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Abstract

We derive exact inversion identities satisfied by the transfer matrix of inhomogeneous interaction-round-
a-face (IRF) models with arbitrary boundary conditions using the underlying integrable structure and 
crossing properties of the local Boltzmann weights. For the critical restricted solid-on-solid (RSOS) models 
these identities together with some information on the analytical properties of the transfer matrix deter-
mine the spectrum completely and allow to derive the Bethe equations for both periodic and general open 
boundary conditions.
© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.

1. Introduction

Functional relations between the transfer matrices of integrable models together with the 
knowledge of their analytical properties provide a powerful basis for the solution of their spectral 
problem. An important example are the so-called inversion relations [1–3]. In the thermodynamic 
limit these relations become identities (at least for part of the spectrum) allowing to compute the 
free energy of certain models exactly [4,5]. Generalized inversion relations for the restricted 
solid-on-solid (RSOS) model have been obtained from the fusion hierarchy [6,7] and have been 
used to identify the low energy effective theory of the critical model through solution of nonlinear 
integral equations [8] or to study their surface critical behavior [9].

Recently, sets of exact inversion identities for the transfer matrices of inhomogeneous vertex 
models have been used to tackle the long-standing problem of finding Bethe equations for the 
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spectrum of the integrable XXZ spin chain subject to non-diagonal boundary conditions which 
break the U(1) symmetry of the bulk, see e.g. Refs. [10–19]. They have been derived for vertex 
models using as only input the underlying Yang–Baxter and reflection equation and physical 
assumptions such as crossing and unitary of the local Boltzmann weights. Unlike the inversion 
identities mentioned above they only hold for a discrete set of spectral parameters related to the 
inhomogeneities introduced in the lattice model [20]. Similar expressions for the corresponding 
eigenvalues had been obtained before using Sklyanin’s separation of variables [16,21], or by 
considering certain matrix elements of the transfer matrix [22,23].

While the use of these identities for the actual computation of eigenvalues is restricted to 
small systems they allow, once complemented by information on the analytical properties of the 
transfer matrix, to formulate the spectral problem in the form of Baxter’s TQ-equation [24] or 
inhomogeneous generalizations thereof [20,22,23]. In addition, the number of solutions to the in-
version identities are rather easily counted which allows to address the problem of completeness 
of the Bethe ansatz for the underlying model [16,21,25–27].

First attempts to extend this method for the solution of the spectral problem to integrable 
interaction-round-a-face (IRF) statistical models have made use of the reorganization of Boltz-
mann weights of solid-on-solid (SOS) models in an R-matrix solving the dynamical six-vertex 
Yang-Baxter algebra [28]. Adapting Sklyanin’s separation of variables the eigenvalues of the 
transfer matrix of the dynamical six-vertex model on a lattice with odd number of sites and with 
antiperiodically twisted boundary conditions have been shown to satisfy quadratic equations for 
a discrete set of spectral parameters [29]. In another approach functional relations have been de-
rived from the dynamical Yang–Baxter equation to determine the partition function of the SOS 
model with domain wall boundaries [30,31].

In this paper we derive inversion identities for the transfer matrix of general IRF models di-
rectly in the face formulation of the Yang–Baxter algebra using unitarity and crossing properties 
of the local Boltzmann weights. For this we consider inhomogeneous face models subject to pe-
riodic and generic integrable open boundary conditions. Starting from these identities we show 
that they allow to derive TQ-equations for the critical RSOS models. The eigenvalues of the 
transfer matrix are parametrized in terms of the solution to Bethe equations which allow to study 
properties of finite chains and to perform the thermodynamic limit.

2. Discrete inversion identities for IRF models

Below we consider inhomogeneous IRF models and construct inversion identities satisfied by 
their commuting transfer matrices. As will become transparent below, the derivation is valid for 
a generic class of integrable lattice models, provided that certain local relations are satisfied. The 
fundamental blocks of the models are given by the Boltzmann face weights

W

(
a b

d c

∣∣∣∣u
)

= u

a b

d c

where the spin variables a, b, c, d take values within a discrete set S. The allowed states of the 
IRF model are constrained by selection rules which are conveniently encoded in the so-called 
adjacency matrix A:

Aab =
{

0: spins a and b may not be adjacent
1: spins a and b may be adjacent,
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such that the Boltzmann weights satisfy

W
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a b

d c

∣∣∣∣u
)

= AabAbcAcdAdaW

(
a b

d c

∣∣∣∣u
)

. (2.1)

The face weights are assumed to satisfy a set of local relations. First of all, the integrability of 
the models is guaranteed by the Yang–Baxter equation (YBE)
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In addition, we assume that the Boltzmann weights satisfy unitarity

∑
e

W

(
d e

a b

∣∣∣∣u
)

W

(
d c

e b

∣∣∣∣ − u

)
= ρ(u)ρ(−u)δac, (2.3)

crossing symmetry

W

(
b c

a d

∣∣∣∣λ − u

)
= W

(
a b

d c

∣∣∣∣u
)

, (2.4)

and become diagonal at the so-called shift points

W

(
a b

d c

∣∣∣∣0

)
= δb

d, and W

(
a b

d c

∣∣∣∣λ
)

= δa
c , (2.5)

which correspond to the identification of scattering particles in the underlying physical pic-
ture. The function ρ(u) appearing in (2.3) is model-dependent. It can be normalized such that 
ρ(0) = 1.

