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Abstract
We study the reaction kinetics of chemical processes occurring in the ultracold regime and
systematically investigate their dynamics. Quantum entanglement is found to play a key role in driving
an ultracold reaction towards a dynamical equilibrium. In case ofmultiple concurrent reactions
Hamiltonian chaos dominates the phase space dynamics in themean field approximation.

1. Introduction

A chemical reaction normally occurs at a few hundred kelvin between reagents involving large numbers of
particles (∼1023). This is because reactions are usually activated by thermal fluctuationswhich are only
significant for large concentrations of particles with highmomenta. Therefore, the possibility of a chemical
reaction taking place in the dilute and ultracold ( μ<T 1 K) regime is somewhat counterintuitive. However, the
formation of ultracoldmolecules from atoms in a Bose–Einstein condensate (BEC)was observed almost 15
years ago [1]. This interaction of atoms andmolecules close to the absolute zero of temperature has been
referred to as ultracold chemistry [2].

A variety of experimental techniques such as the coupling of atoms andmolecules viamagnetic Feshbach
resonance [3, 4] have been successfully employed to achieve chemical bonding in an ultracold environment. For
example, ultracold Potassium-Rubidiummolecules [5] have been investigated to analyse the quantum
mechanical effects of particle statistics onmolecular reactivity. The now ready experimental accessibility of
chemical processes in the dilute ultracold regime stronglymotivates us to develop a general physical
understanding of their reaction kinetics.

A quantized description is required in order to study the dynamics of ultracold reactions, in order to fully
account for the effects of quantum fluctuations and entanglement. Herewe should replace the classical notion of
a temperature-dependent reactionwith a coherent reversibleHamiltonian evolution. Thefirst
phenomenological steps toward such a descriptionwere taken in [6], where ameanfield ansatz was exploited to
describe the coherent formation of diatomicmolecules in a BEC. Since then a variety of extensions to thismodel,
mainly focussed on adding quantum corrections to the originalmeanfield ansatz, have been studied [7, 8].
Concomitantly, theoretical explanations, via two-body scattering processes, for the ultracold chemical reaction
rates observed in recent experiments have been proposed [9]. In the case of fermionic particles with several
internal states the observed reaction ratesmay be understood in terms of a simple quantum thresholdmodel
[10].When there are different particle types, e.g., bosons and fermions,more sophisticatedmodelling in terms
ofmultichannel quantumdefect theory [11] is required. So far, a general and systematic investigation of the
dynamics of ultracold reactions, analogous to the study of reaction kinetics for classical thermal reactions, has
not yet been undertaken. Such an approach seems to be indispensable if onewants to study the role of quantum
coherence and the production of quantum entanglement in ultracold chemical systems.

In this paperwe propose a general scheme to study the kinetics of ultracold chemical reactions. Investigating
the predicted dynamics, we find that entanglement replaces the role of thermalfluctuations in activating
ultracold chemical reactions. This allows us to draw a parallel between ultracold chemical reactions and
quenched dynamics. Thanks to the generality of our formulation it is possible to consider complex chemical
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reactions involvingmany reagents.We exemplify our approach by studying an experimentally accessible
example of an ultracold reaction exhibiting rich quantumphenomena leading to a dynamical relaxation to local
equilibrium.

2. Classical reaction kinetics

The subject of reaction kinetics in classical chemistry is concernedwith the temporal dynamics of a chemical
reaction and its reaction rate. One usually studies a general reaction

∑ ∑μ ν⇄A B , (1)
i

i i
k

k

j

j j
ba

ab

where the numbers μi and ν j are referred to as stoichiometric coefficients and kab and kba are called reaction
constants. If the reaction is elementary, i.e.there are no catalytic, intermediate, or concurrent reactions, the rate
equation for the concentration of speciesAi, denoted as A[ ]i , can be inferred straightforwardly [12]:

