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The respiratory electron transport chain (ETC) couples electron transfer from organic
substrates onto molecular oxygen with proton translocation across the inner mitochondrial
membrane. The resulting proton gradient is used by the ATP synthase complex
for ATP formation. In plants, the ETC is especially intricate. Besides the “classical”
oxidoreductase complexes (complex I–IV) and the mobile electron transporters
cytochrome c and ubiquinone, it comprises numerous “alternative oxidoreductases.”
Furthermore, several dehydrogenases localized in the mitochondrial matrix and the
mitochondrial intermembrane space directly or indirectly provide electrons for the ETC.
Entry of electrons into the system occurs via numerous pathways which are dynamically
regulated in response to the metabolic state of a plant cell as well as environmental
factors. This mini review aims to summarize recent findings on respiratory electron
transfer pathways in plants and on the involved components and supramolecular
assemblies.
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INTRODUCTION
During cellular respiration, organic compounds are oxidized to
generate usable chemical energy in the form of ATP. The respi-
ratory electron transport chain (ETC) of mitochondria is at the
center of this process. Its core consists of four oxidoreductase
complexes, the NADH dehydrogenase (complex I), the succinate
dehydrogenase (complex II), the cytochrome c reductase (com-
plex III) and the cytochrome c oxidase (complex IV), as well as
of two mobile electron transporters, cytochrome c, and the lipid
ubiquinone. Overall, electrons are transferred from the coen-
zymes NADH or FADH2 onto molecular oxygen which is reduced
to water. Three of the four oxidoreductase complexes (complexes
I, III and IV) couple their electron transfer reactions with pro-
ton translocation across the inner mitochondrial membrane. As a
result, a proton gradient is formed which can be used by the ATP
synthase complex (complex V) for the phosphorylation of ADP.
In its classically described form, cellular respiration is based on a
linear ETC (from NADH via complexes I, III, and IV to molecular
oxygen). However, electrons can enter and leave the ETC at several
alternative points. This is especially true for the plant ETC sys-
tem, which is highly branched. In this review we aim to integrate
current knowledge on the ETC system in plants with respect to
its components, electron transport pathways and supramolecular
structure.

COMPONENTS OF THE PLANT ETC SYSTEM
The “classical” oxidoreductase complexes of the respiratory chain
(given in dark blue in Figure 1) resemble their homologues in
animal mitochondria but at the same time have some clear dis-
tinctive features (reviewed in Millar et al., 2008, 2011; Rasmusson
and Moller, 2011; van Dongen et al., 2011; Jacoby et al., 2012).
Complex I is especially large in plant mitochondria and includes

nearly 50 different subunits (Braun et al., 2014). Compared to its
homologs from bacteria and other eukaryotic lineages it has an
extra domain which includes carbonic anhydrase-like proteins.
The function of this additional domain is currently unclear but
it has been suggested to be important in the context of an inner-
cellular CO2 transfer mechanism to provide mitochondrial CO2

for carbon fixation in chloroplasts (Braun and Zabaleta, 2007;
Zabaleta et al., 2012). Complex II is composed of four subunits
in bacteria and mitochondria of animals and fungi. In plants
complex II includes homologs of these subunits but addition-
ally four extra proteins of unknown function (Millar et al., 2004;
Huang and Millar, 2013). In contrast, the subunit composition
of complex III from plants is highly similar to the ones in yeast
and bovine mitochondria (Braun and Schmitz, 1995a). The two
largest subunits of this protein complex, termed “core proteins”
in animals and fungi, are homologous to the two subunits of
the mitochondrial processing peptidase (MPP) which removes
pre-sequences of nuclear-encoded mitochondrial proteins after
their import into mitochondria. In animal mitochondria, the core
proteins are proteolytically inactive. Instead, an active MPP is
present within the mitochondrial matrix. In contrast, the core
subunits of complex III from plants have intact active sites (Braun
et al., 1992; Glaser et al., 1994). Indeed, complex III isolated from
plant mitochondria efficiently removes pre-sequences of mito-
chondrial pre-proteins. The differing functional states of complex
III in diverse eukaryotic lineages might reflect different evo-
lutionary stages of this protein complex (Braun and Schmitz,
1995b). Also complex IV has some extra subunits in mitochon-
dria of plants (Millar et al., 2004). Eight subunits are homologous
to complex IV subunits from other groups of eukaryotes and
another six putative subunits represent proteins of unknown
functions.
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FIGURE 1 | Mitochondrial dehydrogenases and the respiratory chain.

