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an analytic proof that the flux singularity is resolved there by a polarization of the anti-

D6-branes into a D8-brane, which wraps a finite 2-sphere inside of the compact space. To
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with backreacting anti-D6-branes and show that it has a local maximum at zero radius and

a local minimum at a finite radius of the 2-sphere. The polarization is triggered by a term

in the potential due to the AdS curvature and does therefore not occur in non-compact

setups where the 7d external spacetime is Minkowski. We furthermore find numerical

evidence for the existence of non-supersymmetric solutions in our setup. This is supported

by the observation that the general solution to the equations of motion has a continuous

parameter that is suggestive of a modulus and appears to control supersymmetry breaking.

Analyzing the polarization potential for the non-supersymmetric solutions, we find that the

flux singularities are resolved there by brane polarization as well.
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1 Introduction

Type II flux compactifications with D-brane or O-plane sources provide a very impor-

tant and reasonably generic class of string backgrounds, in particular in the context of

semi-realistic string model building. The best understood examples of this type are com-

pactifications in which the flux preserves the same type of supersymmetry as the D-branes

and O-planes or at least satisfies a mutual BPS-type no-force condition as in [1]. The

opposite case, where one combines an anti-D-brane with a flux that globally carries the

charge of one or more D-branes (or vice versa), is much harder to access analytically but

nevertheless of great interest, e.g., for de Sitter model building [2] or holographic duals of

meta-stable states in gauge theories [3].

During the past few years, various independent studies of different models of the latter

type have indicated that the backreaction of oppositely charged branes (in the following

simply called “anti-branes”) induces an unusual type of singularity in their vicinity. The

singularity is unusual in the sense that it occurs in the energy density of one or more p-form

potentials that are not directly sourced by the anti-branes. The existence of the singular-

ity was inferred first from a computation of the linearized perturbation of the Klebanov-

Strassler (KS) solution [4] by partially smeared anti-D3-branes [5–8] (see also [9–11] for

other works). An analogous singularity was then found in [12, 13] using non-perturbative

analytical computations in a massive IIA compactification on AdS7 × S3 with H3 flux
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and anti-D6-branes. In [14], a non-perturbative proof was later also found for partially

smeared anti-D3-branes in the KS background. Similar perturbative and non-perturbative

results also exist for configurations with anti-M2-branes and anti-D2-branes [15–21], where,

in contrast to their anti-D3 and anti-D6 counterparts, the singularities are not even inte-

grable [15–17]. For the case of fully localized anti-D3-branes in the KS throat, an analytic

argument for the existence of the singularity was recently given in [22] based on a general

relation between the classical cosmological constant and the near-brane behavior of the

supergravity fields (see also [23, 24] for earlier related work and [25] for a warped effective

field theory analysis of the singularity). Taken together, all these works put the existence

of the flux singularities on very solid computational ground.

The physical meaning of the singular flux, on the other hand, is less clear and has been

the subject of various discussions. In [26], it was suggested that the singularity might signal

a perturbative instability of the backreacted solution. Another idea in the recent literature

is to regulate the singularity by introducing physical IR cutoffs such as a temperature or a

Hubble scale. Explicit tests showed that this is not possible in non-compact geometries [27–

29], which violates a criterion for acceptable singularities due to Gubser [30].

In a different line of thought, one may wonder whether one can identify a particular

stringy effect that resolves the singularity. One possibility that comes to mind is a polar-

ization of the branes into a fuzzy higher-dimensional brane via the Myers effect [31], which

is known to cure singularities in the Polchinski-Strassler solution [32]. For the case of the

non-compact KS background, it was indeed shown in [3] that probe anti-D3-branes can

polarize into an NS5-brane. Taking into account the backreaction of the anti-D3-branes,

however, a polarization does not seem to occur anymore, at least not in the orthogonal

D5-brane polarization channel [33]. Furthermore, it was shown in [34] that anti-D6-branes

in a non-compact background with F0 and H3 flux do not polarize into a D8-brane. In an

interesting recent paper, the analogous problem was investigated for anti-M2-branes in the

CGLP background [35], the M-theory analogue of the KS solution. Using a combination of

indirect arguments, the authors were able to infer the polarization potential for localized

anti-M2-branes and argued that it is unstable, thus leading to a polarization of the anti-

M2-branes into an M5-brane. However, a definite conclusion about the endpoint of the

polarization process could not be reached, and the authors conjectured that the polarized

solution is likely to be unstable itself against various decay channels.

One might therefore conclude that polarization does either not happen in solutions

with anti-branes or does not lead to a (meta-)stable configuration and can therefore not

resolve the singular flux. Since above results were obtained only in the context of non-

compact setups, however, it is natural to ask whether compactification effects can change

the conclusion. In this paper, we elaborate on this question focussing on massive type

IIA flux compactifications with anti-D6-branes. For the non-compact case, their possible

polarization was analyzed in [34] by computing the potential for a probe D8-brane that

carries anti-D6-brane charge and wraps a topologically trivial S2 at a distance r from a

large number of backreacting anti-D6-branes. The potential then turned out to have a local

minimum at the position of the anti-D6-branes but no minimum away from them such that

a polarization does neither happen perturbatively nor non-perturbatively via tunnelling.
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The assumption of non-compactness in [34] was made in order to make contact with the

discussion of anti-D3-branes in the non-compact KS geometry via T-duality. Moreover, it

was only due to this assumption that one could actually make a definite statement about

the D8-potential without knowing the entire solution of the anti-D6-brane background.

Instead, owing to a universal behavior of the potential, it was sufficient to analyze the

local solution in the vicinity of the anti-branes in order to rule out polarization. In the

compact case, by contrast, the AdS curvature makes an extra contribution to the potential

that has the right sign to turn the local minimum at the origin into a local maximum,

provided the coefficients have the right magnitude. One can show that this would then

also lead to the appearance of a lower-lying minimum at a finite distance away from the

origin and, hence, to brane polarization. The coefficients, however, cannot be determined

without further information about the global solution so that it had to be left open in [34]

whether a polarization happens in the compact model.

The whole story received a new twist by the interesting recent work [36], where it

was found that the anti-D6-brane model of [12, 13] admits solutions that preserve some

supersymmetry. This is somewhat surprising at first sight since, taking the anti-branes

to be smeared along the transverse space, the very same compactifications do not seem

to preserve supersymmetry in any reasonable sense [37]. The fact that supersymmetric

solutions with localized anti-branes nevertheless exist can be traced back to the possibility

of having a variable Killing spinor on the 3-sphere that interpolates between the different

supersymmetries preserved near and away from the anti-branes. Because of the preserved

supersymmetry, the field equations are then much simpler first order equations, which

facilitates the construction of numerical solutions [36].