∏ ∏
μ

= − +
μ νd A

dt
k A k B

1
. (2)

i

i

ab

j

j ba

k

k
j k

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦

In the terminology of irreversible reactions, i.e. when either kab or kba equals zero, the number M Nmax{ , },
where μ≔ ∑M j j and ν≔ ∑N k k, is called the order of the reaction. Systems of parallel reactions are treated in

an analogousmanner. An important feature of classical reaction kinetics is that the temperature dependence of
the reaction constants is described byArrhenius’ law:

κ
∝

−
k T

E

T
( ) exp , (3)A⎜ ⎟⎛

⎝
⎞
⎠

where EA represents the activation energy of the corresponding reaction.Microscopically thismeans the
statisticalfluctuations drive the reaction. Thismodel of classical chemical reaction kinetics has been validated by
its long term success in describing awide range of astonishing phenomena from the oscillating Belousov–
Zhabotinskii reaction [13, 14] to deterministic chaos [15]. However, classical reaction kinetics is still an active
field, e.g., the question of the existence of an equilibriumwas only recently answered in [16].

3. Proposed framework

The description of the dynamics of chemical reactions at ultracold temperatures falls into the framework of
quantummechanics as the basic assumption of Arrhenius’ Law, namely a disorderedmovement ofmany high-
momentumparticles, is no longer satisfied in the low temperature regime.Hencewemust replace Arrhenius’
lawwith a new concept. Herewe propose that quantum entanglement provides the driving source offluctuations
in the ultracold regime. This is becausewhen the system is in a non-equilibriumpure state quantum correlations
are generically induced by unitary dynamics4. An analogous situation occurs in the study of quench dynamics for
quantum systems [17, 18], i.e. largemany-body systemswhere the interaction undergoes a sudden change at
some fixed time. Based on this analogy, we expect the dynamics of ultracold reactions to be dominated by
entanglement-induced phenomena, such as the relaxation of subsystems to a local equilibrium.

A chemical reaction is inherently amany particle problem so that second quantization is the natural
framework.Hencewe describe every reacting speciesAiwith a corresponding quantum field ψ̂Ai

. The underlying

Hilbert space is a tensor product of the single-species Fock spaces. The role of the classical particle concentration
A[ ]is replaced by the particle density operator ψ ψ=n̂ ˆ ˆA A A

† . The dynamics of the system is induced by its

Hamiltonian = +H H Hˆ ˆ ˆ
0 int, where = +H H Hˆ ˆ ˆ

0 kin pot represents the standard second-quantised kinetic and
potential terms, respectively. The crucial part of our proposal is now the choice of a proper interaction term Hint

to describe particle conversion, such asmolecule formation. Taking guidance from the classical settingwe
propose the following Ĥint for the elementary reaction (1):

∫ ∏ ψ ψ= +
μ ν

( )( )H k dx x xˆ ˆ ( ) ˆ ( ) h.c ., (4)
i j

A Bint

,

†
i

i

j

j

where ψ̂Ai
and ψ̂B j

obey the canonical commutation relations (CCR) or canonical anti-commutation relations

(CAR) according to particle type of the species. If there aremultiple concurrent reactions one should take the
sumof each of the interactionHamiltonians = ∑H Hˆ ˆ

i iint int, . Notice thatwithin this frameworkwe are

4
Unless the dynamics is trivial, i.e. non-interacting, or the initial state is an equilibriumpure state.
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restricted to the description of reversible reactionswith a single reaction rate ≡ =k k kab ba. However, with a
little work, the interactionHamiltonian can be naturally extended via the inclusion of ancillary baths to
incorporatemore general effects such as a self-interaction of particles, particle loss, and dissipation. For the rest
of the paper, we neglect those effects.Wemake an additional crucial assumption, namely that the positional
degrees of freedom are not excited during the reaction. Therefore, we perform a cutoff after the first term in the
operatormode expansion, i.e. we replace field operators with annihilation operators according to
ψ ϕ→ x aˆ ( ) ˆA

A
A0i

i
i
, where ϕ x( )A

0
i denotes the single-particle ground state wave-function of the respective species.

