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Abstract 

 
Single crystals of the title compounds were prepared by solid-solid reaction using 

BaCl2 or BaBr2 flux at 1100°C. The structures of these two new cobaltites were solved and 

refined in the trigonal symmetry with space group R3m: a=5.716(2) Å, c=45.01(3) Å for 

Ba2Co4ClO7 and a=5.7434(5) Å, c=46.151(9) Å for Ba2Co4BrO7. The two compounds are 

isostructural and their structures can be considered as the intergrowth along [001] of 

hexagonal blocks (Ba2Co8O14)
2- built from a close-packing of [O4] and [BaO3] layers with 

octahedral and tetrahedral cobalt, separated by fluorite-type double layers (Ba2Cl2)
2+ or 

(Ba2Br2)
2+. The main difference between Ba2Co4ClO7 and Ba2Co4BrO7 is due to the fluorite-

type layers: (Ba2Cl2)
2+ double layers are perfectly ordered while (Ba2Br2)

2+ blocks are 

affected by a structural disorder through the bromine atoms. 
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1. Introduction 

 

 Numerous perovskite-related materials exhibit unusual and interesting properties such 

as high Tc superconductivity, piezo-electricity or colossal magneto-resistance among others 

[1, 2]. These phenomena are still insufficiently understood and the comprehension of the 

mechanism leading to these spectacular properties is of particular interest for the scientists 

working in the area of new materials. Therefore perovskite-type compounds are intensively 

studied. In this way, for instance, the well-known manganites have been largely investigated 

because of their interesting properties: a wide range of valence states and the possibility to 

adopt several polyhedral configurations as, for example, octahedral or tetrahedral 

environments. The research on manganites materials has led, for example, to the discovery of 

colossal magneto-resistance [3, 4]. Compared to these compounds, the cobaltites exhibit one 

additional degree of freedom provided by the cobalt spin-state. Indeed, Co3+ atoms (3d6) in O6 

octahedral environment can adopt either the low spin LS (t2g
6eg

0, S=0), the intermediate spin 

IS (t2g
5eg

1, S=1) or the high spin HS (t2g
4eg

2, S=2) configurations [5, 6]. The possibility to 

stabilize several spin configurations is of great interest, as illustrated for instance in the 

LnBaCo2O5.5 series where the metal-insulator transition is due to a spin-blockade mechanism 

attributed to the presence of high-spin and low-spin of Co3+ ions [7]. Moreover, the discovery 

of large thermopower properties in NaxCoO2 [8] has reinforced the interest of the research in 

cobaltites materials. In this series of layered cobalt oxides, candidates for thermoelectric 

materials, CdI2-type layers were proposed to be at the origin of these interesting physical 

properties.  

 Recently, Sun et al. have reported the existence of a new barium cobaltite series 

Ban+1ConO3n+3(Co8O8), in which Ba2Co9O14 and Ba3Co10O17 (n=1 and n=2 terms, 

respectively) where isolated [9]. These structures have been described as intergrowth of 
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perovskite layers and CdI2-type oxide layers. These CoO2 layers (of CdI2-type) are also 

present in the misfit layered cobaltites series [Tl1-xSr2+x-yCoyO3][CoO2]z and seem to be 

responsible of the very interesting high thermopower or low resistivity properties of these 

materials [10]. 

 In the present paper, we report on the synthesis and structural characterization of two 

new isostructural oxyhalide cobaltites, Ba2Co4ClO7 and Ba2Co4BrO7, which adopt hexagonal 

18R structures (18R meaning that 18 layers are necessary to describe the unit cell in space 

group R3m). These structures can be described by the stacking along [001] of fluorite-type 

double layers (Ba2Cl2)
2+ or (Ba2Br2)

2+ and blocks (Ba2Co8O14)
2- built up from CdI2-type oxide 

layers, which make them potential candidates for thermoelectric materials. 

