
(MBi)46V8Oy-Family type (M=Pb; Sr; Ca; Cd;

Na0.5Bi0.5) : Syntheses, crystal structures and

conductivity properties

Olfa Labidi, Michel Drache, Pascal Roussel, Jean-Pierre Wignacourt

To cite this version:

Olfa Labidi, Michel Drache, Pascal Roussel, Jean-Pierre Wignacourt. (MBi)46V8Oy-Family
type (M=Pb; Sr; Ca; Cd; Na0.5Bi0.5) : Syntheses, crystal structures and conductivity proper-
ties. Solid State Sciences, Elsevier, 2007, xx, pp.xxx-xx. <hal-00187442>

HAL Id: hal-00187442

https://hal.archives-ouvertes.fr/hal-00187442

Submitted on 15 Nov 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
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Abstract: Phases, with nominal formulas (MBi)46V8Oy (M=Pb, Sr, Ca, Cd, Na0.5Bi0.5), 

were prepared as powder samples, as well as single crystals of closely related compositions. 

Single crystal structure determinations were realized using X-ray diffraction on a Bruker 

4KCCD Apex diffractometer. In this series, the cell is related to the fluorite δ-Bi2O3: it is 

orthorhombic, with a 0=3/2a F-3/2b F, b 0=3/2a F+3/2b F, c 0=3c F when nominal ratio are 

either M10/Bi36 (M=Sr-Na0.5Bi0.5) or Pb3/Bi43. Two types of monoclinic structures can be 

obtained from Pb6/Bi40 nominal ratio, either with a m=3/2a F+3/2b F+3c F, b m=-3/2a F+3/2b F, 

c m=-3a F-3b F (1), or a m=3/2a F+3/2b F-3c F, b m=-3/2a F+3/2b F, c m=5/2a F+5/2b F+4c F 

(2). For nominal Sr-Na0.5Bi0.5 compositions, the structure refinements led to M10-δBi36+δV8Oy 

non stoichiometric materials. In all structures, a cationic “slab” model was identified by the 

stacking of [(Bi,M, V) / Bi,M / (Bi,M, V)] layers. In these slabs, vanadium atoms are located 

in the external layers. The systematic stacking of 2 slabs (i.e.  

6 cationic layers) allows the description of all the structures, except for Pb6/Bi40 nominal 

composition where a stacking of either 2 or 3 successive slabs is needed. In this description, 

the interslab distances are systematically larger than inter layer distances within the slabs. 

Along with the oxygen atoms, the cations determine a long range network of OBi4 and 

O(Bi,M)4 anti-tetrahedrons, distributed over the whole structure, and VO4 located at the slab-

interslab interfaces. The conductivity properties of materials with M10Bi36V8O84 nominal 

compositions are presented. They likely result from the oxide ion mobility (of the OBi4 and 

O(Bi,M)4 entities) within the interslab spaces. 

 

Key words - strontium bismuth vanadium based mixed oxide. 

- lead bismuth vanadium based mixed oxide. 

- cadmium bismuth vanadium based mixed oxide. 

- sodium bismuth vanadium based mixed oxide 

- single crystal structure refinement. 

- electrical conductivity properties 

- structure-conductivity properties correlation 
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1. Introduction 

 

Because of its excellent ionic conduction properties, the cubic fluorite type (F) δ-Bi2O3 

(approximately 1 S.cm-1 at 750°C) [1], and its related phases were very largely studied. Many 

bismuth containing mixed oxides adopt structure types closely connected to this variety [2-

14]. 