Consequently, the density observable is replaced by the number operator =n a aˆ ˆ ˆA A A
†

i i i
and Ĥ0 simplifies to a

harmonic oscillator: =H E nˆ ˆA A0 i i
. For simplicity we also restrict ourselves to the bosonic systems although the

addition of fermionic particles is straightforward. Keeping these approximations inmindwe summarise in 1 the
proposed interactionHamiltonians for the first few elementary low-order ultracold chemical reactions.

To complete our proposal, we need to consider suitable initial conditions for our dynamical system. It does

notmake sense to initialize the system in an equilibrium state, i.e. an eigenstate or thermal state of +H Hˆ ˆ
0 int, if

one is interested in dynamical effects. Rather, we assume that the system is in an eigenstate of the non-interacting
part of theHamiltionian, which corresponds to the dynamical isolation of the reacting species before the
chemical reaction starts. In order tomake the comparison to classical reaction kinetics asmeaningful as possible,
we consider the system to be initialized in a product of coherent states 5, although the generalization to different
initial conditions is obvious.

Considering the scheme outlined in 1, we see that a zeroth-order reaction is not a chemical reaction per se,
due to the absence of any interaction of different species. It can be rather understood as a connection of the

considered species to some reservoir. NeglectingH0, this coupling = +H k a aˆ ( ˆ ˆ )A Aint
† results in a quadratic

scaling of the average particle number of the coupled species 〈 〉 ∝n t tˆ ( )A
2. Notice, byway of contrast, that in the

classical casewe obtain a linear growth or decay of the particle concentration ∝ ±A t[ ] according to the choice
of the sign of the coupling constant.

There are two types of elementary first-order reaction. Thefirst describes the simplest of all ultracold
chemical reactions, namely a simple particle conversion between two species. TheHamiltonian

= +H k a a( ˆ ˆ h.c.)A Bint
† models a linear interaction between two quantum fields (e.g. a beam-splitter in quantum

optics [19]). It is exactly solvable in the sense that it can be linearly transformed into decoupled harmonic
oscillators. The average particle number of each species therefore periodically oscillates, in contrast to the
classical first-order reaction, which relaxes to a stationary state. The other type offirst-order reaction ismodelled
by = +H k a a( ˆ ˆ h.c.)A Bint

† † and describes the production of ‘pairs’ from a bath. This interaction is familiar in
quantumoptics where itmodels two-mode squeezing.

In order to describemore complex chemical reactions, e.g. the formation of amolecule from two particles,
we have to go beyondfirst-order reactions. The corresponding interactionHamiltonians describe non-
quadratically interacting field theories. Thesemodels are not generally exactly solvable andwemust employ
approximations, heuristics, and numericalmethods to study their dynamics.

4.Diatomicmolecule formation

Herewe study themost elementary second-order reaction, diatomicmolecule formation [20]:

+ ⇄A A A (5)
k

2

The stoichiometric coefficient for the atomic species μA equals two and themolecular coefficient νA2
is one.

According to our proposed framework this reaction ismodelled by theHamiltonian:

Table 1.The proposed interactionHamiltonians for low-
order bosonic reactions.

Order Reaction Proposed Ĥint

0. ⇄ Abath
k

+k a( ˆ h.c. )A
†

1. ⇄A B
k

+k a a( ˆ ˆ h.c. )A B
†

2. + ⇄A B C
k

+k a a a( ˆ ˆ ˆ h.c. )A B C
† †

3. + ⇄ +A B C D
k

+k a a a a( ˆ ˆ ˆ ˆ h.c. )A B C D
† †

5
To avoid experimentally unrealistic situations, we also restrict our considerations to states withfinite particle number.