 

2. Experimental 

 

2.1 Synthesis 

 

 Ba2Co4ClO7 and Ba2Co4BrO7 single crystals were grown using a flux technique. A 

1:1:10 molar mixture of BaCO3, Co3O4 and BaCl2,2H2O or BaBr2,2H2O was well ground in 

an agate mortar and heated in air at 1100°C for 48 hours in an alumina crucible. The mixture 

was then slowly cooled at 30°C/h to room temperature. After dissolving the excess of BaCl2 

or BaBr2 with hot water, black hexagonal plate-like crystals of approximate size 0.1 - 2 mm 

were isolated from the reaction product. 

 Well-developed single crystals were analyzed by energy-dispersive X-ray 

spectroscopy on a JEOL JSM-5300 scanning microscope equipped with an IMIX system of 

Princeton Gamma Technology. Measurements revealed the presence of barium, cobalt, 

oxygen and chlorine or bromine for Ba2Co4ClO7 and Ba2Co4BrO7 respectively. Semi-
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quantitative analysis realized on several points of the crystals confirmed the formula of each 

compounds. 

 

2.2 Crystal structure determination 

 

 For the structure determination, single crystals of Ba2Co4ClO7 and Ba2Co4BrO7 were 

selected, mounted on a glass fibre and aligned on a Bruker X8 APEX2 diffractometer. 

Intensities were collected at room temperature using MoKα radiation (λ=0.71073 Å) selected 

by a graphite monochromator. The ω-scan angle and the Dx parameter (distance between the 

single crystal and the CCD detector) were fixed, respectively, to 0.3°/frame and 54 mm for 

Ba2Co4ClO7 and to 0.5°/frame and 40 mm for Ba2Co4BrO7, depending on the crystal quality 

and spot shapes. For both compounds, acquisition time was 20 seconds per frame. The 

diffracted intensities were collected up to 2θ=62.46° with 2763 reflections and a redundancy 

of 4.86 in the space group R3m for Ba2Co4ClO7 and 2θ=56.88° with 3512 reflections and a 

redundancy of 7.47 in the space group R3m for Ba2Co4BrO7. After data collection, the 

intensities were integrated and corrected for Lorentz, polarisation and background effects 

using the Saint 7.12 software [11]. The SADABS 2006/1 program [12] was used to correct 

absorption effects using a semi-empirical method based on redundancy. Details of the data 

collection and refinements are given in Table 1. The hexagonal unit-cell parameters were 

refined to a=5.716(2) Å, c=45.01(3) Å and a=5.7434(5) Å, c=46.151(9) Å for Ba2Co4ClO7 

and Ba2Co4BrO7 respectively. 

 Crystal structures were determined for both compounds in the R3m space group by 

direct methods using SIR97 program [13], which readily established the heavy atom positions 

(Ba, Co and Cl or Br). Oxygen atoms positions were found by difference Fourier map 

calculations. Anisotropic displacement parameters were attributed to all atoms in the last 
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cycles of refinement. Full-matrix least-squares structures refinements against F were carried 

out using the JANA2000 program [14]. 

 As already reported in one of our previous paper [15], the introduction of bromine 

atoms in this type of layered compounds can lead to structural disorder. We thus undertook a 

Maximum Entropy Method (MEM) analysis of the diffraction data collected on Ba2Co4ClO7 

and Ba2Co4BrO7. MEM is a model-free method which is used to calculate accurate electron 

densities in solids using experimental phased structure factors as input. This method has been 

proved to be particularly suited to determine structural aspects of disorder and anharmonic 

vibrations [16]. To calculate the precise electron density distribution, the MEM analysis was 

carried out using the computer program BAYMEM [17]. The total number of electrons in the 

unit cell has been fixed to F(000) values (1758 e- and 1866 e- for Ba2Co4ClO7 and 

Ba2Co4BrO7 respectively) and the unit cell was divided in a grid of 72*72*486 pixels to 

ensure a good resolution (better than 0.1 Å for the two studied compounds). All calculations 

were performed with an initial flat electron density with all the independent reflections. The 

reliability factor of the MEM, ∑
∑ −

=
obs

MEMobs
MEM F

FF
R

 is given in Table 1 (Fobs is obtained by 

the structural refinement and FMEM is the structure factor calculated from the electron density 

obtained by the MEM). 