For models with open boundary conditions (left and right) boundary Boltzmann weights have 
to be introduced

B
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)
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�
�
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b

c

u

Integrability requires that they satisfy the reflection or boundary Yang–Baxter equation (BYBE). 
For the left boundary weights the BYBE is given by [7,32]

∑
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The boundary weights are normalized by the boundary inversion condition

∑
B
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c
b

∣∣∣∣u
)
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d
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∣∣∣∣ − u

)
= βa(u)βa(−u)δa

d , (2.7)

c
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with model-dependent functions βa(u). Furthermore, they are required to satisfy the boundary 
crossing condition

∑
d

B

(
c

a
d

∣∣∣∣u
)

W

(
c b

d a

∣∣∣∣2u − λ

)
= −ρ(λ − 2u)B

(
c

a
b

∣∣∣∣λ − u

)
. (2.8)

Similar relations hold for the right boundary weights [7].
For the derivation of inversion identities below we use a graphical representation of the rela-

tions listed above, see also [7]: the YBE (2.2) is given by
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Here and in the following diagrams the spin variables on nodes with a solid circle are summed 
over all elements from S. Nodes with equal spins are connected by a dotted line. Similarly, the 
unitarity condition is represented by
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= ρ(u)ρ(−u)δac

where the first diagram depicts (2.3). Crossing symmetry (2.4) has been used for the alternative 
representations.

Boundary inversion (2.7) and crossing condition (2.8) for the left boundary weights are rep-
resented in a similar manner by

�
��

�
��

�
��

�
��

�

d

a

c

b

b

−u

u

= δa
d
βa(u)βa(−u)

and
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respectively. The corresponding relations for the right boundaries are obtained by reflecting these 
diagrams.

2.1. Periodic boundary conditions

To derive a set of inversion identities for integrable IRF models subject to periodic boundary 
conditions we introduce columns of inhomogeneities {u�}. The resulting transfer matrix is given 
by the product of Boltzmann weights

T(u) ≡ T
a0···aL

b0···bL
(u) =

L∏
�=1

W

(
a�−1 a�

b�−1 b�

∣∣∣∣u − u�

)

= u − u1 · · · u − uk · · · u − uL

b0 b1 bLbL−1bk−1 bk

a0 a1 ak−1 ak aL−1 aL

(2.9)

where (aL, bL) ≡ (a0, b0) to impose periodic boundary conditions. As a direct consequence of 
the YBE (2.2) the transfer matrices form a commuting family of operators, [T(u), T(v)] = 0, 
which establishes the integrability of the inhomogeneous model. Using the local relations 
(2.3)–(2.5) then, it can be shown that the product T(u)T(λ + u) becomes diagonal for u = uk . 
Using the graphical representation introduced above, we obtain

T
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b1 bk−1 bk bL−1
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a0 a1 ak−1 ak ak+1 aL−1 aL = a0

b0
b1 bk−1 bk bk+1 bL−1

bL = b0

c0 c1 cL = c0cL−1ck−1 ck ck+1

� � � � � �

= ρ(uk − uk+1)ρ(uk+1 − uk)
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×
uk − u1 · · · · · · uk − uL

λ + uk − u1 · · · · · · λ + uk − uL

a0 a1 ak−1 ak ak+1 aL−1 aL = a0

b0
b1 ak bk+1 bL−1 bL = b0

c0 c1 cL = c0cL−1ck−1 ck ck+1
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= · · · =
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)
δa1
c1

· · · δaL
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.

Here, the first graph represents the product of the two transfer matrices at the particular val-
ues. As a consequence of the shift points (2.5) the k-th column reduces to δak

bk−1
δ
bk−1
ck

= δ
ak

bk−1
δ
ak
ck

. 
Using the unitarity (2.3) of the Boltzmann weights in the (k + 1)-st column an additional Kro-
necker delta, δak+1

ck+1 , is produced. Repetitive use of unitarity proves that the product of the transfer 
matrices is essentially proportional to the identity operator

T(uk)T(λ + uk) =
(

L∏
�=1

ρ(uk − u�)ρ(u� − uk)

)
1, k = 1,2, . . . ,L. (2.10)

The number of these inversion identities is equal to the length L of the model. However, due to 
the identity

L∏
�=1

T(u�) =
L∏

�=1

T(λ + u�) =
(

L∏
k,�=1

ρ(uk − u�)

)
1, (2.11)

only L − 1 of Eqs. (2.10) are independent. It should be noted that the homogeneous limit of the 
inversion identities (2.10) coincides with the u = 0 limit of the inversion identities derived in [2]
for homogeneous face models.