3
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= + + +( )H E n E n k a a aˆ ˆ ˆ ˆ ˆ ˆ h.c. , (6)A A A A A A A
† †

2 2 2

where EA and EA2
label the corresponding ground-state energies. ThisHamiltonian has been the subject of

much recent research as it alsomodels second harmonic generation [21] or two-photon down conversion [22],
as well asmolecule formation via coherent photoassociation in an atomic BEC [23–25].Nonetheless, a
comprehensive investigation of its dynamical regimes relevant for the reaction kinetics of ultracold chemistry is
missing.

We are interested in studying the role that entanglement plays in the kinetics of the reaction (5). For this
purpose, and to avoid having to explore a large parameter space, we consider a regimewhere the reaction rate is
dominant, i.e. ≫ ∣ ∣ + ∣ ∣k E EA A2

, so that the effect of a change in the binding energy can be neglected.

Additionally, the overall particle number operator = +N N Nˆ ˆ 2 ˆ
tot A A2 is a conserved quantity for the

dynamics, hence we can restrict our study to the reduced dynamics of the atomicmode, writing ≡N NA. The
behaviour of themolecularmode can be deduced straightforwardly.

Infigure 1we have plotted the full quantum time evolution of the expectation value of N̂ (obtained via exact
diagonalisation) togetherwith themeanfield prediction for the dynamics of the reaction. The system is initially
in a product state of a coherent atomic state and a completely depletedmolecular state.Meanfield theory
predicts a complete inversion of the population, where the system is driven to an unstable fixed point [26].
However, considering the full quantum solution, we identify three different dynamical regimes: First, a semi-
classical regime, where the quantum andmeanfield dynamics coincide. At the breakdown time τMF the full
solution drifts away from themean field approximation [27] and the semi-classical regime transitions to an
intermediate evanescent regime, where the quantum trajectory oscillates with an increasingly damped amplitude.
Eventually, the system reaches the asymptotic regime, where the expectation value of the population imbalance
relaxes to a stationary value N .

We can understand the three different dynamical regimes by studying the time evolution of the quantum
entanglement between the atomic andmolecularmodes. These results are shown in 2. In the semi-classical
regimewe see a rapid increase of the entanglement at the beginning of the reaction, which is necessary for the
formation ofmolecules. It is initially rather surprising that themeanfield approximationworks aswell as it does
in the semi-classical regime given that the state rapidly becomes entangled and is not well-modelled via a
product ansatz. A possible explanation is that the entanglement evolution in the semi-classical regime is typical
of that produced by integrable interactions [28], at least until the breakdown time τMF. After the breakdown time,
in the evanescent regime, the system rapidly reaches themaximumavailable entanglement and begins to explore
the fullHilbert space. Soon after, it enters the asymptotic regimewhere it ergodically evolves through highly
entangled states. It remains in the asymptotic regime until it experiences a quantum revival.

The dynamical behavior exhibited by the reaction (5) is reminiscent of the local relaxation observed in
quenchedmany particle quantum systems [29]. This hypothesis is supported by studying the time-averaged

fluctuations ∫Δ = 〈 〉 −τ τ
τ

→∞ ( )N dt N Nlim ˆ
t

2 1

0 ( )
2
relative to themean value ∫= 〈 〉τ τ

τ
→∞N dt Nlim ˆ

t
1

0 ( ) ,

plotted infigure 3: wefind that thefluctuations decrease as the particle numberN is increased. However, the
mechanism leading to the local relaxation observed in quenched dynamics is slightly different to that found here.
In quenchedmany particle systems the incoherent interference of localised excitations traveling at different

Figure 1.The dynamics of the atomic occupation number expectation value 〈 〉N̂ with respect to the rescaled time τ = tk for the
diatomicmolecular reaction + ⇄A A A2, withN=500 particles. The quantum andmean field trajectories coincide until they
separate at τMF. From there on the quantum trajectory approaches a stationary value N via entanglement-induced damped
oscillations.