In the present paper, we revisit the question of brane polarization in the compact

anti-D6-brane model of [12, 13] in light of these new developments. In the first part of

our paper, we focus on supersymmetric solutions and show that the extra constraints im-

posed by supersymmetry are strong enough to allow a definite statement about brane

polarization. In particular, we find that the D8-brane potential has a universal form with

a local maximum at the origin and a local minimum at a finite distance away from the

anti-D6-branes, where the parameters of the solution can always be chosen such that the

local minimum is consistent with the supergravity approximation. This means that, in

the compact model, the anti-D6-branes do polarize into D8-branes and the singularity is

resolved.1 In the second part of our paper, we discuss the question as to whether there

could also be non-supersymmetric solutions to our setup, and whether the flux singularity

is resolved there by brane polarization as well. In this paper, we give numerical evidence

for a one-parameter family of solutions to the full second order field equations, which

are only supersymmetric for a special choice of the parameter. Computing the D8-brane

potential, we find that different regimes of this parameter lead to a different qualitative

behavior. For non-supersymmetric solutions that are close to the supersymmetric one in

moduli space, we find a similar behavior with a local maximum at the origin and a local

1This seems to be consistent with independent recent findings in version 2 of [36] regarding the D8-brane

solutions themselves.
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minimum at a finite distance away from it. The mass of the worldvolume scalar responsible

for brane polarization then satisfies the Breitenlohner-Freedman (BF) bound [38, 39] such

that polarization happens non-perturbatively in this regime. Further away from the super-

symmetric point, however, we also find regimes that are physically different. Some of the

non-supersymmetric solutions are then tachyonic, i.e., the mass of the worldvolume scalar

sinks below the BF bound such that brane polarization can already happen perturbatively.

This paper is organized as follows. In section 2, we present the setup of our model, re-

view some earlier results used in this paper and discuss the parameter space of the general

solution. In section 3, we discuss the polarization potential and its regime of validity. In

section 4, we analyze supersymmetric solutions of our setup and give an analytic proof that

the flux singularity is resolved there by brane polarization. In section 5, we present nu-

merical evidence for the existence of non-supersymmetric solutions and show that the anti-

D6-branes polarize there as well. We conclude in section 6 with a summary of our results

and some interesting questions for future research. For some of the technical details and

further background material on the numerical treatment used in this work, we refer to [40].

2 General setup

2.1 Ansatz and field equations

We consider compactifications of massive type IIA supergravity on AdS7 × S3 with space-

time filling anti-D6-branes and H3 flux threading the 3-sphere. This model was first pro-

posed in [41] and analyzed in detail in [12, 13]. If one smears the anti-D6-branes across the

S3, it is straightforward to find global solutions to the equations of motion [12, 41]. These

solutions are non-supersymmetric [37] but nevertheless perturbatively stable in the sector of

the left-invariant deformations [12]. The broken supersymmetry is plausible because the H3

flux has to carry D6-brane charge in order to cancel the global tadpole of the anti-D6-branes.

Treating the anti-D6-branes as localized objects that are pointlike in the compact di-

mensions, the solution aquires a warp and a conformal factor, as well as non-trivial dilaton

and F2 profiles [12]. Furthermore, contrary to the smeared case, supersymmetric solutions

are possible [36]. In order to simplify the equations of motion, we assume that all anti-D6-

branes are sitting on either of the two poles of the 3-sphere such that an SO(3) rotational

symmetry is preserved and the system becomes effectively one-dimensional [12]. Using stan-

dard spherical coordinates, we denote by θ ∈ [0, π] the angular coordinate that interpolates

between the north pole and the south pole of the 3-sphere and parameterize the metric as

ds210 = e2A(θ)ds2AdS7 + e2B(θ)
(
dθ2 + sin2(θ)ds2S2

)
, (2.1)

where

ds2S2 = dϕ2 + sin2(ϕ)dχ2 (2.2)

is the line element of an ordinary 2-sphere and ds2AdS7
the one for a 7-dimensional Anti-de

Sitter space. Here, we have included a warp factor A and a conformal factor B, which can

depend on the coordinate θ.2

2The SO(3) invariance would also allow a separate conformal factor in front of the S2 line element. With

a redefinition of θ, however, this can always be absorbed such that the form (2.1) is obtained.
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The most general ansatz for the fluxes compatible with the symmetries of our setup is

H = λ(θ)F0e
7
4
φ(θ) ?3 1, (2.3)

F2 = e−
3
2
φ(θ)−7A(θ) ?3 dα(θ), (2.4)

where φ(θ) denotes the dilaton and we introduced two functions α(θ) and λ(θ) as in [12].

Using the H3 equation of motion, one finds an algebraic relation between the functions

λ(θ) and α(θ),

α+ const = e
3
4
φ+7Aλ. (2.5)

The additive constant can always be absorbed into a redefined α, which we will assume

in the following. We thus end up with four independent functions of one variable: A(θ),

B(θ), φ(θ) as well as either λ(θ) or α(θ).

The non-trivial equations of motion are the F2 Bianchi identity, the dilaton equation,

the trace of the external Einstein equation as well as the internal Einstein equations along

the (θθ)-direction and along the transverse directions. They read (in this order) [12]:

0 = −

(
e−

3
2
φ−7A+B sin2 θ α′

)′
e3B sin2 θ

+ e
7
4
φλF 2

0 +Qδ(Σ), (2.6)

0 = −
(
e7A+B sin2 θ φ′

)′
e7A+3B sin2 θ

+ e
5
2
φF 2

0

(
5

4
− λ2

2

)
+

3

4
e−14A−2B−

3
2
φ
(
α′
)2

+
3

4
e

3
4
φTδ(Σ), (2.7)

0 = 96e−2A + 16e−2B

[
7
(
A′
)2

+A′B′ +

(
sin2 θ A′

)′
sin2 θ

]
+ e

5
2
φF 2

0

(
1− 2λ2

)
− e−14A−2B−

3
2
φ
(
α′
)2 − e

3
4
φTδ(Σ), (2.8)

0 = −2 +

(
sin2 θ B′

)′
sin2 θ

+ 7
(
A′
)2

+B′′ + 7A′′ − 7A′B′

+
1

2

(
φ′
)2

+
1

16
e

5
2
φ+2BF 2

0

(
1 + 6λ2

)
− 1

16
e−14A−

3
2
φ
(
α′
)2

+
7

16
e

3
4
φ+2BTδ(Σ), (2.9)

0 = −2 +

(
sin2 θ B′

)′
sin2 θ

+
(
B′
)2

+ cot θ (7A+B)′ + 7A′B′

+
1

16
e

5
2
φ+2BF 2

0

(
1 + 6λ2

)
+

7

16
e−14A−

3
2
φ
(
α′
)2

+
7

16
e

3
4
φ+2BTδ(Σ), (2.10)

where primes are derivatives with respect to θ and δ(Σ) should be read as a sum of delta

distributions due to the localized sources at the north and south pole. One can verify that

all other equations of motion are automatically satisfied for the above ansatz of the fields.