2.2. Generic integrable open boundary conditions

The commuting double-row transfer matrix for an open boundary IRF model with inhomo-
geneities {u�} is given by [7,33]
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u

(2.12)
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By construction D(u) enjoys crossing symmetry [7]

D(u) = D(λ − u). (2.13)

The derivation of inversion identities for the case of open boundary conditions is more subtle 
than for the periodic chain, since apart from the crossing symmetry and unitarity relations, one 
has to use the YBE (2.2) and the local relations satisfied by the boundary weights, in particular 
boundary inversion (2.7) and crossing (2.8). Crossing symmetry (2.13) of the transfer matrix 
implies D(u)D(λ + u) = D(u)D(−u). Considering the second form at u = uk , for k = 1, . . . , L, 
we find that the inversion identities satisfied by the double-row transfer matrices of IRF models 
are given by

D
a0···aL

b0···bL
(uk)D

b0···bL

d0···dL
(−uk)

= βaL
(uk)βaL

(−uk)βa0(uk)βa0(−uk)ρ(2uk − λ)ρ(−λ − 2uk)

×
L∏

�=1
��=k

ρ(uk − u�)ρ(−uk + u�)ρ(uk + u�)ρ(−uk − u�)

× δ
a0
d0

δ
a1
d1

· · · δaL

dL
. (2.14)

Note that while the product D(u)D(−u) is diagonal, the entries depend on the boundary spins 
a0, aL. A graphical proof of these identities is given in Appendix A.

We emphasize that the inversion identities (2.10) and (2.14) are valid for any IRF model with 
bulk and boundary weights satisfying the algebraic relations (2.2)–(2.8).

3. Application to RSOS models

As an application of the identities derived above we now consider the critical restricted 
solid-on-solid (RSOS) models on a square lattice. The SOS Boltzmann weights satisfying the 
Yang–Baxter equation (2.2) are [34]

W

(
d c

a b

∣∣∣∣u
)

= δbd

√
[a][c]
[b][d]ρ(u + λ) − δacρ(u), ρ(u) = sin(u − λ)

sinλ
, (3.1)

with [x] = sin(xλ)/ sinλ, for height variables satisfying the SOS condition given in terms of 
the adjacency matrix A with entries Aab = δa,b+1 + δa,b−1. The Boltzmann weights satisfy the 
unitarity relation (2.3) and crossing symmetry1

W

(
d c

a b

∣∣∣∣u
)

=
√

[a][c]
[b][d]W

(
a b

d c

∣∣∣∣λ − u

)
. (3.2)

1 Note that the crossing relation in the form (2.4) used above can be recovered by a gauge transformation of the 
Boltzmann weights [33]

W

(
d c

a b

∣∣∣∣u
)

→
( [a][c]

[b][d]
) u

2λ
W

(
d c

a b

∣∣∣∣u
)

.

This gauge does not affect the transfer matrix (2.9) of the periodic model (nor, after a similar transformation of the 
boundary weights, that for open boundary conditions, Eq. (2.12)) or the corresponding inversion identities.
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Choosing λ = π/r and limiting the height variables to take values from S = {1, 2, . . . , r − 1}
subject to the RSOS condition expressed through the resulting (r −1) × (r −1) adjacency matrix 
defines the restricted SOS model.

3.1. Periodic boundary conditions

Considering the RSOS model with inhomogeneities {uk}Lk=1 the transfer matrix is given by 
Eq. (2.9) and satisfies the L − 1 independent inversion identities (2.10). The eigenvalues of T(u)

satisfy a similar identity, i.e.

Λ(p)(uk)Λ
(p)(λ + uk) =

L∏
�=1

ρ(uk − u�)ρ(u� − uk), k = 1, . . . ,L − 1. (3.3)

A similar set of equations has recently been obtained for the SOS model with antiperiodically 
twisted boundary conditions (corresponding to aL = r − a0 in the present context) model by 
extending Sklyanin’s separation of variables method [21] to the corresponding dynamical six-
vertex model [29]. In this approach the RHS of the inversion identity is related to the quantum 
determinant of the dynamical vertex model.

Using (2.10) or (3.3) together with some information on the analytical properties of the trans-
fer matrix the solution of the spectral problem is possible: from (3.1) we find that the transfer 
matrix is periodic in u with period π (for even length lattices) and both T(u) and its eigenvalues 
can be written as Fourier polynomials

T(u) =
L/2∑

n=−L/2

Tnei2nu. (3.4)

The spectrum of the transfer matrix can be classified into r − 1 topological sectors through the 
asymptotic behavior of the transfer matrix eigenvalues, i.e.(

L∏
�=1

e±i(u�+λ/2)

)
Λ

(p)

±L/2 = α(n)

(2 sinλ)L
, (3.5)

where α(n) take values from the spectrum of the adjacency matrix, i.e. α(n) ∈ spec(A) =
{2 cos(aλ)}r−1

a=1 [8]. Given a possible value of Λ(n)
±L/2 the inversion identities (2.10) constitute 

a system of quadratic equations for the remaining Fourier coefficients. For small systems we 
have verified that they have 2(L−1) independent solutions for each topological sector. This is 
more than the 

(
L

L/2

)
corresponding eigenvalues of the transfer matrix of the unrestricted solid-

on-solid model. The RSOS spectrum is known to be the subset of the SOS one with eigenstates 
of non-zero norm on the restricted Hilbert space, i.e. a ∈ {1, 2, . . . , r − 1} [35]. We shall return 
to the identification of the RSOS spectrum among the solutions of the inversion identities below.