In 1997, Watanabe identified the Bi23V84O44.5 phase (≡Bi46V8O89) with a triclinic 

lattice [15]. According to Darriet [16], this phase is characterized by a monoclinic cell: 

a=20.0100(4)Å, b=11.6445(4)Å, c=20.4136(4)Å and β=107.27(3)°, space group P21/c. The 

structure can be described by the stacking along the c  axis, of 6 atomic layers with twice the 

sequence: 2 layers [Bi14V4O31] + 1 layer [Bi18O27]. In 1983, another vanadate Bi14V4O31 

(≡Bi42V12O93) [17] was observed with a monoclinic cell a=19.720Å, b=11.459Å, c=80.160Å 

and β=90.50° and either C2, Cm or C2/m space group. The structure determination did not 

succeed, but the cell is also related to the fluorite structural type. In 2005, Bi50V4O85 was 

deferred in the binary diagram Bi2O3-V2O5 [18]; it is also monoclinic (I2/m space group) with 

the lattice parameters a=11.8123(3)Å, b=11.7425(2)Å, c=16.5396(2)Å, β=90.14(1)°.  To 

stabilize this phase, an air quenching from 920°C to room temperature is necessary. Under a 

low temperature annealing, it transforms into a mixture of sillenite type [19, 20] and fluorite 

type phases. The poor quality of Bi50V4O85 crystals, due to the thermal instability of this 

compound, did not allow a reliable structural determination. Nevertheless, Darriet succeeded 

in locating the heavy atoms, making it possible to propose the sequence: 1 layer [Bi14V4O31] + 

2 layers [Bi18O27]. In fact, these phases (Bi14V4O31, Bi46V8O89, Bi50V4O85) constitute 3 

members of a general family type Bi18-4mX4mO27+4m (X=V, P), where m is the ratio of the 

number of [Bi14X4O31] layers to the total number of layers yielding the definition of the phase. 

According to this model, the structure of Bi14P4O31 (m=1) results from the repetition of 16x 

Bi14P4O31 layers parallel to the (001) plane; Bi46X8O89 (X=V, P and m=2/3) is formed from 

the stacking of [Bi14X4O31, Bi18O27, Bi14X4O31] successive layers, while Bi50V4O85 (m=1/3) 

results from [Bi14V4O31, Bi18O27, Bi18O27] layers. 

On the other hand, Pb5Bi18P4O42 was identified and characterized [21] as a phase with 

a fluorite-type structure. Its structure was determined by synchrotron single-crystal X-ray 

diffraction in a monoclinic cell  (I2/m S.G.; a ≅3/2* 2 *aF, b≅3/2* 2 *aF, c≅3*aF, β≈90°). 

The structure was described by the sequence of lead atoms and disordered phosphates 
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constituting a two-dimensional assembly parallel to the (a,c) plane. Between these layers, Bi-

O layers are located to form a three-dimensional array. However, this structure can also be 

considered as a stacking of 2 Bi12Pb2P4O30 layers sandwiching a single Bi12Pb6O24 layer. For 

the vanadate, refinements of the powder pattern yielded the cell parameters a=12.009(4)Å, 

b=11.711(5)Å, c=16.143(7)Å and β=90.11(2)°. Isomorphous Pb5Bi18X4O42 homologues 

(X=V or As) were characterized [22] by powder X ray diffraction. Very similar overall 

compositions Pb5Bi17X5O43 (X=P, V, As) were also identified [23]. Pb5Bi17P5O43 crystallizes 

with a superstructure of δ-Bi2O3 form. Its structure was solved using synchrotron radiation in 

the cell: a=11.341(2)Å, b=16.604(3)Å, c=11.432(2)Å, β=93.73(3)° and Im space group. A 

combination with powder neutron diffraction allowed the localization of heavy atoms (Bi and 

Pb) implied in the formula, as well as the oxygen atoms. The structure can be described as a 

succession of layers (Bi10Pb6P2O26, Bi14P4O31, Bi10Pb4P4O29). 

In a quasi-general manner, in such a series of homologous materials, the conductivity 

increases from the phosphate to arsenate and the vanadate derivative. For the vanadium based 

materials, the reported conductivity Arrhenius plots show a decrease of the σ performances 

from Bi46V8O89 to Pb5Bi18V4O42 and then Pb5Bi17V5O43. Due to the analogy of each structure 

to the δ-Bi2O3 fluorite type, they are assumed to be oxide ion conductors. 