Within the mitochondrial matrix (M) numerous dehydrogenases generate
NADH by oxidizing various carbon compounds. NADH subsequently is
re-oxidized at the inner mitochondrial membrane (IM) by the respiratory
electron transfer chain (ETC). The electrons of NADH can enter the ETC
through complex I or at the ubiquinone level via alternative
NAD(P)H-dehydrogenases. Besides, some dehydrogenases of the
mitochondrial matrix transfer electrons to ubiquinone via the ETF/ETFQOR
system. Proline dehydrogenase possibly directly transfers electrons onto
ubiquinone. In the intermembrane space (IMS), electrons from NAD(P)H
generated in the cytoplasm can be inserted into the ETC via alternative
NAD(P)H dehydrogenases. Furthermore, some dehydrogenases of the IMS
can directly transfer electrons onto ubiquinone or cytochrome c. Color
code—dark blue, protein complexes of the ETC; blue, AOX; purple,
ETF/ETFQQ system; light green, alternative NAD(P)H dehydrogenases of the
ETC; green, dehydrogenases; red, ubiquinone and cytochrome c; yellow,
NADH produced by dehydrogenases of the mitochondrial matrix/NADH
re-oxidized by complex I or internal alternative NADH dehydrogenases; dark
gray, ATP synthase complex; light green background, NADH producing

dehydrogenases of the mitochondrial matrix. Abbreviations—alphabetically
ordered. I, complex I; II, complex II; III, complex III; IV, complex IV; V, complex
V; α-KGDH, α-ketoglutarate dehydrogenase; AOX, alternative oxidase;
BCKDH, branched-chain α-ketoacid dehydrogenase complex; c, cytochrome
c; D-2HGDH, D-2-hydroxyglutarate dehydrogenase; DHODH, dihydroorotate
dehydrogenase; DLDH, D-lactate dehydrogenase; ETF, electron transfer
flavoprotein; ETFQOR, electron transfer flavoprotein ubiquinone
oxidoreductase; FDH, formate dehydrogenase; GDC, glycine dehydrogenase;
GDH, glutamate dehydrogenase; GLDH, L-galactono-1,4-lactone
dehydrogenase; G3-PDH, glyceraldehyde 3-phosphate dehydrogenase; HDH,
histidinol dehydrogenase; IDH, isocitrate dehydrogenase; IVDH,
isovaleryl-coenzyme A dehydrogenase; MDH, malate dehydrogenase; ME,
malic enzyme; MMSDH, methylmalonate-semialdehyde dehydrogenase;
NDA1/2, NDB2/3/4, alternative NADH dehydrogenase; NDC1, NDB1,
alternative NADPH dehydrogenase; P5CDH, pyrroline-5-carboxylate
dehydrogenase; PDH, pyruvate dehydrogenase; ProDH,
proline dehydrogenase; SPDH, saccharopine dehydrogenase; SSADH,
succinic semialdehyde dehydrogenase; UQ, ubiquinone. For further
information of the enzymes see Table 1.

The ETC of plant mitochondria additionally includes sev-
eral so-called “alternative oxidoreductases”: the alternative oxi-
dase (AOX; light blue in Figure 1) and several functionally
distinguishable alternative NAD(P)H dehydrogenases (alternative
NDs, light green in Figure 1). Findings on their functional roles
have been reviewed recently (Rasmusson et al., 2008; Rasmusson
and Moller, 2011; Moore et al., 2013). AOX directly transfers

electrons from ubiquinol to molecular oxygen and therefore
constitutes an alternative electron exit point of the ETC. As
a result, complexes III and IV are excluded from respiratory
electron transport. The alternative NAD(P)H dehydrogenases
serve as alternative electron entry points of the plant ETC and
may substitute complex I. They differ with respect to co-factor
requirement and localization at the outer or inner surface of
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Table 1 | Mitochondrial dehydrogenases in Arabidopsis thaliana a.

Enzyme Accession no.b

subunits
isoforms etc.