For an efficient computation of transfer matrix eigenvalues for large systems the identities 
(2.10), however, are not suitable. For a generic choice of the inhomogeneities, in particular u� �=
uk + λ for � �= k, however, they are formally equivalent to Baxter’s TQ-equation

Λ(p)(u)q(u) = a(u)q(u − λ) + d(u)q(u + λ), (3.6)

restricted to the discrete set of points u ∈ {uk, uk + λ}Lk=1 provided that a(uk) = 0 = d(λ + uk)

and, as a consequence of (3.3),
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a(λ + uk)d(uk) =
L∏

�=1

ρ(uk − u�)ρ(u� − uk). (3.7)

In the context of Sklyanin’s separation of variables this amounts to a choice of a(u), d(u) factor-
izing the quantum determinant of a vertex model [21].

TQ-equations such as (3.6) holding for arbitrary u are obtained in the Bethe ansatz formu-
lations of the spectral problem of integrable systems. Provided that they allow for a sufficiently 
simple (e.g. polynomial) ansatz for the functions q(u) they can be solved using the Bethe equa-
tions for the finitely many zeroes of these functions.

In the present case of the periodic RSOS model we factorize (3.7) as

a(u) ≡ ω

L∏
�=1

sin(u − u�)

sinλ
, d(u) ≡ ω−1

L∏
�=1

sin(−u + u� + λ)

sinλ
, (3.8)

and take the Fourier polynomial

q(u) =
M∏

j=1

sin(u − μj ), (3.9)

parametrized by M complex numbers μj ≡ iαj + λ/2 as our ansatz for the q-functions. As a 
consequence of the analyticity of the transfer matrix and its eigenvalues the αj are determined by 
the Bethe equations of the inhomogeneous six-vertex model with twisted boundary conditions

ω2
L∏

�=1

sinh(αj + iu� − iλ
2 )

sinh(αj + iu� + iλ
2 )

= −
M∏

k=1

sinh(αj − αk − iλ)

sinh(αj − αk + iλ)
, j = 1, . . . ,M. (3.10)

Here the twist parameter ω has to be chosen such that the transfer matrix eigenvalues Λ(p)(u)

obtained from the TQ-equation shows the asymptotic behavior (3.5), i.e.

ωei( L
2 −M)λ + ω−1e−i( L

2 −M)λ ≡ cosaλ. (3.11)

Finally, among the solutions to (3.10) the ones corresponding to eigenvalues of the RSOS 
model have to be selected. In previous studies of the RSOS model the set of Bethe equations 
(3.10) in the homogeneous limit u� ≡ 0 has been obtained by embedding the RSOS transfer 
matrix into the fusion hierarchy of integrable generalizations of the RSOS model [6] and using 
the algebraic Bethe ansatz [28,35]. In Ref. [6] it has been conjectured, that the spectrum of the 
RSOS model is obtained from configurations of M = L/2 roots grouped into strings of length 
n = 1, . . . , r − 1 with real centers α(n)

j [36]

α
(n)
j,m = α

(n)
i + iλ

(
n + 1

2
− m

)
, m = 1, . . . , n. (3.12)

Based on this conjecture, integral equations for the densities of these strings in the thermody-
namic limit have been derived and the low energy effective field theories describing the critical 
behavior of the RSOS models have been identified [6,37].

3.2. Open diagonal boundary conditions

As a consequence of the adjacency condition for the RSOS model the most general boundary 
matrix has the form [33]
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B

(
a

b
c

∣∣∣∣u
)

= δa �=bX
c
ab(u) + δa,b

(
δc,a+1Dc(u) + δc,a−1Uc(u)

)
. (3.13)

For diagonal boundaries (also named fixed boundaries [38]) the Hilbert space of the model can 
be decomposed into sectors labeled by the boundary heights a0 and aL, with the allowed com-
binations of (a0, aL) depending on the length L of the system. In this case the non-vanishing 
boundary weights are given by [7,33]

Da+1(u) =
√

[a + 1]
[a]

sin(u + ξa) sin(u − aλ − ξa)

sin2 λ
,

Ua−1(u) =
√

[a − 1]
[a]

sin(u − ξa) sin(u + aλ + ξa)

sin2 λ
, (3.14)

for 2 ≤ a ≤ r−2. The weights D2(u) and Ur−2(u) simply multiply the eigenvalues of the transfer 
matrix in the sectors with a0 ∈ {1, r − 1}, and similar for aL. Therefore, any crossing symmet-
ric choice of these weights satisfies the reflection (2.6) and boundary crossing symmetry (2.8)
relations.

