
point y vary, the connection AZ =Aμ(y, z)dzμ on E(y) defines a map

φ : Y → MZ with φ(y) = {
φα(y)

}
, (4.5)

where φα with α = 1, . . . , dimRMZ are local coordinates on MZ . This map is constrained by 
our remaining set of equations, namely (3.14) for the mixed field-strength components

Faμ = ∂aAμ − ∂μAa + [Aa,Aμ] = ∂aAμ − DμAa . (4.6)

Similarly to (2.7) and (2.8), ∂aAμ decomposes into two parts,

TAZ
NZ = π∗T[AZ]MZ ⊕ TAZ

GZ ⇔ ∂aAμ = (∂aφ
α)ξαμ + Dμεa , (4.7)

where {ξα = ξαμdzμ} is a local basis of vector fields on MZ . Here, εa are g-valued gauge pa-
rameters which are determined by the gauge-fixing equations

(∂aφ
α)gμνDμξαν = 0 ⇒ gμνDμDνεa = gμνDμ∂aAν . (4.8)

5 We can always choose a gauge such that A0,1 = 0 and locally A1,0 = h−1∂Y h for a G-valued function h(y, z).

Y Y
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Substituting (4.7) into (4.6), the mixed field-strength components simplify to

Faμ = (∂aφ
α) ξαμ − Dμ(Aa − εa) . (4.9)

Inserting this expression into our remaining equations (3.14), we obtain

(∂aφ
α) ξαμ − J c

a J σ
μ (∂cφ

α) ξασ = Dμ(Aa − εa) − J c
a J σ

μ Dσ (Ac − εc) (4.10)

as a condition on the map φ.

Sigma-model instantons. In order to better interpret the above equations, we multiply both sides 
with dzμ ∧ ∗Zξβ , take the trace over g, integrate over Z and recognize the integrals in (4.4). The 
integral of the right-hand side of (4.10) vanishes due to (4.7)–(4.8) (orthogonality of ξα ∈ TMZ

and Dχ ∈ T GZ), and we end up with

(∂aφ
α)Gαβ + J c

a (∂cφ
α)�αβ = 0 . (4.11)

Inverting the moduli-space metric G and introducing the almost complex structure J on MZ

via its components

J α
β := �βγ Gγα , (4.12)

we rewrite (4.11) as

∂aφ
α = −J c

a (∂cφ
β)J α

β ⇔ dφ = −J ◦ dφ ◦ J . (4.13)

Using J a
c J c

b = −δa
b and J α

γ J γ
β = −δα

β , alternative versions are

(∂aφ
β)J α

β − J b
a (∂bφ

α) = 0 ⇔ J ◦ dφ = dφ ◦ J (4.14)

and

(δb
a + iJ b

a ) (∂bφ
β)(δα

β − iJ α
β ) = 0 ⇔ P ◦ dφ ◦ P̄ = 0 , (4.15)

with the obvious definition for P .
These equations mean that φ1 + iφ2, φ3 + iφ4, . . . are holomorphic functions of complex 

coordinates on Y , i.e. φ is a holomorphic map. It is clear that our equations (4.15) are BPS-type 
(instanton) first-order equations for the sigma model on Y with target space MZ , whose field 
equations define harmonic maps from Y into MZ . For dimRY = dimRZ = 2 these equations 
have appeared in [31] as the adiabatic limit of the HYM equations on the product of two Rie-
mann surfaces.6 Our (4.15) generalize [31] to the case dimRY > 2 and dimRZ ≥ 2. From the 
implicit function theorem it follows that near every solution φ of (4.15) there exists a solution 
Aε of the HYM equations (3.2)–(3.3) for ε sufficiently small. In other words, solutions of (4.15)
approximate solutions of the HYM equations on X.

5. Adiabatic limit of gauge instantons for p = q = 3

If the Kähler manifold X is a direct product of two odd-dimensional manifolds Y and Z, i.e. 
if p = dimRY and q = dimRZ are both odd, then we may need to impose conditions on the 
geometry of Y and Z for X = Y × Z to be Kähler. However, we are not aware of these demands 

6 See also [32] where this limit was discussed in the framework of topological Yang–Mills theories.
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outside of special cases, such as products of tori. Therefore, we restrict ourselves to tori Y and 
Z with p = q = 3 since already this case illustrates essential differences from the case of even p
and q . More general situations demand more effort and will be considered elsewhere.