Catalysed reaction Oligomeric state

Native mass/monomer mass according
to GelMapc (according to other data in
the literature)

Publicationd

for Arabidopsis
(for other plants)

Malate
dehydrogenase

At1g53240
At3g15020

Malate + NAD+
⇔ Oxaloacetate + NADH

At1g53240: 89 kDa/42 kDa
At3g47520: 157 kDa/38 kDa

Journet et al., 1981
Gietl, 1992
Krömer, 1995
Nunes-Nesi et al., 2005
Lee et al., 2008
Tomaz et al., 2010

Isocitrate
dehydrogenase

At4g35260
At5g14590
At4g35650
At3g09810
At5g03290
At2g17130

Isocitrate + NAD+
⇔ α-Ketoglutarate + CO2

+ NADH

At4g35260: 89 kDa/42 kDa
At5g14590: 140 kDa/53 kDa
At3g09810: 138 kDa/40 kDa
At5g03290: 138 kDa/40 kDa

Behal and Oliver, 1998
Lancien et al., 1998
Lin et al., 2004
Lemaitre and Hodges, 2006
Lemaitre et al., 2007

α-Ketoglutarate
dehydrogenase
complex

At3g55410 (E1)
At5g65750 (E1)
At4g26910 (E2)
At5g55070 (E2)
At3g17240 (E3)
At1g48030 (E3)
At3g13930 (E3)

α-Ketoglutarate +
coenzyme A + NAD+
⇔ succinyl-CoA + CO2 +
NADH

At5g65750: 207 kDa/91 kDa
At3g55410: 207 kDa/91 kDa

(1.7 MDa complex)

Poulsen and Wedding, 1970
Wedding and Black, 1971a,b
Dry and Wiskich, 1987
Millar et al., 1999
Araújo et al., 2008
Araújo et al., 2013

Glutamate
dehydrogenase

At5g18170
At5g07440
At3g03910

Glutamate + H2O + NAD+
⇔ α-Ketoglutarate + NH+

4
+ NADH

At5g18170: 209 kDa/48 kDa
At5g07440: 209 kDa/48 kDa
At3g03910: 209 kDa/48 kDa

Yamaya et al., 1984
Turano et al., 1997
Aubert et al., 2001
Miyashita and Good, 2008a,b
Fontaine et al., 2012
Tarasenko et al., 2013
Fontaine et al., 2012

Malic enzyme At2g13560
At4g00570
At1g79750

Malate + NAD+ ⇔
Pyruvate + NADH + CO2

At2g13560: 370 kDa/63 kDa
At4g00570: 370 kDa/63 kDa

Jenner et al., 2001
Tronconi et al., 2008
Tronconi et al., 2010
Tronconi et al., 2012

Pyruvate
dehydrogenase
complex

At1g59900 (E1)
At1g24180 (E1)
At5g50850 (E1)
At3g52200 (E2)
At1g54220 (E2)
At3g13930 (E3)
At3g17240 (E3)
At1g48030 (E3)

Pyruvate + coenzyme A +
NAD+ ⇔ Acetyl-CoA +
CO2 + NADH

At3g13930: 1500 kDa/54 kDa
At1g24180: 470 kDa/41 kDa
At5g50850: 150 kDa/39 kDa
At1g59900: 138 kDa/44 kDa

(9.5 MDa complex)

Luethy et al., 1994
Grof et al., 1995
Zou et al., 1999
Tovar-Méndez et al., 2003
Szurmak et al., 2003
Yu et al., 2012

Glycine
dehydrogenase
complex

At4g33010 (P)
At2g26080 (P)
At1g32470 (H)
At2g35120 (H)
At2g35370 (H)
At1g11860 (T)
At4g12130 (T)
At3g17240 (L)
At1g48030 (L)

Glycine + H4 folate +
NAD+ ⇔ methylene-H4

folate + CO2 + NH3 +
NADH

At4g33010: 144 kDa/91 kDa
At2g26080: 209 kDa/91 kDa
At1g11860: 148 kDa/46 kDa

(1.3 MDa complex)

Somerville and Ogren, 1982
Oliver et al., 1990
Oliver, 1994
Srinivasan and Oliver, 1995
Douce et al., 2001

(Continued)
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Table 1 | Continued

Enzyme Accession no.b

subunits
isoforms etc.