 

3. Results and discussion 

 

 The atomic coordinates and anisotropic displacement parameters deduced from the 

single crystal refinements are listed in Table 2 and Table 3 for Ba2Co4ClO7 and Ba2Co4BrO7, 

respectively. Selected bond lengths and bond valence sums (BVS) are reported in Table 4 and 

Table 5. Views of the structures along (010) are represented Figure 1a and 1b. The two 
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compounds are isostructural and can be described as perovskite-related materials with a 18-

layers stacking along the c-axis of [O4], [BaO3] and [BaX] (X=Cl or Br) layers. In the 

stacking sequence, two [O4] layers are sandwiched by two [BaO3] layers, leading to the 

creation of octahedral and tetrahedral sites where the cobalt atoms are localized. These blocks 

are separated by double fluorite-type (Ba2X2)
2+ layers. Thus, the structure can be considered 

as the intergrowth of two different types of blocks represented by a (cccch’h’)3 stacking 

sequence with the notation of Katz and Ward [18] (where h’ denotes a lacunar [BaX] layer): 

one hexagonal close-packed block (Ba2Co8O14)
2- and one fluorite-type double layers 

(Ba2Cl2)
2+ or (Ba2Br2)

2+. 

 

(Ba2Co8O14)
2- blocks have recently been evidenced in Ba2Co9O14 and Ba3Co10O17 [9, 

19]. These compounds have been described as intergrowth structures containing CdI2-type 

layers (formed from two close-packed oxygen layers) and perovskite-type layers (built from 

[BaO3] layers) with either a single-octahedral layer (Ba2Co9O14) or a double-octahedral layer 

(Ba3Co10O17). The CdI2-type and the perovskite-type layers are connected together through a 

so-called "interface layer" containing octahedral and tetrahedral sites. Figure 2 presents the 

similarities between the structures of Ba2Co4XO7 (X=Cl or Br) and those obtained for 

Ba2Co9O14 and Ba3Co10O17 viewed along [010]. It is thus possible to make an analogy with 

the compounds described by Sun et al.: in the oxyhalides, the (Ba2Co8O14)
2- blocks are 

composed by a CdI2-type block and the "interface layer" of the Ba2Co9O14 and Ba3Co10O17 

compounds. The main difference between these two classes of materials lies in the connection 

between the blocks: while in Ba2Co9O14 and Ba3Co10O17, the (Ba2Co8O14)
2- blocks are linked 

together by one or two octahedra respectively (in white on Figure 2), in Ba2Co4XO7 they are 

clearly disconnected the ones from the others by double (Ba2Cl2)
2+ or (Ba2Br2)

2+ layers. One 

could thus imagine the formation of Ba2Co9O14 by removing the (Ba2Cl2)
2+ or (Ba2Br2)

2+ 



 7 

layers of Ba2Co4XO7 (X=Cl or Br) and connecting the "interface layers" via an octahedral 

CoO6 slice. Such types of relations between oxides and oxyhalides have been recently 

reported in oxychlorides and oxybromides of ruthenium with hexagonal perovskite-type 

structures [15, 20]. 

 

Another way to describe the oxyhalides under study is to refer to the well known 

series of spinel oxides [21]. Indeed, spinel can be described as the alternate stacking of 

different types of polyhedral layers: a cation deficient octahedral layer (whose cationic lattice 

is called Kagomé, see hereafter) and a mixed layer built up from corner-sharing octahedra and 

tetrahedra. The (Ba2Co8O14)
2- blocks can thus be described using the formalism developed for 

the spinel oxides: 

- The central block is formed by the (AB) stacking of [O4] layers, thus creating a sheet of 

edge-sharing cobalt-octahedra (Figure 3a). This arrangement can be considered as a Kagomé 

lattice (Figure 3b), denoted in the literature (Oc3), in which all octahedral sites are fully 

occupied. Co(1) atoms are in the real octahedral sites of the Kagomé lattice whereas Co(2) 

occupy the Kagomé windows. This distribution leads to a complete octahedral layer of the 

CdI2-type but with two different crystallographic sites for the cobalt atoms. By analogy to the 

(Oc3) layer, we will note this fully occupied Kagomé lattice (Oc4). Numerous compounds are 

constituted of (Oc3) octahedral layers, like for example, the spinel oxide MgAl2O4 [22], the 

olivine (Mg,Fe)2SiO4 [23] or the double hexagonal LiFeSnO4 [24]. In the present compounds, 

the calculated valence bond sums for Co(1) and Co(2) indicate a Co(1)3+/Co(2)2+ distribution. 