4
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velocities leads to a cumulative effect of relaxation.However, in our case, we have an interaction between just
twomodes and the relaxationwe observe here is directly related to the growth of entanglement between them,
namely the loss of coherence, or purity, of the reduced density operators. Finally, we point out that the relaxation
behavior in the asymptotic regime is remarkably similar to the classical high temperature kinetics of (5), which
relaxes to the fixed point =A A[ ] [ ]2

2 , even though our system is always in a global pure state.
We obtained N and ΔN 2 via exact diagonalisation. Although the full Hamiltonian has degenerate

eigenvalues, the dynamical problem, due to the conservation of N̂tot, can be separated intofinite-dimensional
problemswith no degeneracy. Exploiting this we find that the time-averaged expectation value of the atoms and
themolecules coincides with the predictions given by the diagonal ensemble ≔ ∑ ∣ ∣α α α αN c Nens

2
, , where

ψ α= 〈 ∣ 〉αc in and α β= 〈 ∣ ∣ 〉α βN N̂, [30, 31] are the coefficients in the complete energy eigenbasis.Moreover,

the time-averaged fluctuations around thismean value can be obtained via Δ = ∑ ∣ ∣ ∣ ∣ ∣ ∣α β α β α β≠N c c Nt
2 2 2

,
2 [32].

However, the system does not thermalize as the predicted expectation values do not coincide with those of the
microcanonical ensemble.

For an experimental implementation of (5)we consider ultracoldCesium atoms:

+ ⇄Cs Cs Cs (7)
k

2

with Σ= ∣ = = 〉+ v JCs , 0, 0u2
3 and = ∣ = = 〉F mCs 4, 4F . The chosen atomic state has pure triplet spin

character, andwe neglect spinmixing effects due to spin-orbit coupling, therefore excluding any vibrational
relaxation to the singlet ground state. Potential energy curves of the states under consideration are available

Figure 2.Evolution of the quantum entanglement (in terms of the vonNeumann entropy of the atomic reduced density operator ρA)
between the atomic andmolecularmodes for the reaction (5)with respect to rescaled time τ = tk . For an initially coherent atomic
state the amount of entanglement is close to zero for short times. In the vicinity of the breakdown time tMF the entanglement rapidly
increases and stays roughly at a constant level for later times.

Figure 3.The time-averaged relativemean value of atoms and thefluctuations around it against the overall particle number for the
reaction (5). As the particle number is increased the fraction of atoms in the asymptotic regime and the relative temporalfluctuations
decrease.

5
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through [33–35]. EA and EA2
are given by an optical trap confinement andwill be different and tunable due to

the different dynamic polarizabilities of themolecular and atomic state [36]. For our calculation,
ω≈ =E E m1.05 1.05( )A A A

1

2
2

2 with ω = 50 Hz.A The reaction is realized through a 2-color photoassociation in

continuous Raman configuration. For themolecule conversion, one has =
Δ

k
k k

2
1 2 , where ki (i = 1,2) are the

individual Rabi frequencies andΔ the one-photon detuning.We evaluate the correspondingwave functions and
transition dipolematrix elements to and from the intermediate states Π∣ ′ ′ = 〉b v J, , 0u

3 and Σ∣ ′ ′ = 〉+c v J, , 0g
3 .

As an example, for a transition to the Π∣ ′ ′ = 〉b v J, , 0u
3 manifold via lasers operating around 1275 nmand

1232 nm respectively, our calculation yields Rabi frequencies π × −I2 1.17MHz[0.4kHz] mW cm 2 for the
molecular [atomic] coupling respectively. Therefore for a typical Raman setup
(Δ = = =I I750 MHz, (10 mW 0.25 mm )1 2

2 , hence =k 1.25 kHz), > ∣ ∣ + ∣ ∣k E EA A2
is safely fulfilled.