Deformed structures. We consider the Calabi–Yau space

X = Y × Z = T 3 × T 3
r , (5.1)

where T 3 is a 3-torus and T 3
r is another 3-torus, with r marked points (punctures). We endow X

with the deformed metric

gε = gT 3 + ε2gT 3
r

= e1 ⊗ e1 + e2 ⊗ e2 + e3 ⊗ e3 + ε2(e4 ⊗ e4 + e5 ⊗ e5 + e6 ⊗ e6) (5.2)

and choose the basis of (1, 0)-forms as

θ1 = e1 + iεe4 , θ2 = e2 + iεe5 and θ3 = e3 + iεe6 (5.3)

with a real deformation parameter ε.
The combined torus T 3 × T 3

r supports an integrable almost complex structure J satisfying 
Jθj = iθj for j = 1, 2, 3, which determines its components,

Jeμ̂ = J
μ̂

ν̂
eν̂ : J 1

4 = J 2
5 = J 3

6 = −ε and J 4
1 = J 5

2 = J 6
3 = ε−1 . (5.4)

For the Kähler form ω(·,·) = g(J · ,·) the components are

ω14 = ω25 = ω36 = ε and ω41 = ω52 = ω63 = −ε . (5.5)

Adiabatic limit for instantons. The HYM equations (3.2) and (3.3) on T 3 × T 3
r with J and ω

given by (5.4) and (5.5) read

Fab + iFaμJ
μ
b + iJμ

a Fμb − Jμ
a J ν

b Fμν = 0 ,

Fμν + iFμbJ
b
ν + iJ b

μFbν − J a
μJ b

ν Fab = 0 ,

Faμ + iFabJ
b
μ + iJ ν

a Fνμ − J ν
a J b

μFνb = 0 , (5.6)

with a, b = 1, 2, 3 and μ, ν = 4, 5, 6, as well as

F14 +F25 +F36 = 0 . (5.7)

In the adiabatic limit ε → 0 the first two lines of (5.6) reduce to

F45 = F46 = F56 = 0 (5.8)

while the mixed-component part of (5.6) together with (5.7) produces

F16 −F34 = 0 , F35 −F26 = 0 , F24 −F15 = 0 and

F14 +F25 +F36 = 0 . (5.9)

Recall that

A = AY +AZ = Aa(y, z)dya +Aμ(y, z)dzμ (5.10)

is a connection on a vector bundle E over X = T 3 × T 3
r . From (5.8) we learn that AZ is a flat 

connection on Z = T 3
r for any y ∈ Y = T 3. We denote by NZ the space of solutions to (5.8) and 
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by MZ the moduli space of all such connections. From (5.9) we see that in the adiabatic limit 
there are no restrictions on AY , since the components Aa and Fab no longer appear.

Sigma-model equations. For the mixed components Faμ of the field strength we have

Faμ = ∂aAμ − DμAa = (∂aφ
α)ξαμ − Dμ(Aa − εa) (5.11)

where, as in Section 4, we used for ∂aAμ the decomposition formula (4.7) and introduced the 
map

φ : T 3 → MT 3
r

. (5.12)

Let us, for a short while, relax the gauge fixing (4.8) and allow φ(y) to take values in the full 
solution space NT 3

r
. Correspondingly ξα = ξαμdzμ will be momentarily a basis of all vector 

fields on NT 3
r

, and εa are undetermined.
Substituting (5.11) into (5.9), we obtain the equations

(∂1φ
α) ξα6 − (∂3φ

α) ξα4 = D6(A1 − ε1) − D4(A3 − ε3) ,

(∂3φ
α) ξα5 − (∂2φ

α) ξα6 = D5(A3 − ε3) − D6(A2 − ε2) ,

(∂2φ
α) ξα4 − (∂1φ

α) ξα5 = D4(A2 − ε2) − D5(A1 − ε1) (5.13)

and

(∂1φ
α) ξα4 + (∂2φ

α) ξα5 + (∂3φ
α) ξα6

= D4(A1 − ε1) + D5(A2 − ε2) + D6(A3 − ε3) . (5.14)