Catalysed reaction Oligomeric state

Native mass/monomer mass according
to GelMapc (according to other data in
the literature)

Publicationd

for Arabidopsis
(for other plants)

Branched-chain alpha
keto acid
dehydrogenase
complex

At5g09300 (E1)
At1g21400 (E1)
At1g55510 (E1)
At3g13450 (E1)
At3g06850 (E2)
At3g13930 (E3)
At3g17240 (E3)
At1g48030 (E3)

Branched chain alpha
keto-acids + CoA + NAD+
⇔ Acyl-CoA + NADH

At1g55510: 150 kDa/39 kDa

(0.95 MDa complex)

Fujiki et al., 2000
Mooney et al., 2000
Fujiki et al., 2001
Fujiki et al., 2002
Taylor et al., 2004
Binder, 2010

Formate
dehydrogenase

At5g14780 Formate + NAD+ ⇔ CO2

+ NADH
(200 kDa complex) Halliwell, 1974

Colas des Francs-Small et al.,
1993
Hourton-Cabassa et al., 1998
Jänsch et al., 1996
Bykova et al., 2003
Baack et al., 2003
Olson et al., 2000
Alekseeva et al., 2011

Methylmalonate
semialdehyde
dehydrogenase

At2g14170 (S)-methylmalonate-
semialdehyde + coenzyme
A + NAD+ + H2O ⇔
propanoyl-CoA +
bicarbonate + NADH

At2g14170: 200 kDa/59 kDa Oguchi et al., 2004
Tanaka et al., 2005
Kirch et al., 2004

Isovaleryl-CoA
dehydrogenase

At3g45300 Isovaleryl-CoA + acceptor
(ETF) ⇔
3-methylbut-2-enoyl-CoA +
reduced acceptor (ETF)
(also considerable activity
with other acyl-CoA’s)

At3g45300: 132 kDa/46 kDa

(homodimeric complex)

Däschner et al., 1999
Reinard et al., 2000
Faivre-Nitschke et al., 2001
Däschner et al., 2001
Goetzman et al., 2005
Araújo et al., 2010

D-2-Hydroxyglutarate
dehydrogenase

At4g36400 D-2-hydroxyglutarate +
acceptor (ETF) ⇔
2-oxoglutarate + reduced
acceptor (ETF)

(homodimeric complex) Engqvist et al., 2009
Araújo et al., 2010
Engqvist et al., 2011

Saccharopine
dehydrogenase

At5g39410 Saccharopine + NAD+ +
H2O ⇔ Glutamate +
-Amino adipate
semialdehyde + NADH

not known Zhu et al., 2000
Heazlewood et al., 2003

Pyrroline-5-
carboxylate
dehydrogenase

At5g62530 Pyrroline-5-carboxylate +
NAD+ ⇔ Glutamate
(Glutamate-5-
semialdehyde) +
NADH

At5g62530: 158 kDa/59 kDa Forlani et al., 1997
Deuschle et al., 2001
Deuschle et al., 2004
Miller et al., 2009

Proline
dehydrogenase

At3g30775
At5g38710

L-Proline ⇔
Pyrroline-5-Carboxylate

not known Elthon and Stewart, 1981
Verbruggen et al., 1996
Kiyosue et al., 1996
Mani et al., 2002
Szabados and Savouré, 2010
Funck et al., 2010
Sharma and Verslues, 2010
Schertl et al., in press

(Continued)
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Table 1 | Continued

Enzyme Accession no.b

subunits
isoforms etc.

Catalysed reaction Oligomeric state

Native mass/monomer mass according
to GelMapc (according to other data in
the literature)

Publicationd

for Arabidopsis
(for other plants)

L-Galactono-1,4-
lactone
dehydrogenase

At3g47930 L-Galactono-1,4-Lactone ⇔
L-Ascorbate

(420 kDa, 470 kDa, 850 kDa complexes) Mapson and Breslow, 1958
Siendones et al., 1999
Leferink et al., 2008
Pineau et al., 2008
Leferink et al., 2009
Schertl et al., 2012

D-Lactate
dehydrogenase

At5g06580 D-Lactate ⇔ Pyruvate (homodimeric complex) Bari et al., 2004
Atlante et al., 2005
Engqvist et al., 2009
Wienstroer et al., 2012

Glycerol-3-phosphate
dehydrogenase

At3g10370 Glycerol 3-phosphate ⇔
Dihydroxyacetonephosphate

At3g10370: 160 kDa/65 kDa Shen et al., 2003
Shen et al., 2006

Dihydroorotate
dehydrogenase

At5g23300 Dihydroorotate ⇔ Orotate At5g23300: 156 kDa/49 kDa Ullrich et al., 2002
Doremus and Jagendorf, 1985
Miersch et al., 1987