The inversion identities of the transfer matrix are given by Eq. (2.14), with the boundary 
information being captured by the functions

βa(u) = sin(u − ξa) sin(u + aλ + ξa)

sin2 λ
. (3.15)

In general, the boundary parameters ξa are chosen different for the left and right boundaries. By 
construction, the double-row transfer matrix of the RSOS model (and its eigenvalues) is an even 
Fourier polynomials in u

D(u) =
L+2∑

k=−L−2

Dke2iku, Dk = D−ke−2ikλ, (3.16)

and becomes diagonal at the special point (note that Da0···aL

b0···bL
(u) ∝ δ

a0
b0

δ
aL

bL
for diagonal bound-

aries)

D
a0···aL

b0···bL
(u = 0) = 2 cos(λ)βa0(0)βaL

(0)

(
L∏

�=1

ρ(u�)ρ(−u�)

)
. (3.17)

The corresponding eigenvalues Λ(o)(u) will have a Fourier expansion similar to (3.16). Taking 
into account the crossing symmetry (2.13) inherited from the transfer matrix, Λ(o)(u) = Λ(o)(λ −
u), there are in total L + 3 undetermined Fourier coefficients. The L inversion identities (2.14)
and relation (3.17) may be supplemented by the asymptotic behavior of the transfer matrix: 
analyzing the spectra of the double-row transfer matrix for small lattice lengths L, we find that 
the leading term is

Λ
(o)
L+2 = 2 cos(λ)e−iλ(L+2)

(2i sinλ)2L+4
, (3.18)

independent of the boundary spins a0, aL or of the inhomogeneities of the lattice. The subleading 
Fourier coefficient Λ(o)

L+1, however, does depend on the choice of the boundary sector (a0, aL)

but is the same for all states within this sector. This fact implies that within a TQ-equation formu-
lation, the subleading order should not depend on the Bethe roots. This observation together with 
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the inversion identities (2.14) for the eigenvalues and Eqs. (3.17) and (3.18) provides a consis-
tent set of relations, through which the L + 3 Fourier coefficients are completely determined. We 
have used this scheme to determine the eigenvalues of the double-row transfer matrix of RSOS 
models with r = 4, 5, 6 and systems sizes up to L = 8. Comparison with the spectrum obtained 
by exact diagonalization of the transfer matrix exhibits perfect agreement.

Having verified, that the identities listed above do in fact capture the full information required 
for the computation of the transfer matrix spectrum, we now formulate a TQ-equation which 
allows for an efficient determination of the eigenvalues for arbitrary system sizes. Similar as in 
the case of periodic boundary conditions, Eq. (3.6), we note that the inversion identities (2.14)
for the eigenvalues can be interpreted as conditions for the solvability of the difference equation

Λ(o)(u)q(u) = a(λ − u)q(u − λ) + a(u)q(u + λ), (3.19)

at the special values u = uk provided that a(λ − uk) = a(λ + uk) = 0 and

a(uk)a(−uk) = βa0(uk)βa0(−uk)βaL
(uk)βaL

(−uk)
ρ(−λ + 2uk)

ρ(2uk)

ρ(−λ − 2uk)

ρ(−2uk)

×
L∏

j=1

ρ(uk − uj )ρ(−uk − uj )ρ(−uk + uj )ρ(uk + uj ). (3.20)

In (3.19) we have used the crossing symmetry (2.13) of the transfer matrix and assumed that the 
q-function is given by the crossing symmetric Fourier polynomial

q(u) =
M∏

�=1

sin(u − μ�) sin(u + μ� − λ), (3.21)

whose degree M is determined below.
To determine the functions a(u) we require (3.20) to hold for generic values of the spectral 

parameter: together with the asymptotic behavior (3.18) of Λ(o) this condition is found to de-
termine uniquely the bulk part (containing factors of ρ(u)) of a(u). For the factorization of the 
boundary terms, containing the factors βα(u), there exist four possible combinations, leading to 
different TQ-equations. It is convenient to parametrize these distinct combinations by introduc-
ing the signs {ε0, εL} ∈ {±1}. The generic boundary dependence in a(u) which encompasses all 
four possibilities can be written then as βa0(ε0u)βaL

(εLu) and the function a(u) reads

a(u) = βa0(ε0u)βaL
(εLu)

ρ(−λ + 2u)

ρ(2u)

L∏
j=1

ρ(u − uj )ρ(u + uj ). (3.22)

Comparison with the leading asymptotic behavior (3.18) relates uniquely the value of M with 
the boundary heights a0, aL for each combination

M = L − a0ε0 − aLεL

2
. (3.23)

We have numerically verified for small size systems that each of the resulting TQ-equations leads 
to the correct spectrum of the transfer matrix. Furthermore, the subleading order coefficient of 
the Fourier expansion of the eigenvalues (3.19) turns out to be independent of the signs ε0, εL

and of the Bethe roots μj
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ΛL+1 = −2eiλΛL+2

cosλ

(
cos(a0λ) cos(a0λ + 2ξa0) + cos(aLλ) cos(aLλ + 2ξaL

)

+ cos 2λ

L∑
�=1

cos 2μ�

)
, (3.24)

as expected from our numerical analysis above. For the particular choice ε0 = −εL = −1 the 
TQ-equation (3.19) coincides with the one derived for the SOS models via the algebraic Bethe 
ansatz starting from a reference state outside the Hilbert space of the RSOS model [33]. Using 
the analyticity of the transfer matrix one can derive Bethe equations for the parameters μj =
iαj + λ/2, k = 1, . . . , M , in the q-function for the sector (a0, aL):

∏
x=0,L

sinh(αj − i(εxξax − λ
2 ))

sinh(αj + i(εxξax − λ
2 ))

sinh(αj + i(εx(ξax + axλ) + λ
2 ))

sinh(αj − i(εx(ξax + axλ) + λ
2 ))

×
L∏

�=1

sinh(αj − iu� − iλ
2 )

sinh(αj − iu� + iλ
2 )

sinh(αj + iu� − iλ
2 )

sinh(αj + iu� + iλ
2 )

=
M∏

k �=j

sinh(αj − αk − iλ)

sinh(αj − αk + iλ)

sinh(αj + αk − iλ)

sinh(αj + αk + iλ)
. (3.25)

Here the first line contains the phase shifts associated with reflection from the left and right 
boundary, respectively.