Multiplying both sides with ξβμ for μ = 4, 5, 6 and integrating tr (ξαμξβν) over T 3
r , the above 

four equations yield the 3 dimRNT 3
r

relations

∂aφ
α + πa

b
c (∂bφ

β)�c α
β = jαa , (5.15)

where

πa
b
c := εb

ac and �a α
β := �a

βγ Gγα (5.16)

with

Gαβ =
∫

T 3
r

d3z δμν tr (ξαμξβν) and �a
αβ =

∫

T 3
r

d3z εa+3 μν tr (ξαμξβν) . (5.17)

The right-hand side of (5.15) is given by

jαa = Gαβ

∫

T 3
r

d3z tr
{
δb
a δμν + εb

ac εc+3 μ ν
}
Dμ(Ab − εb) ξβν . (5.18)

The (1, 1) tensors πa = (εb
ac), a = 1, 2, 3, on T 3 and the (1, 1) tensors �a = (δab�

b α
β) on 

NT 3
r

satisfy the identities

π3
a + πa = 0 and �3

a + �a = 0 , (5.19)

i.e. they define three so-called f -structures [33] correspondingly on T 3 and on NT 3
r

. To clarify 
their meaning we observe that (5.19) defines orthogonal projectors
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Pa := −π2
a and P ⊥

a := 13 + π2
a (5.20)

of rank two and rank one on T 3 and similarly orthogonal projectors

Pa := −�2
a and P⊥

a := Id + �2
a (5.21)

on NT 3
r

, where Id is the identity tensor. The tangent bundle T (T 3) splits into eigenspaces of Pa ,

T (T 3) = T (T 2
a × S1

a) = T (T 2
a ) ⊕ T (S1

a) = La ⊕ Na for a = 1,2,3 , (5.22)

which defines on T 3 two distributions La and Na of rank two and one, respectively, and decom-
poses the 3-torus in three different ways. Analogously, the projector Pa yields a splitting

T (NT 3
r
) = La ⊕Na (5.23)

which is in fact induced by the factorization of T 3
r into a two-dimensional torus and a circle.

We now come back to the question of gauge fixing. Recalling that AZ is flat on T 3
r , we gauge 

away one component, say

A6 = 0 ⇒ ξα6 = δαA6 = 0 , (5.24)

from which it follows in (5.17) that

�1
αβ = �2

αβ = 0 (5.25)

and only �3
αβ is non-vanishing. With (5.24) our moduli space MT 3

r
is reduced to the moduli 

space MT 2
r

of flat connections on the torus T 2
r .7 Furthermore, jαa defined by (5.18) must be 

zero since ξα with the gauge-fixing condition (5.24) are tangent to the moduli space MT 2
r

of 
flat connections on T 2

r and therefore orthogonal to Dμ(Ab − εb) in (5.18) tangent to the gauge 
orbits. Thus, after fixing the gauge A6 = 0 the sigma-model instanton equations (5.15) reduce to

(∂1 + i∂2)φ
β(δα

β − iJ α
β ) = 0 and ∂3φ

α = 0 , (5.26)

where ∂a := ∂/∂ya and J α
β := �3α

β is a complex structure on the Kähler moduli space MT 2
r

of flat connections on T 2
r . Hence, for p = q = 3 we obtain the degenerate case of holomorphic 

maps

φ : T 2 → MT 2
r

(5.27)

from T 2 into the moduli space MT 2
r

. This is degenerate in the sense that the HYM connection on 
T 3 × T 3

r in the adiabatic limit for (5.2) is implicitly reduced to a HYM connection on T 2 × T 2
r .

Remark. The above degeneracy is not generic but relates only to the case of q = 3. As a coun-
terexample, let us consider q = 4, for instance the G2-instanton equations (for a definition see 
e.g. [5,6,12,14]) on the 7-manifold

X = Y × Z = T 3 × Z with Z = T 4 , K3 or R
4 . (5.28)

In the adiabatic limit of ε → 0 with the deformed metric gε = gY + ε2gZ the G2-instanton 
equations become

7 For simplicity we locate all punctures on the two-dimensional torus.
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∂aφ
α + εb

ac (∂bφ
β)J c α

β = 0 . (5.29)

This looks similar to (5.15) with jαa = 0 and features three complex structures J c = (J c α
β)

(instead of f -structures �c) on the hyper-Kähler moduli space MZ of framed Yang–Mills in-
stantons on the hyper-Kähler 4-manifold Z. These equations were discussed e.g. in [6,13] in the 
form of Fueter equations. In the above case (5.28) they define maps φ : T 3 → MZ which are 
sigma-model instantons minimizing the standard sigma-model energy functional.
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