5. Concurrent reaction

In classical high-temperature kinetics we need to consider complex reactions involving numerous reactants in
order to obtain oscillating or irregular dynamics. However, wewill see that whenwe add to the ultracold
diatomicmolecule formation a simple zeroth order reaction, we already encounterHamiltonian chaos in the
meanfield regime. For this purpose consider the chemical reaction

+ ⇄A A A (8)
k

2
1

⇄bath A (9)
k2

Applying the proposed rules and assuming that our particles are trapped in the ground state of someharmonic
potential, we obtain the followingHamiltonian:

= + + + + +( ) ( )H E n E n k a a a a a a k a aˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ , (10)A A A A A A A A A A A A1
† † †

2
†

2 2 2 2

where EA and EA2
denote the ground state energy of the respectivemolecular or atomic species. The concurrent

zeroth order reaction (9) breaks the conservation of the overall particle number N̂tot and therefore impedes a full
quantummechanical treatment. Consequently, we investigate the dynamics of the system in themeanfield
approximation by replacing the creation and annihilation operators in (10)with complex numbers α α( , )A A2

labeling coherent states. Note thatwithin this approximationwe obtain the average particle number of a certain
species 〈 〉N̂i by considering the square of themodulus of the respective complex number α∣ ∣i

2.
In the previous sectionwe have seen that the diatomicmolecule formation amounts to deviations from

meanfield dynamics because of the occurrence of quantum effects. Therefore, we need to keep the coupling
parameter k1 as small as possible compared to some relevant energies to consider themeanfield limit as an
appropriate description of the actual dynamics. Keeping this inmind, we obtain the equations ofmotion from
the variational principle:

α α α α

α α α

= + +

= +

i E k k

i E k

˙ 2

˙ . (11)

A A A A A

A A A A

1 2

1
2

2

2 2 2

To reduce the number of parameters in the system,we remove unnecessary degrees of freedomby replacing the
dynamical variables with nondimensionalized quantities

α
α
α

α
α
α

τ= = = t

t
˜ , ˜ , . (12)A

A
A

A

0 0 0
2

2

This amounts to the coupled equations

α
τ

α α α

α
τ

α α

− = +

− =

i
d

d
c

i
d

d
c c

˜
˜ 1 2 ˜ ˜

˜
˜ ˜ , (13)

A
A A A

A
A A

1

2 1
2

2

2

2

and energy

α α α α α α= = + + + + +( ) ( )H
H

k E
c c˜ : ˜ ˜ ˜ ˜ ˜ c.c. ˜ c.c. , (14)

A
A A A A A A

2
2

2
2

2
12

2
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with parameters

α= = = =t
E

k

E
c

k k

E
c

E

E

1
, , , . (15)

A A A

A

A
0 0

2
1

1 2

2 2
2

Therefore, the dynamics of the system is completely determined by the choice of the two parameters ∈ c c,1 2

and its initial conditions. Note that due to our choice of parameters =c 01 implies =k 01 , i.e. nomolecule
formation, and arbitrary k2.Moreover, the constraint stemming from the validity of themeanfield
approximation can nowprecisely be expressed as ≪c 11 which translates the constraint on themolecular

reaction constant to ≪k
E

k1
A
2

2
.

What is the physicalmeaning of those two parameters? TheODE system (13) is equivalent to a pair of
nonlinearly coupled harmonic oscillators.Whereas the oscillator describing the atoms has eigenfrequency one,
c2 determines the eigenfrequency of themolecular oscillator.Moreover, c1 is the coupling strength between the
two oscillators and is the only nonlinear term in the system.We therefore expect a regular behaviour for small
values of c1.Moreover, we see from (14) that if ≫c 11 the system is also integrable due to the conservation of the

overall particle number α α= ∣ ∣ + ∣ ∣N ˜ 2 ˜tot A A
2 2

2
. Inwhat follows, we investigate the different dynamical regimes

determined by the choice of c1 andfix c2 to an experimentally realistic value. Applying perturbation theory for
anharmonic oscillators [37] provides us analytic solutions of the occurring dynamical phenomena for
sufficiently small coupling constants c1: the trajectories depicted infigure 4 show the expectation value of atoms