Thus, it appeared interesting to investigate the pseudo-binary system Pb5Bi18V4O42-

Bi46V8O89 in order to prepare new original phases, with a possible attracting conductivity 

property resulting from an optimal Pb2+ for Bi3+ substitution rate. This substitution could 

enhance the conductivity due to the increase of the mobile oxide ion number, and increase the 

structural stability in relation to the decrease of the vacancy ratio. The presence of a non-

bonding 6s2 lone pair induces a high polarisability for both cations which facilitates the 

mobility of the oxide ions. In such a material, the coexistence of Pb2+ and Bi3+ isoelectronic 

ions, cannot be identified from X-ray diffraction crystal structure. For this reason, the 

structural investigations which have been realized, could not be used to consider any accurate 

structure-conductivity property correlations. In order to dodge this handicap to identify the 

location of Pb2+, we have also examined the possibility of substituting this cation in 

Pb5Bi18V4O42, by other divalent M2+ (Sr2+, Ca2+, Cd2+) or mixed equivalent ones 

(Bi3+
0.5Na+

0.5), which can be easily differentiated from bismuth, assuming they will be located 

in crystallographic sites equivalent to the lead ones; the obtained structural results, which 

were used to evaluate the formula(s) of the lead containing sample(s), will be (firstly) 

described in this paper. 



 5 

 

2. Experimental. 

 

2.1. Syntheses. 

 M10(1-x)Bi36+10xV8O84+5x powder samples for different compositions (M=Sr, Ca, Cd, 

Na0.5Bi0.5 with x=0; M=Pb with x varying from 0 to 1, by x step of 0.1) were prepared by 

solid state reaction. Bi2O3 (Aldrich, 99.9%) and V2O5 (Aldrich, 99.6%) were used as the main 

starting materials; “divalent cations” were introduced into the achieved different phases from 

SrCO3 (Aldrich, 98.0%), CaCO3 (Aldrich, 99.0%), CdO (Carlo Erba, 99.0%), a mixture 

Na2CO3 (Aldrich, 99.5%)-Bi2O3 in Na/Bi equimol proportions, or PbO (Riedel de Haën, 99%) 

with their correct stoichiometric amounts. For each composition, the reagents were weighed, 

placed in an agate mortar, and thoroughly grinded and homogenized. These mixtures were 

deposited in gold boats and heated in static air atmosphere for five 15 hrs treatments. Each 

one, ended by an air quenching, was followed by a regrinding. The treatment temperatures 

ranged between 600 and 800°C with a step temperature 50°C. Completion of the reaction was 

indicated by the reproducibility of the X-ray patterns after the two last treatments.  

 Single crystals were obtained from the powder sample melting at 1000°C, followed by 

slow cooling at 1°C/h until 840°C and then furnace disconnection; the cooling process was so 

uncontrolled. The selection of good quality crystals was based upon the sharpness of the 

diffraction spots. 

 

2.2. The characterizations of the produced phases 

A Bruker X8 CCD 4K diffractometer was used for the crystallographic 

characterization of the single crystals, which were made for all M compositions at ambient 

temperature. The crystal structures were solved using SIR97 software[24], and refined with 

the  JANA2000 program [25]. In the structural refinements, VO4 tetrahedra were regarded as 

rigid molecular groups. The rigidity of the vanadate group was determined by a number of 

common parameters for all the constituting atoms. Each position of the rigid group was 

defined by 3 swing angles (Ф, χ, ψ) and a translation vector (xtrans, ytrans, ztrans). The 

conditions of data collection are gathered in Tables I and II. Atomic positions and thermal 

parameters are available as supplementary materials. 

Sintered pellets (diameter and thickness about 5 mm) were elaborated from materials 

sintering at 850°C for 48h, for investigating their electrical conductivity properties. The 

relative density of the sintered samples was nearly 85%. Gold electrodes were then sputtered 
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on both flat faces of the pellets and measurements were done by impedance spectrometry in 

the range 1-106 Hz using a Schlumberger 1170 frequency response analyzer. Conductivity 

measurements were realized in static air atmosphere between 300 and 840°C (temperature 

step: 10°C). Each set of values was recorded after 1 h stabilization stage.  