Furthermore, the average Co-O bond lengths of 1.915(7) Å for Co(1) and 2.078(7) Å for 

Co(2) in Ba2Co4ClO7 (1.927(9) Å for Co(1) and 2.100(8) Å for Co(2) in Ba2Co4BrO7) 

confirm the Co(1)3+/Co(2)2+ repartition with bond distances longer for Co2+ than for Co3+, in 

agreement with the charge distribution proposed in Ba2Co9O14 [9]. 
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- The second type of sheet is built up from corner-sharing octahedra and tetrahedra, resulting 

from the (AB) stacking of [O4] and [BaO3] layers (Figure 4a). Each tetrahedron is connected 

to three octahedra through the oxygen of the [BaO3] layer. This mixed-polyhedra block can be 

considered as a (Te2Oc) layer (Figure 4b) in which one half of tetrahedral sites are empty. 

This kind of (TeOc) layer has been already evidenced in the LiLnMo3O8 compound for 

example [25]. The bond valence sums calculation for octahedral Co(3) suggest a Co3+ valence 

state. The Co-O bond distance of 1.946(8) Å for both Ba2Co4ClO7 and Ba2Co4BrO7 materials 

is similar to the Co(1)3+-O bond length of the Kagomé layer, confirming the suggested 

Co(3)3+ valence state. Finally, the BVS calculation for Co(4) indicates a slightly over-bonded 

character. However, as commonly observed is this kind of materials, one should note the 

possibility of oxygen vacancies, thus leading to a possible Co(4)2+ tetrahedral cobalt. 

 

In the literature, two kinds of junction have been observed to connect an (Oc3) block 

with a (Te2Oc) layer: 

- the junction JK/T is obtained by the occlusion of the Kagomé windows by a tetrahedron of the 

(Te2Oc) layer (Figure 5a). In this configuration, the tetrahedron shares three corners with the 

octahedra of the Kagomé windows. This kind of JK/T junction is observed, for example, in the 

spinel oxide structure [22]. 

- the junction JK/O exists when a Kagomé windows is blocked by an octahedron of the (Te2Oc) 

layer by sharing three corners (Figure 5b). This type of JK/O junction has been evidenced for 

double hexagonal LiFeSnO4 [24]. 

In the same manner, JK/T and JK/O junctions have been reported for connecting (Oc3) 

and (TeOc) layers (Figure 5c and 5d). For example, in LiLnMo3O8 [25], the (Oc3) and (TeOc) 

layers are connected alternatively by JK/T and JK/O junctions. 



 9 

 

In the compounds reported here, the junction between (Oc4) and (TeOc) layers is 

ensured by sharing the corners of polyhedra, the oxygen atoms of [O4] layers making the 

connexion between the two blocks. Central O(1) oxygen of tetrahedral Co(4) units is the 

common oxygen of three edge-sharing Co(1) octahedra while O(2) oxygen of octahedral 

Co(3) units ensures the connexion between three Co(2) octahedra. To our knowledge, it is the 

first time that this kind of junction is observed for the connection of (Oc3)-like (= (Oc4)) and 

(TeOc) layers. In that way, the connections of polyhedral layers in Ba2Co4ClO7 and 

Ba2Co4BrO7, as compared to the different types of junctions previously reported in the 

literature, can be considered as a JK/O junction translated by (a+b)/2 (Figure 6a), hereafter 

noted JK/O
*. In summary, the (Ba2Co8O14)

2- block viewed along [010] (Figure 6b) can be 

schematized as a (TeOc)-(Oc4)-(TeOc) stacking, with a JK/O
* junction between each layer. 