Succinic
semialdehyde
dehydrogenase

At1g79440 Succinic semialdehyde ⇔
Succinate

At1g79440: 163 kDa/55 kDa Busch and Fromm, 1999
Bouché et al., 2003
Kirch et al., 2004
Toyokura et al., 2011

Histidinol
dehydrogenase

At5g63890 L-histidinol + NAD+ ⇔
L-histidine + NADH

At5g63890: 115 kDa/51 kDa Nagai and Scheidegger, 1991
Ingle, 2011

Alternative NAD(P)H
dehydrogenases
(NDA1, NDB4,
NDA2, NDB2, NDB3,
NDB1, NDC1)

At1g07180
At2g20800
At2g29990
At4g05020
At4g21490
At4g28220
At5g08740

NAD(P)H + UQ ⇔ NAD(P)+
+ UQH2

At2g20800: 160 kDa/65 kDa
At2g29990: 163 kDa/55 kDa
At4g05020: 160 kDa/65 kDa

Escobar et al., 2004
Rasmusson et al., 2004
Rasmusson et al., 2008
Wulff et al., 2009
Wallström et al., 2014a,b

aMitochondrial dehydrogenases without complex I (NADH dehydrogenase) and complex II (succinate dehydrogenase) of the respiratory chain. This list corresponds

to the dehydrogenases shown in Figure 1.
bAccession numbers in accordance with The Arabidopsis Information Resource (TAIR).
cOligomeric state: native mass and monomer mass according to GelMap (https://gelmap.de/231).
d Key publications for Arabidopsis (other plants).

the inner mitochondrial membrane (external alternative NDs,
internal alternative NDs). Some of the genes encoding alternative
NDs are activated by light (Rasmusson et al., 2008; Rasmusson
and Moller, 2011). The latter enzymes are considered to be impor-
tant during photorespiration and all alternative enzymes during
various stress conditions. Since none of the alternative oxidore-
ductases couple electron transfer with proton translocation across
the inner mitochondrial membrane, their enzymatic function is
believed to be important in the context of an overflow protec-
tion mechanism for the ETC which is especially relevant during
high-light conditions.

Finally, dehydrogenases (dark green in Figure 1; Table 1)
can directly or indirectly insert electrons into the respira-
tory chain (Rasmusson et al., 2008; Rasmusson and Moller,
2011). Numerous dehydrogenases of the mitochondrial matrix

generate NADH which is re-oxidized by complex I and the
internal alternative NDs. However, some dehydrogenases directly
transfer electrons onto ubiquinone [dihydroorotate dehydro-
genase (DHODH), glyceraldehyde 3-phosphate dehydrogenase
(G3-PDH) and possibly proline dehydrogenase (ProDH)] or onto
cytochrome c [L-galactone-1,4-lactone dehydrogenase (GLDH)
and D-lactate dehydrogenase (DLDH)]. Furthermore, at least two
dehydrogenases [isovaleryl-coenzyme A dehydrogenase (IVDH)
and D-2-hydroxyglutarate dehydrogenase (D-2HGDH)] transfer
electrons onto ubiquinone via a short electron transfer chain
composed of the “electron transfer flavoprotein” and the “elec-
tron transfer flavoprotein-ubiquinone oxidoreductase” (ETF and
ETFQ-OR, purple in Figure 1) (Ishizaki et al., 2005, 2006; Araújo
et al., 2010). IVDH is involved in the branched chain amino
acid catabolism and D-2HGDH in the catabolism of lysine. In
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plants, degradation of amino acids for respiration was shown
to be especially important during carbon starvation conditions,
e.g., extended darkness (Araújo et al., 2011). In contrast to
animal mitochondria, fatty acid oxidation does not take place
in plant mitochondria and the involved dehydrogenases conse-
quently are absent. Instead, additional metabolic pathways occur
in plants, e.g., the final step of an ascorbic acid biosynthesis path-
way, which is catalyzed by GLDH. Electrons of L-galactono-1,4-
lactone (GL) oxidation are inserted into the ETC via cytochrome
c (Bartoli et al., 2000). Proline, besides being a building block
for protein biosynthesis, is used as an osmolyte in plant cells.
Proline is catabolized in mitochondria by a two-step process
involving pyrroline-5-carboxylate dehydrogenase (P5CDH) and
ProDH (Szabados and Savouré, 2010). P5CDH produces NADH,
whereas ProDH represents a flavoenzyme which is assumed
to transfer electrons directly or indirectly onto ubiquinone.
Some additional dehydrogenases occur in plant mitochondria
in the mitochondrial matrix and the intermembrane space

which also contribute electrons to the ETC (Figure 1, Table 1).
However, in some cases their mitochondrial localization is not
entirely certain and should be further investigated by future
research.