Guinier Lenné X-ray diffraction camera (gold grid sample holder; heating rate 

≈20°C.h-1) as well as differential thermal analysis (DTA Linseis L62; platinum crucibles; 

heating cooling rate 300°C.h-1) were used to investigate the thermal behaviour of all samples 

in air, corroborating the conductivity properties investigation. 

 

 

3. Results and discussion 

 

3.1. Crystal structures in the (M,Bi)46V8Oy family (M=Sr, Ca, Cd, Bi0.5Na0.5). 

As an example for this family, the crystal structure determination process of the Sr 

based sample is presented in order to show the complexity of each stage. The investigation 

was initially undertaken in the most symmetrical proposed orthorhombic lattice, i.e. in the 

Immm space group, after merging the equivalent reflections (R(F²)int=0.063 after absorption 

correction [21]). At this stage, the structural resolution did not succeed either by direct 

method, nor by Patterson interpretation. A reinvestigation was undertaken in a cell of lower 

symmetry, (monoclinic I) and yielded a R(F²)int factor of about 0.057 with absorption 

correction. The structural refinement was thus conducted in the monoclinic I cell 

(a=11.9411(5)Å, b=11.7063(5)Å, c=16.3652(7)Å, β=90.059(3)°). The tested space groups 

were respectively I2/m, I2 and Im. In the two first cases, the refinements were not conclusive. 

The best structural refinement was found in the Im non-centrosymetric space group. Fourteen 

heavy atom positions (including 6 mixed sites Sr/Bi) were identifed and refined. Ten oxygen 

atoms were located by successive Fourier difference syntheses. At this point, the vanadium 

atomic environments were incomplete. Refinement of the anisotropic thermal coefficients of 

of bismuth, strontium and vanadium atoms, lead to the reliability factor 0.0609.In place of 

monoclinic Im S.G, the Platon software [Spek 1990] suggested to use the orthorhombic 

symmetry, with a non-centrosymetric Imm2 space group. Using these characteristics, a 

structural refinement was realized without introducing oxygen around vanadium atoms. The 

reliability factor converged towards 0.0642 with 93 refined parameters instead of 154 

previously. The Platon software, used a second time, proposed the centro-symetric Immm 

space group. Six bismuth atoms positions, with one mixed site Sr1/Bi1b and one site fully 
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occupied by strontium (Sr2) were thus refined. Oxygen atoms were introduced from 

examination of Fourier difference maps around the two vanadium atoms (V1 and V2). The 

oxygen site occupancies were constrained in order to form two VO4 tetrahedral entities. 

Residual peaks are still observed around vanadium atoms while the suggested model is thus 

an idealized model. The distances between V1 and O7, O8 and O9, and those between V2 and 

O10, O11 and O12 were also soft-constrained to the “ideal” value 1.65(2) Å. A last 

refinement cycle yielded a reliability value of 0.0596. In summary, it was impossible to solve 

the structure using the Immm space group, even if in fine, this space group is the actual one 

and thus used in the refinement process. The crystallographic characteristics, conditions of 

data collection and various refinement parameters are gathered in Table I-first column. The 

atomic coordinates and isotropic/equivalent* parameters and the atomic displacement 

parameters are given as supplementary materials. 

Samples containing calcium or cadmium crystallise in analogous cells. Each structure 

determination has been undertaken using the non-centrosymetric Pn2n space group. With a 

careful examination of the atomic positions, the Pnmn space group was finally selected. For 

calcium containing crystal, this element was distributed over a unique position and two Ca/Bi 

mixed sites. On the other hand, in the case of the cadmium based sample, Cd atoms occupy 3 

mixed sites Cd/Bi with different occupancy rates. With M=Bi0.5Na0.5, the structure was finally 

refined in I2/m space group and Na was distributed over two Na/Bi mixed sites. The 

crystallographic characteristics of the three structures (M=Ca, Cd, Bi0.5Na0.5), the conditions 

of data collection and various refinement parameters are gathered in Table I-columns 2-4. 