Note that, while (2.6)–(2.10) seem to imply five second order ODEs for the four functions

A, B, φ and α, only four of them are really independent.3

2.2 Near-brane expansion

Although the above ansatz considerably simplifies the equations of motion, finding the

general analytic solution to the differential equations (2.6)–(2.10) is still a difficult problem.

3The three Einstein equations can be combined to give a constraint equation that only contains first

derivatives of A, B, φ and α. Taking the derivative of this constraint can then be used to derive, e.g., the

second order equation for α.
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In [13], however, it was noted that, even in the absence of the full solution, one can obtain

useful information by performing an expansion of the fields A, B, φ and λ around the north

pole θ = 0 (or, equivalently, the south pole θ = π). Solving the equations of motion order

by order in this expansion, one finds surprisingly strong constraints on the behavior of the

fields. In particular, it was shown in [13] that only two different boundary conditions at the

pole are consistent with the equations of motion. The first boundary condition describes

fields in the vicinity of the anti-D6-branes,4 while the second boundary condition is valid

for a pole without any localized sources. The small-θ behavior of the fields for a pole with

anti-branes is then given by

e−A(θ) = θ−
1
16
(
a0 + a1θ + a2θ

2 + . . .
)
, e−2B(θ) = θ

7
8
(
b0 + b1θ + b2θ

2 + . . .
)
,

e−
1
4
φ(θ) = θ−

3
16
(
f0 + f1θ + f2θ

2 + . . .
)
, λ(θ) = θ−1

(
λ0 + λ1θ + λ2θ

2 + . . .
)
, (2.11)

where ai, bi, fi and λi are certain expansion coefficients that we will discuss momentarily.

For a pole without any sources, one finds a non-singular behavior of the fields,

e−A(θ) = ã0 + ã2θ
2 + ã4θ

4 + . . . , e−2B(θ) = b̃0 + b̃2θ
2 + b̃4θ

4 + . . . ,

e−
1
4
φ(θ) = f̃0 + f̃2θ

2 + f̃4θ
4 + . . . , λ(θ) = λ̃0 + λ̃2θ

2 + λ̃4θ
4 + . . . , (2.12)

where ãi, b̃i, f̃i and λ̃i are again some expansion coefficients, which are non-zero only

for even powers of θ due to symmetry reasons. Note that an analogous expansion of the

fields around the south pole θ = π can always be obtained by replacing θ → π − θ in

above equations. By using the metric ansatz (2.1) together with the near-brane boundary

condition (2.11) in (2.3), one finds that the energy density of the H3 flux is divergent at

the anti-brane position [13],

e−φ|H|2 ∝ θ−
1
8 . (2.13)

The resolution of this singularity by brane polarization is the topic of this paper.

2.3 Parameter space of the general solution

Substituting the small-θ solution (2.11) into the equations of motion, one finds that it has

6 free parameters, which are given by the lowest order expansion coefficients a0, b0, f0, λ0,

λ1 and the Romans mass F0. All higher order coefficients ai, bi, fi, λi are fixed in terms of

these parameters, as can be checked by solving the equations of motion order by order in

the θ expansion [13]. In order to obtain some information about the global solution from

our knowledge of the local solution, it is crucial to understand the physical meaning of the

6-dimensional parameter space. Let us therefore explain the origin of these parameters in

detail.

We first discuss the parameters b0, f0 and F0, whose interpretation is the easiest:

• One combination of the parameters fixes the charge Q1 of the source that sits at

the north pole. This combination can explicitly be determined by an analysis of the

4Instead of the anti-D6-branes considered in this paper, also D6-branes are allowed as consistent sources.
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divergent field behavior near the localized sources. For the case of anti-D6-branes,

the charge is negative and given by Q1 = −f30 /
√
b0 [13].5

• The parameter F0 fixes the Romans mass.

• One combination of the parameters is related to a residual gauge degree of freedom

that is not fixed in our ansatz for the internal metric (2.1). This ansatz still allows

for a redefinition θ → θ̃(θ) of the spherical coordinates, as can be seen by considering

coordinate transformations of (2.1) satisfying

e2B̃(θ̃)dθ̃2 = e2B(θ)dθ2, e2B̃(θ̃) sin2(θ̃) = e2B(θ) sin2(θ). (2.14)

Combining the two conditions yields the ODE

dθ̃(θ)

dθ
=

sin θ̃

sin θ
, (2.15)

which can be solved to find a one-parameter family of solutions for θ̃(θ) of the form

θ̃(θ) = const · θ + O(θ2) (cf. a similar discussion in [12]). This reparametrization

freedom can be fixed by setting the parameter b0 to an arbitrary value.

The remaining 3 parameters a0, λ0 and λ1 depend on global properties of the solution

such that we were not able to analytically determine how their deformation affects the

solution. However, as mentioned in the introduction, we also looked for numerical solu-

tions of the equations of motion (2.6)–(2.10). An explicit check of the properties of the

numerical solutions in different regions of the parameter space then lead to the following

interpretation of a0, λ0 and λ1:

• One combination of the parameters fixes the charge Q2 of a possible source located at

the south pole, i.e., the pole opposite to the pole around which we expand the fields.

In order to explicitly determine the combination of parameters that equals Q2, one

would have to connect the small-θ expansion of the fields to the field behavior near

the opposite pole, which is not possible in the absence of a full analytic solution.

We have therefore not been able to find an analytic expression for Q2 in terms of

the local parameters {a0, b0, f0, λ0, λ1, F0}. However, our numerical simulations verify

that indeed one direction in the full 6-dimensional parameter space controls the value

of the charge at the south pole.

• One combination of the parameters is related to the integration range of the fields

A(θ), B(θ), φ(θ) and λ(θ), i.e., the range θ ∈ [0, θint] within which none of the

fields diverge. Since the compact space in our setup is a conformal 3-sphere and our

ansatz allows the presence of sources only at θ = 0 and/or θ = π, we demand that our

5In the special case Q1 = 0 where no source sits at the pole, the correct behavior of the fields is not

given by (2.11) but by the smooth boundary condition (2.12). Choosing the latter on the north pole then

automatically restricts to the Q1 = 0 subspace of the general solution without fixing any of the expansion

coefficients ãi, b̃i, f̃i, λ̃i, F0. This is consistent with the fact that substituting (2.12) instead of (2.11) into

the equations of motion yields only 5 instead of 6 free parameters.
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solutions have an integration range θint = π, i.e., the fields are only allowed to diverge

at either of the two poles but have to be regular inbetween.6 Note that, contrary

to an assumption in [37], our numerical simulations show that this requirement fixes

only one direction in the 6-dimensional parameter space.