 

 The (Ba2Cl2)
2+ double layers are completely related to the reference structure fluorite 

(CaF2) [26]. This later consists of infinite planes of Ca and F, thus making a compact 

framework of FCa4 tetrahedra. On Figure 7 is presented the (Ba2Cl2)
2+ block of Ba2Co4ClO7 

viewed along [010] (a) and the fluorite structure viewed along [011] (b). One should note the 

perfect similitudes between the (Ba2Cl2)
2+ double layers and an isolated (Ca2F2

2+) block of 

fluorite. In this way, we can consider the (Ba2Cl2)
2+ blocks in Ba2Co4ClO7 as fluorite-type 

double layers. 

 

The (Ba2Br2)
2+ double layers of Ba2Co4BrO7 are strongly related to the (Ba2Cl2)

2+ 

blocks but with some interesting differences. While Ba(1) atoms occupy exactly the same 

position (6c), the positions of halides are modified, considering Cl or Br atoms. The most 

significant two- and three-dimensional electron density (ED) images in the region of the 
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chlorine and bromine atoms are shown in Figure 8. These images clearly shows that while the 

chlorine atom Cl(1) is localised on its 6c site (a), bromine is split over two distinct positions: 

Br(1) displays a triangular shape around a 6c site (b), occupying a 18h site at 25%, and Br(2) 

is split on a 6c position occupied at 25 % (c). Note that the occupations have been constrained 

together to fulfill the chemical composition Ba2Co4BrO7. In summary, atoms in the area of the 

(Ba2Br2)
2+ double layers are affected by a structural disorder, while the other atoms are well 

ordered. This aspect has already been pointed out for other compounds containing bromine 

atoms [15]. 

 

4. Conclusion 

 

 To summarize the main findings of the work presented here, we have determined the 

structures of two new isostructural cobaltites. They are built by the stacking of fluorite-type 

layers and interesting blocks containing (CoO2) layers. The role of the halide seems to be of 

particular interest for the modification of the structures: replacing the chlorine by a bromine 

atoms leads to the creation of disordered layers. This last point confirms the previously 

studies made on barium ruthenates with either chlorine- or bromine-based layers [15, 20]. 

Syntheses of pure powders suitable for a full physical characterization are in progress. 

 

Supporting Information Available: 

 

 Further details concerning the nuclear structures determinations and the Maximum 

Entropy Method analysis may be obtained upon request from the authors. 
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Figure Caption 

 

Figure 1: View along [010] of (a) Ba2Co4ClO7 and (b) Ba2Co4BrO7 

 

Figure 2: View along [010] of (a) Ba2Co4XO7, (b) Ba2Co9O14 and (c) Ba3Co10O17. The 

(Ba2Co8O14)
2- blocks encountered in the two series are encircled with dotted lines. 

 

Figure 3: Schematic representations of (a) central block of edge-sharing octahedra (Oc4) of 

Ba2Co4ClO7 and Ba2Co4BrO7 and (b) true Kagomé lattice (Oc3) with its windows 

 

Figure 4: Schematic representations of mixed layers built up from corner-sharing octahedra 

and tetrahedra (a) (TeOc) layer of Ba2Co4ClO7 and Ba2Co4BrO7 and (b) (Te2Oc) layer 

 

Figure 5: Schematic representations of the different types of junctions: (a) JK/T between (Oc3) 

and (Te2Oc) – (b) JK/O between (Oc3) and (Te2Oc) – (c) JK/T between (Oc3) and (TeOc) – (d) 

JK/O between (Oc3) and (TeOc) 

 

Figure 6: Schematic representation of (Ba2Co8O14)
2- block (a) viewed along (001) and (b) 

viewed along (010) 

 

Figure 7: Schematic representation of (a) (Ba2Cl2)
2+ block viewed along [010] and (b) 

structure reference fluorite viewed along [011] 

 

Figure 8: Two- and three-dimensional electron density (ED) images for (a) Cl(1) atom, (b) 

Br(1) atom and (c) Br(2) atom 




