Each structure consists in a stacking of 6 cationic layers closely related to the cubic 

fluorite-type lattice (Fig.1-a). The M atoms are distributed in the layers in Bi/M mixed sites 

for all the compositions but, except for the Sr based sample, where one Sr atom lies in a 

distinct site. The vanadium atoms are located in two out of three layers. Their oxygen 

environment determines tetrahedral VO4 entities (Fig.1-b) which are disordered over two 

positions. (Fig.2). The cationic environment of the remaining oxygen atoms determines a long 

range sub-lattice of closely linked OM4 anti-tetrahedrons (Fig. 1c). 
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Table I : Principal characteristics of M10Bi36V8O84 (M=Sr, Cd, Ca, Na0.5Bi0.5) structure determinations on 

the X-ray single crystal diffractometer. 

Crystallographic data  

Nominal formula Sr10Bi36V8O84 Ca10Bi36V8O84 Cd10Bi36V8O84 Na5Bi41V8O84 

 
Refined formula Sr3.59(5)Bi19.41(5)V4O42 Ca4.207(4)Bi18.793(4)V4O42 Cd3.573(7)Bi19.427(7)V4O42 Na1.533(6)Bi21.467(6)V4O42 

 
Symmetry Orthorhombic Orthorhombic Orthorhombic 

 
Monoclinic 

Space group I mmm (N°71) P nmn (N°58) P nmn (N°58) 
 

I 2/m (N°12) 

Cell parameters (Å) a=11.9411(5) 
b=11.7063(5) 
c=16.3652(7) 

a=11.9584(2) 
b=11.5275(2) 
c=16.0738(3) 

 

a=11.9529(7) 
b=11.4873(3) 
c=15.965(1) 

a=12.0352(3) 
b=11.5748(4) 
c=16.0686(5) 
β=90.115(2)° 

Cell volume (Å3) 2287.6(2) 2215.77(8) 2192.2(2) 2238.4(1) 
 

 
Relationship with 
δ-Bi2O3 cell 

δ






























 −
=

















c

b

a

c

b

a

300

0

0

2
3

2
3

2
3

2
3

 

Z 2 2 2 
 

2 

Density calculated 
(g.cm-3) 

7.62 7.45 
 

8.08 8.00 
 

F000 4349 4144 4222 4450 

Intensity collection 

2θ range (°) 4.22 – 76.84 4.24 – 73.36 
 

4.26 – 73.46 4.22 – 80.62 

Data collected -20 ≤ h ≤ 20 
-20 ≤ k ≤ 20 
-28 ≤ l ≤ 28 

 

-20 ≤ h ≤ 19 
-26 ≤ k ≤ 26 
-18 ≤ l ≤ 19 

-16 ≤ h ≤ 20 
-17 ≤ k ≤ 19 
-26 ≤ l ≤ 20 

 

-29 ≤ h ≤ 31 
-20 ≤ k ≤ 20 
-21 ≤ l ≤ 20 

No. of reflections 
collected 

35353 69425 
 

42451 37295 

No. of reflections 
measured 

3526 5712 
 

5669 6664 

No. of independent 
(I>3σ(I)) 

1757 3735 
 

3023 3874 

Redundancy 10.026 12.154 
 

7.488 5.597 

Completeness (%) 
/ 2θ(°) 