• One combination of the parameters, which we denote by σ in the following, appears

to be a modulus. As we will discuss in section 5, it is related to supersymmetry

breaking. This interpretation is again supported by our numerical simulations, which

show that the supersymmetry conditions are only fulfilled for certain values of this

parameter, while the general equations of motion are satisfied to good accuracy for

all other values as well. Just like for the two parameters controlling Q2 and θint, we

were not able to find an analytic expression of σ in terms of the local parameters

{a0, b0, f0, λ0, λ1, F0}. We will show in section 4, however, that the requirements

of supersymmetry and integration range θint = π taken together can explicitly be

written as two conditions for λ0 and λ1 in terms of the other local parameters.

To summarize, we have used a combination of analytic and numerical insights to con-

clude that, after fixing a gauge for θ and restricting to solutions that integrate to π, the

general solution to (2.6)–(2.10) has one continuous parameter σ, which is suggestive of a

modulus, and 3 discrete parameters {Q1, Q2, F0}, which specify the brane charges at the

two poles as well as the flux number.

3 Brane polarization

3.1 The D8-brane potential

As discussed in the introduction, the Myers effect [31] provides a possible mechanism for

the resolution of the unusual anti-brane singularity (2.13). According to this idea, the

backreacted field configuration near the anti-D6-branes could trigger their polarization

into a D8-brane, which wraps a topologically trivial S2 at a finite θ = θ? away from the

original position of the branes and has the anti-D6 charge dissolved into worldvolume flux.

The original solution would then have to be cut off at θ = θ? and matched to a non-singular

solution in the interior of the D8-brane, so that the singularity disappears. For this to be

possible, the configuration with the D8-brane at θ? > 0 has to be dynamically favored.

One way to test this is to consider a probe D8-brane carrying a large number n of anti-

D6-brane charge and place it into the backreacted field configuration sourced by an even

larger number N � n of anti-D6-branes [34]. The DBI and WZ action of the D8-brane

then induce an effective potential V (θ) for the D8-brane position, which, in order that

brane polarization occurs, should have a local extremum at θ = 0 and a lower-lying local

mimimum at some finite θ = θ? > 0. The purpose of the present section is to compute this

potential, where we will closely follow the analysis of [34].

6We also found numerical solutions with a smaller integration range some of which may have a physical

interpretation as well. We leave the discussion of these solutions for future work.
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We start with the D8-brane action in Einstein frame,

SD8 = −µ8
∫

d9ξ e
5
4
φ
√
−det

(
gαβ − e−φ/2Fαβ

)
+ µ8

∫
(C9 −F ∧ C7) , (3.1)

where F = B + 2πF in string units and F is the worldvolume gauge field strength. The

latter can be determined by demanding that the WZ term in the action carries n units of

anti-D6-brane charge. This yields

F =
n

2
volS2 , (3.2)

where volS2 = sin(ϕ)dϕ ∧ dχ is the volume-form of the 2-sphere. The gauge potentials

appearing in the action are given by dB = H, dC7 = −e
3
2
φ ?10 F2 and dC9 = e

5
2
φ ?10 F0 +

H ∧ C7 in our conventions and can be expressed in terms of the fields A, B, φ and λ by

using these definitions together with our ansatz (2.1), (2.3) and (2.4).

We can then substitute these expressions into (3.1) and perform a double expansion

of the action in powers of 1/n and θ using (2.11) (we refer to [34] for more details on the

computation). The regime in which this expansion is consistent will be discussed below.

One finds that it is sufficient to consider the three leading terms in the potential [34],

V (θ) ∝ n

2
c2θ

2 − c3θ3 +
2

n
c4θ

4, (3.3)

where the coefficients are given by7

c2 = − 7

a50b0f
3
0

+
1

12

λ20F
2
0

a70b0f
13
0

, c3 =
1

3

λ0F0

a70b
3/2
0 f100

, c4 =
1

2

1

a70b
2
0f

7
0

. (3.4)

The important point to note here is that the potential (3.3) favors brane polarization if

the coefficient c2 in front of the quadratic term is negative since the potential then has a

local minimum at finite θ that is lower than the local maximum at the origin. If, on the

other hand, c2 is positive, it depends on its magnitude whether or not such a minimum

at finite θ exists. Without further knowledge of the parameters a0, b0, f0, λ0 and F0, it

would thus be impossible to decide whether the branes polarize or not. This is different

in the non-compact model studied in [34], where the external spacetime was chosen to be

Minkowski. The first term in c2, which can be traced back to the AdS curvature, is then

absent such that c2 is always positive. Furthermore, one can then check that there is no

other minimum away from θ = 0 such that polarization can neither happen perturbatively

nor non-perturbatively. For the non-compact model, one therefore concludes that the anti-

D6-branes do not polarize and the singularity prevails [34]. In sections 4 and 5, we will

feed in additional information on the parameters a0, b0, f0, λ0 and F0 that will allow us to

determine the sign and magnitude of c2 also for the compact model.

An important question is furthermore whether, for c2 < 0, the mass of the worldvolume

scalar θ is above or below the BF bound [38, 39]. Computing the kinetic term for θ from

7By flipping the orientation of the D8-brane, it is always possible to change the sign of the coefficient in

front of the cubic term. In the following, we will restrict to one choice for this sign, as this is sufficient to

show that polarization occurs in our solutions.
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the DBI action, we find that the Lagrangian to quadratic order takes the form

L(θ) ∝ − 1

2a50b0f
3
0

(∂µθ)
2 − c2θ2 +O(θ3), (3.5)

where the kinetic term is contracted with the unwarped AdS7 metric, which has unit radius

in our conventions. Note that the overall proportionality factor of the Lagrangian does not

matter at this order as it can always be absorbed by a field redefinition. We thus find that

the mass of the scalar is given by

m2 = 2c2a
5
0b0f

3
0 = −14 +

1

6

λ20F
2
0

a20f
10
0

. (3.6)

For a canonically normalized scalar field in (d+1)-dimensional AdS space with unit radius,

the BF bound is m2 ≥ −d2

4 , which in our case becomes m2 ≥ −9.

3.2 Regime of validity

In order to derive the potential (3.3), we used several approximations. A simple way to show

that these are justified is to consider scaling symmetries of the supergravity equations [42,

43] (see also [22, 24]). In particular, one verifies that (2.6)–(2.10) are invariant under the

global rescalings

e−A → ζ3/8ξ−5/8e−A, e−2B → ζ3/4ξ−5/4e−2B, e−
1
4
φ → ζ1/8ξ1/8e−

1
4
φ,

λ→ λ, F0 → ζF0, Q→ ξQ, T → ξT. (3.7)

The expansion (2.11) and the fact that |Q| = T = Nµ6 for a background with N anti-D6-

branes then imply that the expansion coefficients scale like

a0 ∼ F 3/8
0 N−5/8, b0 ∼ F 3/4

0 N−5/4, f0 ∼ F 1/8
0 N1/8, λ0 ∼ F 0

0N
0. (3.8)

Using these scalings in (3.4), we furthermore find

c2 ∼ F−30 N4, c3 ∼ F−40 N5, c4 ∼ F−50 N6. (3.9)

We can thus hope that, by choosing an appropriate regime for n, N and F0, we can rescale

the terms in the potential (3.3) such that our different approximations are all satisfied

at the same time. That this is indeed the case can be seen by checking the following

conditions [34]:

• We consider n probe D6-branes that polarize into a D8-brane via the Myers effect.