3.3. Open non-diagonal boundaries

Boundary Boltzmann weights for RSOS models with non-diagonal (or free) integrable bound-
aries have been constructed by directly solving the BYBE [33,39] and by using the face–vertex 
correspondence [40]. In [38], an alternative realization of non-diagonal boundary weights was 
given based on an extension of the diagonal ones (3.14) with auxiliary face weights. As a conse-
quence, the spectral problem of the RSOS models subject to non-diagonal boundary conditions 
can be mapped to that with diagonal ones presented in the previous section.

Following Ref. [38], the construction is based on the observation that if B satisfies the BYBE 
(2.6) then the dressed boundary weight B ′ defined by

B ′
(

a0
b0

c0

∣∣∣∣u
)

= B

(
a−n

b−n
c−n

∣∣∣∣u
)

×
∑

c−1···c−n

[
0∏

j=−n+1

W

(
aj−1 aj

cj−1 cj

∣∣∣∣u − uj

)
W

(
cj−1 cj

bj−1 bj

∣∣∣∣λ − u − uj

)]
, (3.26)

also solves the BYBE. Here, the lattice has formally been extended by n faces with additional 
inhomogeneities {uj }0 . For a particular choice of the inhomogeneities the additional spin 
j=−(n−1)
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variables on sites −n, . . . , −1 can be eliminated using fusion projection operators on (3.26) [38].2

Note, that as a consequence of the adjacency condition of the RSOS model all boundary spins 
a0, b0 have the same parity.

As an example, general non-diagonal left boundary weights for RSOS models with even parity 
boundary spins for r > 4 can be obtained by starting with the diagonal ones (3.14) for fixed 
boundary conditions a−n = b−n ≡ ā = r

2 ( r+1
2 ) for even (odd) r , which are then dressed by 

n = [ r−1
2 ] − 1 auxiliary faces. Projecting out the auxiliary spins requires to choose the auxiliary 

inhomogeneities in (3.26) as [38]

uj = χ0 + (n + j − 1)λ, j = −(n − 1), . . . ,0. (3.27)

Non-diagonal right boundary weights are constructed in an analogous way. The eigenvalues of 
the RSOS model with such boundary conditions can then be obtained from the TQ-equation 
Eq. (3.19) for an open RSOS model with L +nL + nR faces. As a consequence of the constraint 
(3.27) the left boundary phase shift in (3.25) are changed to

sinh(α − i(ε0ξa0 − λ
2 ))

sinh(α + i(ε0ξa0 − λ
2 ))

sinh(α + i(ε0(ξa0 + a0λ) + λ
2 ))

sinh(α − i(ε0(ξa0 + a0λ) + λ
2 ))

× sinh(α + iχ0 − iλ
2 )

sinh(α − iχ0 + iλ
2 )

sinh(α + iχ0 − i(nL − 1
2 )λ)

sinh(α − iχ0 + i(nL − 1
2 )λ)

, (3.28)

with a similar change for the right one.

4. Discussion

In this work we investigated inhomogeneous IRF models with different boundary conditions 
and were able to derive exact inversion identities satisfied by the commuting transfer matrices of 
these models. Since our derivation is based on a generic set of local relations satisfied by the face 
and boundary weights, these inversion identities are applicable for a large class of integrable IRF 
models. The identities found here are similar to the ones obtained previously for vertex models 
by means of separation of variables [16,18,21] or based on local properties of the vertex weights 
and reflection matrices [20].

Focusing then on the critical RSOS models with periodic and open boundary conditions, 
we have solved the spectral problem of the models by using the extracted inversion identities. 
In each case, the set of inversion identities once complemented with relations emerging from 
transfer matrix properties, such as their asymptotic behavior, forms a sufficient set to determine 
the eigenvalues of the latter. In a further step, the spectral problem has been formulated as a 
TQ-equation and a parametrization of the eigenvalues in terms of roots to Bethe equations can 
be derived.