α∣ ∣˜A
2 andmolecules α∣ ∣˜A

2
2

for an initially depletedmolecularmode and 40000 atoms. In case of no coupling at
all, i.e. =c 01 , themolecularmode remains completely depleted, whereas the atomicmode oscillates due to the
coupling to the bath.However, as we increase c1 the systemprogressively enters amodulational regime, inwhich
themolecular site regularly oscillates and the amplitude of the free oscillation on the atomic site ismodulated.
Let α=A ˜ (0)A0 denote the square root of the initial nondimensionalized number of atoms, thenwe obtain the
following analytical expressions for the amplitude Amod and frequency ωmod of thismodulation:



ω

=
+

−
+

= − +

( )
( )

( )

( )

A
A A c

c
c

c A c

4 1

2
,

1 . (16)

mod

mod

0 0
3

1
2

2
2 1

4

2 0
2

1
2

Thismeans increasing c1 causes an quadratic increase of Amod whereas the frequency ofmodulation ωmod

remains approximately unchanged. The restriction for the parameters for perturbation theory to be valid are
≪ ≪c A A11

2
0
2

0 and ∈c (1, 2)2 .
What happens to the system, if we increase c1 beyond the regime of perturbation theory?We already

mentioned that c1 interpolates between integrable systems. But does the system remain integrable for all choices

Figure 4.Time evolution of the (nondimensionalized) average number of atoms andmolecules inmean field approximation. The
relative energy of the ground states is =c 1.12 and the initial number of atoms is 40000. The oscillation becomesmore andmore
modulatedwith increasingmolecule formation c1. Perturbation theory determines an amplitude ≈A 111mod atoms for

= × −c 8 101
5 and ≈A 320mod atoms for = × −c 13 101

5 (see (16)).
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of c1? Awell-known tool to characterize irregular behaviour of a system is to consider its Poincaré sections [38].

In our case, we choose the quadratures α α= +X ( )i i i
1

2
and α α= −P ( )i i i i

1

2
with ∈i A A{ , }2 as dynamical

variables and the surface =X 0A2
as intersection surface. Illustrative examples of these sections for different c1

are shown infigure 5.Wefind that for a certain range of c1 the system shows behaviour, which is typical for
Hamiltonian chaos: as long as the system remains integrable, the Poincaré section consists of closed curves
corresponding to sections of two-dimensional tori. However, increasing c1deforms andfinally destroys some of
the closed curves. Some of the sampled trajectories start to denselyfill out parts of the energy hypersurface.We
call this the chaotic regime of the reaction. Finally, further increase of c1 leads to deformation of the energy
hypersurface and eventually restores the integrability of the system.

Figure 5.Poincaré sections with XA and PA on the (x,y)-axes.We set =c 1.12 and the energy =E 100. Note that in contrast to usual
Poincaré sections in the literature, we plotted PA2 on the z-axis to get an better impression of the projected energy hypersurface. The
sections are plotted for 25 long-time trajectories with arbitrary initial conditions: for a small perturbation pictured in (a) the system
remains integrable. Increasing the perturbation in (b) leads to splitting of the first orbits into little islands according to the Poincaré–
Birkhoff theorem [39]. In (c) the irregular trajectories begin to spread out and denselyfill out the energy hypersurface. In (d)most of
the energy hypersurface is covered by irregular trajectories. Figure (e) shows a significant deformation of the energy hypersurface. In
(f) all of the sampled trajectories are again on integrable curves.
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6. Summary and outlook

Wehave presented a proposal to systematically investigate the kinetics of ultracold chemical reactions. The
dynamical analysis for themost elementary bosonic examples already implies that entanglement plays amajor
role in the formation of ultracoldmolecules. This leads to a relaxation of the atomic andmolecular subsystems
resulting in the stationarity of local observables similar to quenched systems.Moreover, considering two
concurrent elementary reactions amounts to complex dynamical behaviour likeHamiltonian chaos in themean
field approximation. Extending our analysis to fermionic ormixed systems and validating the predicted
phenomena against experimental data are the next natural steps to be taken.
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