This description is valid if

1� n� N. (3.10)

• The radius of the D8-brane at the minimum of the potential, θ? = n
3c3±
√

9c23−32c2c4
16c4

,

must be small in order that the θ expansion is still valid. Hence,

n
F0

N
� 1. (3.11)
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• The expansion of the DBI action in powers of 1/n is justified if det(eφ/2g(S2)

αβ ) �
detFαβ, where g(S2)

αβ denotes the metric along the 2-sphere wrapped by the D8-brane.

This implies n� θ
3/2
?

f20 b0
, which again yields

n
F0

N
� 1. (3.12)

• The radius of the 2-sphere wrapped by the D8-brane should be large in string units,

det(eφ/2g(S2)

αβ )� 1. This yields 1� θ
3/2
?

f20 b0
and, hence,

n�
(
N

F0

)1/3

. (3.13)

This condition ensures that the background curvature is small at θ?.

• The string coupling eφ should be small at the minimum, i.e., f0θ
−3/16
? � 1. This

leads to the condition

n�
(
N5

F0

)1/3

. (3.14)

These conditions agree exactly with the conditions for the non-compact model, which were

obtained in [34] using a somewhat different reasoning. It is straightforward to check that

all conditions can be satisfied together, e.g., for the choice n = 20, N = 400 and F0 = 4.

4 The supersymmetric solution

In the recent work [36], supersymmetric warped compactifications of the form AdS7×M3

of the type II supergravity theories were classified. For the case of massive type IIA

supergravity considered in the present paper, it was found in [36] that a compactM3 must

have S3 topology, and numerical solutions to the corresponding supersymmetry equations

were presented. These solutions must therefore be contained in the framework studied in

section 2 and in the earlier works [12, 13]. In this section, we translate the supersymmetric

solutions of [36] into our language and identify the constraint hypersurface they correspond

to in our parameter space {a0, b0, f0, λ0, λ1, F0} (see also [40]). This will allow us to make

a definite statement about the sign of the coefficient c2 in the potential (3.3) for this class

of compact models.

4.1 The supersymmetry conditions

In the notation used in [36], the metric is given in string frame and reads

ds210 string = e2Ã(r) ds2AdS7 + ds2M3
, (4.1)

where

ds2M3
= dr2 +

1

16
e2Ã(r)

(
1− x(r)2

)
ds2S2 (4.2)
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takes the form of an S2 fibration over a compact interval r ∈ [rn, rs], whose boundaries are

defined by the vanishing of the S2 radius, i.e., the points r at which x(r)2 = 1, corresponding

to the two poles of the 3-sphere. The H3 and F2 field strengths are given by

H = −
(

6e−Ã(r) + x(r)F0e
φ̃(r)
)

volS3 , (4.3)

F2 =
1

16

√
1− x(r)2eÃ(r)−φ̃(r)

(
x(r)eÃ(r)+φ̃(r)F0 − 4

)
volS2 . (4.4)

Converting the metric to Einstein frame and comparing with our ansatz (2.1), one can

express the functions Ã(r), φ̃(r) and x(r) in terms of our functions A(θ), B(θ) and φ(θ):

Ã(r(θ)) = A(θ) +
1

4
φ(θ), (4.5)

φ̃(r(θ)) = φ(θ), (4.6)

x(r(θ))2 = 1− 16 e2B(θ)−2A(θ) sin2(θ). (4.7)

Moreover, we obtain the relation(
dθ

dr

)2

=
16 sin2 (θ (r))

(1− x(r)2)
e−2Ã(r) = e−2B(θ)−φ(θ)

2 (4.8)

and, by comparing (4.3) and (4.4) with our flux ansatz (2.3) and (2.4),

λ(θ) = − 1

F0
e−φ(θ)

(
6e−Ã(r(θ)) + x(r(θ))F0e

φ̃(r(θ))
)
, (4.9)

∂θα(θ) =
1

4 sin(θ)
e

7
4
φ(θ)+7A(θ)

(
x(r(θ))eÃ(r(θ))F0 − 4e−φ̃(r(θ))

)
. (4.10)

The first order SUSY equations [36] for the fields Ã(r), φ̃(r) and x(r) are

∂rφ̃(r) =
1

4

e−Ã(r)√
1− x(r)2

(
12x(r) +

(
2x(r)2 − 5

)
F0e

Ã(r)+φ̃(r)
)
, (4.11)

∂rx(r) = −1

2
e−Ã(r)

√
1− x(r)2

(
4 + x(r)F0e

Ã(r)+φ̃(r)
)
, (4.12)

∂rÃ(r) =
1

4

e−Ã(r)√
1− x(r)2

(
4x(r)− F0e

Ã(r)+φ̃(r)
)
. (4.13)

Using (4.5)–(4.8) in these equations and in (4.9), we obtain three first order equations for

A(θ), B(θ) and φ(θ) and one algebraic equation for λ(θ):

A′ =
4x− (2x2 − 1)F0e

A+ 5
4
φ

64 sin θ
, (4.14)

B′ =
36x+ (6x2 + 1)F0e

A+ 5
4
φ − 64 cos θ

64 sin θ
, (4.15)

φ′ =
12x+ (2x2 − 5)F0e

A+ 5
4
φ

16 sin θ
, (4.16)

λ = − 1

F0

(
6e−A−

5
4
φ + xF0

)
, (4.17)
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where ′ = ∂
∂θ and x should now be read as a shorthand for the function

x(r(θ)) =
√

1− 16e2B(θ)−2A(θ) sin2 θ. (4.18)

Note that the supersymmetry conditions are chosen such that they are consistent with

the choice F0 < 0 if regular boundary conditions (i.e., boundary conditions without brane

sources) are imposed at the south pole and with F0 > 0 for the case of regular boundary

conditions at the north pole [36].

The equations (4.14)–(4.17) imply that (4.10) follows from (4.9) upon differentiation.