For the periodic case, our results reproduce those obtained in Ref. [6] by means of functional 
relations arising from the fusion hierarchy of transfer matrices. For diagonal open boundary 
conditions we have derived four different TQ-equations, each of them yielding the complete 
spectrum of the RSOS transfer matrix. One of the TQ-equations found here coincides with that 

2 A similar construction allows to construct dynamical (operator-valued) boundary matrices for vertex models by pro-
jection onto subspaces of the additional quantum spaces, see [41,42].
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for the unrestricted SOS model with open diagonal boundary conditions by means of the alge-
braic Bethe ansatz [33]. We note, however, that this approach cannot be applied for the RSOS 
model due to the restriction of spin values. Furthermore, the embedding the transfer matrix of 
the latter into that of the SOS model has been shown for periodic boundary conditions only [35]. 
Finally, TQ-equations and a Bethe ansatz for RSOS models with general non-diagonal boundary 
conditions have been derived from the inversion identities for extended IRF models with diagonal 
boundary weights dressed by auxiliary faces [38].

These results for RSOS models show that the use of inversion identities provides a basis for 
the efficient solution of the spectral problem of IRF models in cases where other Bethe ansatz 
type approaches may not work. We note that our present analysis focused on the eigenvalues 
of the transfer matrix only. Eigenvectors (or the computation of matrix elements) have not been 
considered yet. Recently, methods related to the ones employed here have led to considerable 
advances in vertex models with non-diagonal boundary conditions [18,43,44]. Using face–vertex 
correspondence and, as a first step, exploring the formal similarity of our results to those obtained 
using separation of variables for dynamical vertex models [29] similar results can be expected 
for IRF models.

Another problem which has been successfully addressed using separation of variables for 
vertex models and the related spin- 1

2 chains is that of the completeness of the Bethe ansatz [16,
21,27]. As has been discussed above, it easily seen that the number of solutions to the inversion 
identities exceeds the dimension of the Hilbert space for the RSOS models. This is a consequence 
of the restriction of spin variables and the constraints imposed by the adjacency condition. For 
the periodic RSOS model physical states have been associated with certain root patterns to the 
Bethe equations (3.10) [6]. For the RSOS model with open boundary conditions or more general 
IRF models further work is necessary for this classification.
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Appendix A. Graphical proof of the inversion identities (2.14) for open boundary 
conditions

For the double-row transfer matrix of the open boundary IRF model (2.12) we consider the 
product

D
a0···aL

b0···bL
(uk)D

b0···bL

d0···dL
(−uk)

=
�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

� � � � � �

� � � � � �

� � � � � �

� �

a0 a0 a1 ak−1 ak aL−1 aL aL

c1 ck−1 ck cL−1

b1 bk−1 bk bL−1

q1 qk−1 qk qL−1

d0 d0 d1 dk−1 dk dL−1 dL dL

b0 bL

λ–uk

λ+uk

λ − uk − u1 · · · λ − uk − uk · · · λ − uk − uL

uk − u1 · · · uk − uk · · · uk − uL

λ + uk − u1 · · · λ + uk − uk · · · λ + uk − uL

−uk − u1 · · · −uk − uk · · · −uk − uL

uk

−uk
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=
�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

� � � � � �

� � � � �

� � � � � �

� �

a0 a0 a1 ak−1 ak aL−1 aL aL

c1 ck−1 ck cL−1

b1 bk−1 bk bL−1

q1 qk−1 qk qL−1

d0 d0 d1 dk−1 dk dL−1 dL dL

b0 bL

λ–uk

λ+uk

λ − uk − u1 · · · λ − 2uk · · · λ − uk − uL

uk − u1 · · · · · · uk − uL

λ + uk − u1 · · · · · · λ + uk − uL

−uk − u1 · · · −2uk · · · −uk − uL

uk

−uk

As in the periodic case summations over the spins bk,. . . ,bL−1 can be performed using the uni-
tarity condition (2.3) for the inner faces resulting in

L∏
�=k+1

ρ(uk − u�)ρ(u� − uk)

×
�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

� � � � � �

� �

� � � � � �

� �

a0 a0 a1 ak−1 ak aL−1 aL aL

c1 ck−1 ck cL−1

b1 ck

q1 qk−1 qk qL−1 qL

d0 d0 d1 dk−1 dk dL−1 dL dL

b0 bL

λ–uk

λ+uk

λ − uk − u1 · · · λ − 2uk · · · λ − uk − uL

uk − u1 · · ·

λ + uk − u1 · · ·

−uk − u1 · · · −2uk · · · −uk − uL

uk

−uk

Next, summation over bL with the boundary inversion condition (2.7) gives

βaL
(uk)βaL

(−uk)

L∏
�=k+1

ρ(uk − u�)ρ(u� − uk)

×
�

�

�
�

�
�

�
�

� � � � � �

� �

� � � � � �

�

a0 a0 a1 ak−1 ak aL−1 aL

c1 ck−1 ck cL−1

b1 ck

q1 qk−1 qk qL−1 qL

d0 d0 d1 dk−1 dk dL−1 dL

b0

λ–uk

λ+uk

λ − uk − u1 · · · λ − 2uk · · · λ − uk − uL

uk − u1 · · ·

λ + uk − u1 · · ·

−uk − u1 · · · −2uk · · · −uk − uL

Using unitarity again for the outer faces we perform the summation over q�, � = L, L − 1,

. . . , k + 1
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βaL
(uk)βaL

(−uk)

L∏
�=k+1

ρ(uk − u�)ρ(−uk + u�)ρ(uk + u�)ρ(−uk − u�)