ELECTRON ENTRY PATHWAYS INTO THE ETC
All electrons enter the ETC via NAD(P)H (generated by
a variety of dehydrogenases in the mitochondrial matrix
or the intermembrane space/the cytoplasm) or via flavine
nucleotides (FADH2, FMNH2), which generally are bound to
proteins termed flavoproteins. Consequently, the following elec-
tron entry pathways into the ETC can be defined: (i) the
Matrix NAD(P)H pathway, (ii) the Matrix-FADH2 pathway,
(iii) the Intermembrane-space-NAD(P)H pathway, and (iv) the
Intermembrane-space-FADH2/FMDH2 pathway (Figure 2).

Different metabolic processes, which vary depending on the
physiological state of the plant cell, contribute to the four electron
entry pathways. During stable carbohydrate conditions, electrons

FIGURE 2 | Electron entry pathways into the mitochondrial electron

transport chain in plants. Electrons enter the respiratory chain via
four different pathways. (1) The Matrix-NAD(P)H pathway. Various
dehydrogenases oxidize carbon compounds in the mitochondrial
matrix. Electrons are transferred in the form of NADH to the ETC.
NADH is re-oxidized by complex I or the internal alternative NAD(P)H
dehydrogenases. (2) The Matrix-FADH2 pathway. FAD-containing
enzymes oxidize carbon compounds in the mitochondrial matrix and
directly (ProDH?) or indirectly (via the ETF/ETFQQ system) transfer
electrons to the ubiquinone pool. (3) The IMS-NAD(P)H pathway.
Cytoplasmically formed NAD(P)H is re-oxidized via external alternative
dehydrogenases. (4) The IMS-FADH2 pathway. FAD/FMN-containing
enzymes oxidize carbon compounds in the mitochondrial
intermembrane space. Electrons are transferred either to the
ubiquinone or the cytochrome c. M, matrix; IM, inner membrane;
IMS, intermembrane space. Abbreviations—alphabetically ordered. I,

complex I; II, complex II; III, complex III; IV, complex IV; α-KGDH,
α-ketoglutarte dehydrogenase; AOX, alternative oxidase; BCKDH,
branched-chain α-ketoacid dehydrogenase complex; Cytc, cytochrome c;
D-2HGDH, D-2-hydroxyglutarate dehydrogenase; DHODH, dihydroorotate
dehydrogenase; DLDH, D-lactate dehydrogenase; ETF, electron transfer
flavoprotein; ETFQOR, electron transfer flavoprotein ubiquinone
oxidoreductase; FDH, formate dehydrogenase; GDC, glycine
dehydrogenase; GDH, glutamate dehydrogenase; GLDH,
L-galactono-1,4-lactone dehydrogenase; G3-PDH, glyceraldehyde
3-phosphate dehydrogenase; HDH, histidinol dehydrogenase; IDH,
isocitrate dehydrogenase; IVDH, isovaleryl-coenzyme A dehydrogenase;
MDH, malate dehydrogenase; ME, malic enzyme; MMSDH,
methylmalonate-semialdehyde dehydrogenase; P5CDH,
pyrroline-5-carboxylate dehydrogenase; PDH, pyruvate dehydrogenase;
ProDH, proline dehydrogenase; SPDH, saccharopine dehydrogenase;
SSADH, succinic semialdehyde dehydrogenase; UQH2, ubiquinol.
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for the respiratory chain can be supplied by NADH and FADH2