We thus seem to need four extra conditions for a supersymmetric solution, namely the first

order equations (4.14)–(4.16) as well as the algebraic constraint (4.17). However, taking

the derivative of one of the first order equations (4.14)–(4.16) and the constraint (4.17), the

second order equations (2.7)–(2.10) imply the other two first order equations. Thus, the

supersymmetry equations of [36] altogether only impose two additional constraints on the

functions A, B , φ and λ beyond the general field equations of section 2. This is confirmed

by evaluating (4.14)–(4.16) and (4.17) in a series expansion near an anti-D6-brane, as this

results in two constraints on the local parameters a0, b0, f0, λ0, λ1, F0, which can be used

to eliminate, e.g., λ0 and λ1,

λ0 = −6
a0f

5
0

F0
, λ1 =

1

4

λ0b0F0 + 32λ0a
3
0f

5
0 − 4a0b0f

5
0

a0b0f50
. (4.19)

Following our discussion in section 2, our interpretation is that one particular com-

bination of the constraints ensures that we can integrate all fields to θ = π and that the

remaining constraint selects the supersymmetric solution among a one-parameter family

of solutions that generically do not satisfy all the supersymmetry equations listed above.

This will be confirmed by our numerical considerations in the next section.

4.2 The D8-brane potential in the supersymmetric case

Using (4.19) in (3.4), we find that the coefficients c2, c3, c4 of the D8-brane potential

simplify to

c2 = − 4

a50b0f
3
0

, c3 = − 2

a60b
3/2
0 f50

, c4 =
1

2a70b
2
0f

7
0

. (4.20)

We immediately see that the quadratic coefficient c2 is manifestly negative so that the

anti-D6-branes do polarize in the presence of the AdS curvature. This is one of our main

results. In order to further analyze the potential (3.3), we introduce the shorthand

θ̄ :=
1

na0b
1/2
0 f20

θ (4.21)

in terms of which the potential takes the simple form

V (θ̄) ∝ n3θ̄2
(
−2 + 2θ̄ + θ̄2

)
. (4.22)

The extrema are at θ̄ = 0 and at θ̄ = 1
2 . The latter extremum is the minimum and

corresponds to

θ = θ? =
na0b

1
2
0 f

2
0

2
. (4.23)
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Initial Values Values at the South Pole

F0 α̃0 as0 bs0 αs0 fs0 αs2

4, Susy 2.5 0.8887 10.2009 6.0000 1.4038 0.0741

40, Susy 25 0.4821 1.6871 60.000 2.2413 2.8210

10 6.93183447 0.5950 1.4746 20.2938 1.4050 6.5964

15 10.51328 0.5126 0.6110 31.2296 1.3966 37.1415

40 28.247186 0.3668 0.0929 83.5936 1.3583 1.14 · 103

Table 1. Initial values and coefficients at the south pole for solutions with integration range [0, π]

and no source at the north pole, where α̃0 = λ̃0ã
−7
0 f̃−3

0 denotes the initial value of α(θ) at θ = 0

and the subscript s refers to coefficients at the south pole. All solutions except for the F0 = 40 Susy

solution have initial values ã0 = b̃0 = f̃0 = 1. For the F0 = 40 Susy solution, ã0 = 10−
1
4 , b̃0 = 1

and f̃0 = 10
1
4 was chosen. The given number of digits is necessary to get a maximal range of at

least θint = 3.1415.

As explained in section 3.2, it is always possible to adjust the parameters such that the min-

imum is at small θ and all other approximations used to derive the potential are justified.

Using (4.20) in (3.6), we furthermore find m2 = −8 for the squared mass of θ. As expected

for a supersymmetric solution, this is above the BF bound such that brane polarization

happens non-perturbatively via tunnelling to the lower-lying minimum at finite θ.

5 Non-supersymmetric solutions?

In section 2, we discussed how many independent parameters are needed to specify a gen-

eral solution to the second order field equations (2.7)–(2.10). The original six-dimensional

parameter space spanned by a0, b0, f0, λ0, λ1, F0 is reduced to a three-dimensional hyper-

surface when the three physical parameters F0, Q1, Q2 are fixed. Furthermore, b0 param-

eterizes a residual coordinate freedom, leaving a two-dimensional hypersurface of gauge

orbits in the parameter space. The supersymmetric solutions discussed in the previous

section come with two additional constraints on the boundary values and hence correspond

to a point in this two-dimensional hypersurface of gauge orbits.

In this section we would like to explore whether this supersymmetric point is the only

possible solution to the full second order field equations, or whether the other points on the

two-dimensional hypersurface of gauge orbits also contain meaningful solutions. To this

end, we considered numerical solutions of the second order field equations in the case when

there are no anti-D6-branes at the north pole θ = 0, i.e., the boundary condition at the

north pole is given by (2.12) and all possible anti-D6-branes are concentrated at the south

pole at θ = π. This is done in order to have a smooth starting point for the numerics (see

also [40] for details on the numerical treatment). Fixing furthermore ã0 = f̃0 = 1 (which

can always be achieved by the rescaling symmetries (3.8)) and choosing a fixed value

b̃0 = 1, one finds that the numerically computed solutions become singular well before

θ = π is reached unless one restricts oneself to a certain one-dimensional subspace in the
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4. Numerical Treatment
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Figure 4.3.: The three supersymmetric differential equations (3.36) evaluated for the general solution
with a0 = 1, b0 = 1, c0 = −2.5, f0 = 1, F0 = 4 for positive x (blue) and negative x (yellow, orange
and red). One can see, that the equations are fulfilled for the solution with x(0) > 0, and one has
to change the sign at x = 0.

being due to the fact, that solutions with Q > 0 must have x (0) = −1. This is not possible
with the given differential equations, which the authors of the paper already noted [Apr13,
beginning of section 4.7]. They exclude this possibility by choosing a positive square root
when introducing the coordinate r [Apr13, around eqn. (4.17)]. Indeed, changing the sign of
the roots in (2.24) gives numerical solutions fitting well to solutions of the full system with
Q > 0.

Returning to the supersymmetric solutions of the full system, we now explain a method
for testing a given solution to be really supersymmetric. In Mathematica, we can take
derivatives of a numerical solution and plug them into differential equations. This makes it
easy to check, if a solution of the general equations fulfils the supersymmetric differential
equations (3.36), which are expressed through A,B and φ. In the supersymmetric case, we
have to replace x(r) in the equations with the square root of (3.20), and we need to consider
both signs of the root. The results for the previously used set of parameters corresponding
to a supersymmetric solution without source at r = 0 and with A+

0 = 0 and F0 = 4 is shown
in figure 4.3. As one can see, the equations are fulfilled up to a difference around 10−8

for most of the integration range. A similar clear result can be obtained for the solution
with source at the starting point shown in figure 4.2. For non-supersymmetric solutions, for
example with the same parameters like in figure 4.3, but with F0 = 4.1 instead of F0 = 4,
the majority of points lies above 10−3, and it is possible to make a clear distinction between
supersymmetric and non-supersymmetric solutions. In addition, one can not clearly identify
the point where x = 0 for non-supersymmetric solutions. We will make use of this kind of
plot to reason, that some of the solutions found in section 4.1.4 are non-supersymmetric.