×
�

�

�
�

�
�

�
�

� � � �

� �

� � � �

�

a0 a0 a1 ak−1 ak

c1 ck−1 ck

b1 ck

q1 qk−1

qk

d0 d0 d1 dk−1 dk

b0

λ–uk

λ+uk

λ − uk − u1 · · · λ − 2uk

uk − u1 · · ·

λ + uk − u1 · · ·

−uk − u1 · · · −2uk

ak+1

dk+1

aL−1

dL−1

aL

dL

· · ·

· · ·

= βaL
(uk)βaL

(−uk)

L∏
�=k+1

ρ(uk − u�)ρ(−uk + u�)ρ(uk + u�)ρ(−uk − u�)

×
�

�

�
�

�
�

�
�

�
��

�
���

��

�
��

�
��

�
��

�
��

�
��

�

� � �

� �

� � �

�

a0 a0 a1 ak−1 ak−1

c1 ck−1 ak

b1 ck

q1 qk−1

dk

d0 d0 d1 dk−1 dk−1

b0

λ–uk

λ+uk

λ − uk − u1 · · ·
λ − 2uk

uk − u1 · · ·

λ + uk − u1 · · ·

−uk − u1 · · ·
λ + 2uk

ak+1

dk+1

aL−1

dL−1

aL

dL

· · ·

· · ·

In the last step we have used the crossing symmetry (2.8) of the Boltzmann weights. Using the 
YBE (2.2) the outer and inner faces can be interchanged

βaL
(uk)βaL

(−uk)

L∏
�=k+1

ρ(uk − u�)ρ(−uk + u�)ρ(uk + u�)ρ(−uk − u�)

×
�

�

�
�

�
�

�
�

�
��

�
���

��

�
��

�
��

�
��

�
��

�
��

λ + 2uk

λ − 2uk
� � �

� �

�

�

� �

� � �

� �

a0 a0 a0 a1 ak−2 ak−1

c1 ak

ck

q1

d0 d0 d0 d1 dk−2 dk−1

dk

b0

λ–uk

λ+uk

λ − uk − u1 λ − uk − uk−1

uk − u1 uk − uk−1· · ·

· · ·
· · ·

· · ·
−uk − u1 −uk − uk−1

λ + uk − u1 λ + uk − uk−1

ak+1

dk+1

aL−1

dL−1

aL

dL

· · ·

· · ·

and using boundary crossing we obtain

βaL
(uk)βaL

(−uk)ρ(2uk − λ)ρ(−λ − 2uk)

×
L∏

ρ(uk − u�)ρ(−uk + u�)ρ(uk + u�)ρ(−uk − u�)
�=k+1
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×
�

�

�
�

�
�

�
�

�

�

�

� �

�

�

�

�� �

� �

a0 a0 a1 ak−2 ak−1

c1 ak

ck

q1

d0 d0 d1 dk−2 dk−1

dk

b0
b1 bk−2

uk

−uk

λ − uk − u1 λ − uk − uk−1

uk − u1 uk − uk−1· · ·

· · ·

· · ·

· · ·

−uk − u1 −uk − uk−1

λ + uk − u1 λ + uk − uk−1

ak+1

dk+1

aL−1

dL−1

aL

dL

· · ·

· · ·

Employing unitarity (2.3) for the inner faces the spins ck and b�, � = k − 2, . . . , 1 are summed 
over

βaL
(uk)βaL

(−uk)ρ(2uk − λ)ρ(−λ − 2uk)

×
L∏

�=k+1

ρ(uk − u�)ρ(−uk + u�)

L∏
�=1
��=k

ρ(uk + u�)ρ(−uk − u�)

×
�

�

�
�

�
�

�
�

� � �

��� �

�

a0 a0 a1 ak−2 ak−1

c1 ak

q1

d0 d0 d1 dk−2 dk−1

dk

b0

uk

−uk

uk − u1 uk − uk−1· · ·

· · ·λ + uk − u1 λ + uk − uk−1

ak+1

dk+1

aL−1

dL−1

aL

dL

· · ·

· · ·

Finally, using the boundary inversion condition (2.7) and unitarity of the outer faces the summa-
tions over the remaining internal spins can be done resulting in

βaL
(uk)βaL

(−uk)βa0(uk)βa0(−uk)ρ(2uk − λ)ρ(−λ − 2uk)

×
L∏

�=k+1

ρ(uk − u�)ρ(−uk + u�) ×
L∏

�=1
��=k

ρ(uk + u�)ρ(−uk − u�)

×
� � �

��� �

a0 a1 ak−2 ak−1

c1 ak

q1

d0 d1 dk−2 dk−1

dk

uk − u1 uk − uk−1· · ·

· · ·λ + uk − u1 λ + uk − uk−1

ak+1

dk+1

aL−1

dL−1

aL

dL

· · ·

· · ·
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= βaL
(uk)βaL

(−uk)βa0(uk)βa0(−uk)ρ(2uk − λ)ρ(−λ − 2uk)

×
L∏

�=1
��=k

ρ(uk − u�)ρ(−uk + u�)ρ(uk + u�)ρ(−uk − u�) × δ
a0
d0

δ
a1
d1

· · · δaL

dL
.
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