provided by the tricarboxylic acid (TCA) cycle. This is believed to
be the standard mode of cellular respiration in non-green plant
tissues or green tissues at night and resembles the basic situ-
ation in animal cells. However, during photosynthesis, NADH
generation of the TCA cycle is reduced because some of its inter-
mediates are used for anabolic reactions (reviewed in Sweetlove
et al., 2010). Furthermore, the pyruvate dehydrogenase (PDH)
complex is deactivated in plant mitochondria in the light by
phosphorylation (Budde and Randall, 1990). At the same time
photorespiration leads to an increase in NADH formation in the
mitochondrial matrix by the activity of the glycine dehydroge-
nase complex (GDC). Indeed, at high-light conditions, NADH
formed by GDC is believed to be the main substrate of the ETC,
and not the NADH formed by the enzymes of the TCA cycle.
At the same time, plant cells might become over-reduced in the
presence of high-light. In this situation alternative oxidoreduc-
tases can insert excess electrons into the respiratory chain without
contributing to the proton gradient. Upon carbon starvation con-
ditions (e.g., extended darkness) electrons from the breakdown
of amino acids are provided to the ETC (Araújo et al., 2011).
Especially after release of salt stress the amino acid proline is used
as an electron source (Szabados and Savouré, 2010). In summary,
electron entry into the ETC is a highly flexible process in plants

which much depends on light, the metabolic state of the cell as
well as environmental stress factors.

SUPRAMOLECULAR STRUCTURE OF THE ETC SYSTEM
The ETC is based on defined protein-protein interactions. Most
stable interactions occur within the four “classical” oxidoreduc-
tase complexes of the respiratory chain. Indeed, complexes I to IV
can be isolated in intact form by various biochemical and elec-
trophoretic procedures. Furthermore, several lines of evidence
indicate that complexes I, III and IV interact within the inner
mitochondrial membrane forming respiratory supercomplexes
(reviewed in Dudkina et al., 2008). Complex I as well as com-
plex IV associate with dimeric complex III (I + III2 and IV2 +
III2 supercomplexes). An even larger supercomplex includes com-
plexes I, III2, and IV and was proposed to be called “respirasome”
because it can autonomously catalyzes the overall ETC reaction
in the presence of ubiquinone and cytochrome c. The alterna-
tive oxidoreductases of the plant ETC seem not to be part of
the respiratory supercomplexes. However, alternative NDs were
found to be part of other protein complexes of about 160 kDa
(Klodmann et al., 2011) or 150–700 kDa (Rasmusson and Agius,
2001).

Experimental data also indicate that several of the mito-
chondrial dehydrogenases form protein complexes. TCA cycle

FIGURE 3 | The dehydrogenase subproteome of plant mitochondria.

Mitochondrial proteins from Arabidopsis thaliana were separated by
2D Blue native/SDS PAGE and displayed via GelMap
(https://gelmap.de/231#). Protein separation under native condition was
from left to right, protein separation in the presence of SDS from top

to bottom. Molecular masses of standard proteins are given to the
left/above the 2D gel. All proteins annotated as “dehydrogenase” are
indicated by white arrows. Exception: The subunits of complex I
(NADH dehydrogenase) and complex II (succinate dehydrogenase) are
not indicated on the figure.
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enzymes can assemble forming multienzyme clusters (Barnes
and Weitzman, 1986). In addition, some of the mitochondrial
dehydrogenases interact with ETC complexes, e.g., malate dehy-
drogenase has been reported to interact with complex I in animal
mitochondria (Fukushima et al., 1989; see Braun et al., 2014
for review). Information on the native state of mitochondrial
dehydrogenases furthermore comes from the GelMap project
(Klodmann et al., 2011). Using 2D Blue native/SDS PAGE and
systematic protein identifications, various dehydrogenases were
described (Figure 3, Table 1). Native molecular mass of the dehy-
drogenases in many cases much exceeds the molecular mass
of the monomeric proteins (Table 1, column 3). This indicates
that probably most mitochondrial dehydrogenases form part of
defined higher order structures.

CONCLUSION AND OUTLOOK
Cellular respiration in plants is an especially dynamic system.
The classical protein complexes of the ETC have extra func-
tions and several alternative oxidoreductases occur. A network
of mitochondrial dehydrogenases directly or indirectly supplies
electrons for the respiratory chain. Insertion of electrons via var-
ious pathways is highly dependent on the metabolic state of the
plant cell. The regulation of electron entry pathways into the res-
piratory chain is only partially understood and might, besides
others, depend on the formation of supramolecular structures.
Non-invasive experimental procedures will be necessary to phys-
iologically investigate the function of these structures by future
research.
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