33

Figure 1. The three supersymmetric differential equations (4.14)–(4.16) evaluated for the general

solution with ã0 = 1, b̃0 = 1, f̃0 = 1, λ̃0 = −2.5, F0 = 4 for positive x(θ) (light, medium and dark

blue) and negative x(θ) (yellow, orange and red), where the value 0 means that an equation is

solved. One can see that the equations are fulfilled when x(θ) starts positive at θ = 0 and then

switches its sign between the two poles. This is consistent with the conventions of [36], where x = 1

at the north pole and x = −1 at the south pole.

(λ̃0, F0)-plane, on which the field equations can be integrated up to θ ≈ π to very good

approximation. If our reasoning is correct, only one point on this line should correspond to

a supersymmetric solution as described in section 4. This is confirmed by evaluating the

first order susy equations (4.14)–(4.16) on those numerical solutions that integrate up to

π. Writing them in the form 0 = . . ., one obtains values for the right-hand sides between

10−3 and 10, which should be compared with values between 10−10 and 10−8 that one

finds for supersymmetric parameter sets. This is illustrated in table 1, which contains two

supersymmetric and three non-supersymmetric pairs of initial values (λ̃0, F0) for which the

solutions integrate up to θ = π (for the supersymmetric solutions, this is always the case).

Figures 1 and 2 show how well and how badly the supersymmetry equations (4.14)–(4.16)

are fulfilled for a supersymmetric and a non-supersymmetric solution, respectively [40].

If these non-supersymmetric solutions are to be physically meaningful, they should

give rise to physically sensible boundary conditions at the south pole, i.e., they should

asymptote to the anti-D6-brane boundary conditions with some brane charge Q2 and also

satisfy the integrated Bianchi identity for F2 that corresponds to this charge. In order to be

able to read off a charge Q2 from the asymptotics at the south pole, however, one first has

to scan through the parameter space to find a suitable pair (λ̃0, F0) that integrates to θ = π

with sufficient numerical accuracy. This is the primary obstacle for identifying good non-

supersymmetric solutions, but once this is achieved, the charge Q2 can be read off and com-

pared with the integrated Bianchi identity. In figure 3, we show the results of this compari-

son for a set of non-supersymmetric solutions. As is shown there, the Bianchi identity is ful-

filled to good accuracy, especially for parameter regimes with reduced numerical problems.
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Figure 2. The three supersymmetric differential equations evaluated as in figure 1 for the solution

with F0 = 15 and α̃0 from table 1 to get maximal integration range. As the equations have

deviations from zero ranging between 10−3 and 10, they are not well fulfilled in comparison to the

supersymmetric solution in figure 1. In addition, all deviations are large for θ ≈ 0 and there is

no clear point at which the solution of x switches the sign. This supports the argument that this

solution is not supersymmetric although it can be integrated over the whole range.
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Q
2

F0

integrated H3 flux
fit at endpoint

Figure 3. The figure shows Matlab results for the integrated F2 Bianchi identity for different

values of F0 and Q2. In order that the D6 tadpole is cancelled in a numerical solution, the charge

obtained from the integrated H3 flux (blue dots) must equal the charge from the delta function

source term, which is read off from a fit of the solution at the south pole (orange dots). Except

for the dot at F0 = 4, all solutions are non-supersymmetric, and all integrate to θ ≈ π. The main

numerical uncertainty comes from the tuning necessary to get the integration range until θ = π,

which is much easier for supersymmetric solutions. Nevertheless, the non-supersymmetric solutions

satisfy the integrated Bianchi identity very well. For the larger values of F0, numerical problems

due to small numbers become relevant.
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We also searched for a set of non-supersymmetric solutions and a supersymmetric

solution that all correspond to the same physical parameters (F0, Q2), by fitting the initial

values accordingly. The profiles of the various functions A, B, φ, α for the choice F0 = 4,

Q1 = 0, Q2 = 400 are displayed in figures 4 to 7.

Putting all this together, we find numerical evidence for a one-parameter family of solu-

tions that are non-supersymmetric except for a single parameter value, which corresponds

to the supersymmetric solution found in [36]. More precisely, the non-supersymmetric solu-

tions satisfy the second order field equations to a comparable accuracy as the supersymmet-

ric solution, but they clearly violate the first order supersymmetry equations (4.14)–(4.16).

We performed several numerical tests that could have exposed these non-supersymmetric

solutions as numerical artifacts, but none of them provided any evidence in this direction.

Assuming these solutions to exist, we then studied the corresponding polarization potential

and found several regimes with a different qualitative behavior. For non-supersymmetric so-

lutions that lie in the vicinity of the supersymmetric one in moduli space, the D8-brane po-

tential has the same qualitative features of a maximum at the origin and a minimum at finite

θ?. This is shown in figure 8 for the choice F0 = 4, Q1 = 0, Q2 = 400, n = 20. We also com-

puted the value of m2 at the origin and found that the BF bound is satisfied in the region

close to the supersymmetric solution (cf. figure 9). Further away from the supersymmetric

point, however, we also found two other regimes, which are qualitatively different from the

first one. Moving away from the supersymmetric point in one direction of the parameter σ

(cf. section 2.3), m2 becomes more and more negative and eventually violates the BF bound

such that the worldvolume scalars become tachyonic and brane polarization can happen al-

ready perturbatively. On the other hand, if one deviates from the supersymmetric solution

in the other direction, m2 approaches zero and eventually becomes positive such that the

maximum at the origin of the polarization potential becomes a minimum. As shown in fig-

ure 8, this minimum is then separated from a second, lower-lying minimum at finite θ by a

maximum such that brane polarization again happens non-perturbatively in these solutions.

We should stress again that, since the non-supersymmetric solutions have been ob-

tained numerically, we cannot fully exclude that their different θ masses are a numerical

artifact. While our numerical data does not suggest that this is the case, it would never-

theless be important in future work to obtain an analytical understanding of the parameter

σ that scans the different solutions.

6 Conclusions

In this paper, we have linked the supersymmetric first order solution of massive type IIA

compactifications on AdS7×S3 with anti-D6-branes and oppositely charged H3 flux of [36]

to the general framework of second order solutions of this setup discussed in [12, 13]. Using

the extra constraints imposed by supersymmetry, we were able to compute the potential of a

probe D8-brane with dissolved anti-D6-brane charge in a background with fully backreacted

anti-D6-branes. This complements a similar computation in [34], where the same potential

was determined in a non-compact version of the setup. As we showed in this paper, the D8-

brane potential in the compact case has a universal behavior with a local maximum at the

– 17 –
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Figure 4. The function e2A(θ) for a set of solutions with fixed (F0, Q2).

0

50

100

150

200

250

0 π
4

π
2

3
4π π

e2
B
(θ

)
si

n
2
θ

θ

supersymmetric

Figure 5. The function e2B(θ) sin2 θ measuring the squared 2-sphere radius for a set of solutions

with fixed (F0, Q2).

origin and a local minimum at a finite angular distance away from it. This suggests that the

anti-D6-branes polarize, as opposed to their counterparts in the non-compact setup. The

difference between the two cases can be traced back to the curvature of the external space-

time, which is required to be negative in the compact case due to the integrated Einstein

equations, by which it is tied to the energy of the field strengths in the compact dimensions.

In the non-compact case, no such constraint on the external curvature exists such that one

has the freedom to take the external spacetime to be Minkowski as in [34]. The results

obtained in this paper thus show that compactification effects can resolve flux singularities.
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This interpretation is consistent with the recent independent results in version 2 of [36],

where a configuration with D8-branes wrapping a finite S2 was found using the supergravity

equations. Our results suggest that the solution found in [36] is in fact the stable end

configuration that replaces the singular configuration found in [13].

We also explored the solution space beyond the supersymmetric subspace identi-

fied in [36] and found numerical evidence for a one-parameter family of apparently non-

supersymmetric solutions. While our understanding of the physical parameter or modulus

that scans these solutions is incomplete, we computed numerically the D8-brane potential

also for these cases and found again that the anti-D6-branes tend to polarize.
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Our results raise several interesting questions for future research, e.g., regarding the

CFT-dual of the final configuration with D8-branes [44] or the role of curvature and com-

pactness for brane polarization. It would also be interesting to see whether there is any

lesson to be learned for the anti-D3-brane singularity of KKLT-like setups or to explore

possible connections to the recent results of [21] on anti-M2-branes.
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[28] I. Bena, J. Bl̊abäck, U.H. Danielsson and T. Van Riet, Antibranes cannot become black, Phys.

Rev. D 87 (2013) 104023 [arXiv:1301.7071] [INSPIRE].

[29] A. Buchel and D.A. Galante, Cascading gauge theory on dS4 and string theory landscape,

Nucl. Phys. B 883 (2014) 107 [arXiv:1310.1372] [INSPIRE].

[30] S.S. Gubser, Curvature singularities: the good, the bad and the naked, Adv. Theor. Math.

Phys. 4 (2000) 679 [hep-th/0002160] [INSPIRE].

– 22 –

http://arxiv.org/abs/1202.3789
http://inspirehep.net/search?p=find+EPRINT+arXiv:1202.3789
http://dx.doi.org/10.1007/JHEP08(2011)105
http://dx.doi.org/10.1007/JHEP08(2011)105
http://arxiv.org/abs/1105.4879
http://inspirehep.net/search?p=find+EPRINT+arXiv:1105.4879
http://dx.doi.org/10.1007/JHEP02(2012)025
http://arxiv.org/abs/1111.2605
http://inspirehep.net/search?p=find+EPRINT+arXiv:1111.2605
http://dx.doi.org/10.1103/PhysRevD.87.106010
http://arxiv.org/abs/1206.6369
http://inspirehep.net/search?p=find+EPRINT+arXiv:1206.6369
http://dx.doi.org/10.1007/JHEP04(2011)120
http://arxiv.org/abs/1011.2195
http://inspirehep.net/search?p=find+EPRINT+arXiv:1011.2195
http://dx.doi.org/10.1007/JHEP02(2012)019
http://arxiv.org/abs/1108.1789
http://inspirehep.net/search?p=find+EPRINT+arXiv:1108.1789
http://dx.doi.org/10.1007/JHEP06(2012)059
http://arxiv.org/abs/1110.2513
http://inspirehep.net/search?p=find+EPRINT+arXiv:1110.2513
http://dx.doi.org/10.1007/JHEP03(2014)041
http://arxiv.org/abs/1303.1809
http://inspirehep.net/search?p=find+EPRINT+arXiv:1303.1809
http://dx.doi.org/10.1007/JHEP08(2013)105
http://arxiv.org/abs/1303.2634
http://inspirehep.net/search?p=find+EPRINT+arXiv:1303.2634
http://dx.doi.org/10.1103/PhysRevD.89.065004
http://arxiv.org/abs/1309.2640
http://inspirehep.net/search?p=find+EPRINT+arXiv:1309.2640
http://dx.doi.org/10.1007/JHEP06(2014)173
http://dx.doi.org/10.1007/JHEP06(2014)173
http://arxiv.org/abs/1402.2294
http://inspirehep.net/search?p=find+EPRINT+arXiv:1402.2294
http://dx.doi.org/10.1007/JHEP09(2013)123
http://arxiv.org/abs/1301.5647
http://inspirehep.net/search?p=find+EPRINT+arXiv:1301.5647
http://dx.doi.org/10.1088/1126-6708/2003/09/037
http://dx.doi.org/10.1088/1126-6708/2003/09/037
http://arxiv.org/abs/hep-th/0308064
http://inspirehep.net/search?p=find+EPRINT+hep-th/0308064
http://dx.doi.org/10.1007/JHEP04(2012)018
http://dx.doi.org/10.1007/JHEP04(2012)018
http://arxiv.org/abs/1109.0532
http://inspirehep.net/search?p=find+EPRINT+arXiv:1109.0532
http://arxiv.org/abs/1402.4571
http://inspirehep.net/search?p=find+EPRINT+arXiv:1402.4571
http://dx.doi.org/10.1007/JHEP02(2013)061
http://arxiv.org/abs/1202.1132
http://inspirehep.net/search?p=find+EPRINT+arXiv:1202.1132
http://dx.doi.org/10.1103/PhysRevD.87.063012
http://dx.doi.org/10.1103/PhysRevD.87.063012
http://arxiv.org/abs/1212.5162
http://inspirehep.net/search?p=find+EPRINT+arXiv:1212.5162
http://dx.doi.org/10.1103/PhysRevD.87.104023
http://dx.doi.org/10.1103/PhysRevD.87.104023
http://arxiv.org/abs/1301.7071
http://inspirehep.net/search?p=find+EPRINT+arXiv:1301.7071
http://dx.doi.org/10.1016/j.nuclphysb.2014.03.022
http://arxiv.org/abs/1310.1372
http://inspirehep.net/search?p=find+EPRINT+arXiv:1310.1372
http://arxiv.org/abs/hep-th/0002160
http://inspirehep.net/search?p=find+EPRINT+hep-th/0002160


J
H
E
P
1
0
(
2
0
1
4
)
0
3
4

[31] R.C. Myers, Dielectric branes, JHEP 12 (1999) 022 [hep-th/9910053] [INSPIRE].

[32] J. Polchinski and M.J. Strassler, The string dual of a confining four-dimensional gauge

theory, hep-th/0003136 [INSPIRE].

[33] I. Bena, M. Graña, S. Kuperstein and S. Massai, Polchinski-Strassler does not uplift

Klebanov-Strassler, JHEP 09 (2013) 142 [arXiv:1212.4828] [INSPIRE].

[34] I. Bena et al., Persistent anti-brane singularities, JHEP 10 (2012) 078 [arXiv:1205.1798]

[INSPIRE].
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