100 / 76.84° 99.9 / 73.36° 99.89 / 73.46° 95 / 71.94° 

µ1 (Mo, Kα) mm-1 84.449 80.794 
 

85.564 90.688 

Tmin/Tmax ratio 0.255 0.288 
 

0.188 0.233 

R(F2)int  before 
absorption correction 

0.1542 0.1531 
 

0.1903 0.2480 

R(F2)int after 
absorption correction 

0.0385 0.0576 
 

0.0475 0.0860 

Refinement 

No. of parameters 82 130 112 109 

Weighting scheme 1/σ2 1/σ2 1/σ2 1/σ2 

R(F) obs/all 5.91 / 14.05 5.32 / 9.11 
 

5.27 / 11.51 7.24 / 12.89 

wR(F) obs/all 6.36 / 6.86 5.12 / 5.26 
 

4.74 / 4.95 8.42 / 9.22 

ρmax, ρmin (e-/Å3) 3.19 / -4.28 4.47 / -5.10 
 

4.08 / -4.01 7.30 / -5.34 

Second extinction 
correction 

0.0024(8) 0.067(2) 
 

0.0234(9) 0.018(1) 
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Figure 1: (010) projections of Sr10Bi36V8O84 related structure: cationic arrangement, 

crystalline cell and related fluorite sub-cell (a); viewing of VO4 tetrahedrons 

(b); long range network from VO4 and O(Bi,M)4 assembly (c). 

 

 

Figure 2: Evidence of VO4 disordering in Sr10Bi36V8O84 related structure. 

 

 

3.2. Pb10(1-x)Bi36+10xV8O84+5x series (x=0.4 and 0.7) crystal structures. 

In the Bi2O3-PbO-V2O5 ternary system, X-ray powder investigation of the pseudo 

binary system Pb10Bi36V8O84-Bi46V8O89 has been realized in order to identify possible original 

single phase materials. Pb10(1-x)Bi36+10xV8O84+5x (0 ≤ x ≤1; x step 0.1) compositions were 

synthesized and characterized by X-ray powder diffraction (Fig.3). At both ends of this 

pseudo binary system, two different single phase (solid solution) domains are identified, 

respectively of Pb10Bi36V8O84-type [22] (0 ≤ x ≤0.2) and Bi46V8O89-type [16] (0.8 ≤ x ≤1). In 

the intermediate compositional range, three different domains characteristic of binary 

mixtures are separated by two single phase compositions. The first one, at x=0.4, displays an 

original and simple pattern, while the second composition (x=0.7) has a pattern closely related 

to the x=0 end member: Pb10Bi36V8O84. 

 

Fig. 3: Evolution of Pb10(1-x)Bi36+10xV8O84+5x X-ray diffractograms versus x. 

 

Applying the crystallization procedure described in the experimental section, single 

crystals suitable for X-ray structure determination were obtained for both nominal 

compositions x = 0.4-Pb6Bi40V8O86 and x = 0.7-Pb3Bi43V8O87.5. 

Only one type of crystal was obtained for x=0.7, whereas two kinds of crystals were 

distinguished for x=0.4 composition (i.e. with two different unit cells). The three structures 

were investigated and solved. Their crystallographic characteristics, data collection conditions 

and various refinement parameters are gathered in Table II. 

To facilitate the description of these structures, presented hereafter, the samples are 

labelled according to their nominal Pb/Bi ratio in the starting material: Pb3Bi43 for x=0.7, 

Pb6Bi40-1 and Pb6Bi40-2 for the two crystals isolated from the composition x=0.4. 

Surprisingly, the Pb6Bi40-1 crystal obtained from the Pb richest nominal composition, displays 

a unit cell similar to Bi46V8O89 [16], i.e. for the lead free composition. 
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Table II: Principal characteristics of Pb6Bi40V8O86-1, Pb6Bi40V8O86-2 and Pb3Bi43V8O87.5 structure 

determinations on the X-ray single crystal diffractometer. 

Crystallographic data 

Nominal formula Pb10(1-x)Bi36+10xV8O84+5x (x=0.4) 

≡≡≡≡ Pb6Bi40V8O86 

Pb10(1-x)Bi36+10xV8O84+5x (x=0.7) 

≡≡≡≡ Pb3Bi43V8O87.5 

Sample identification Pb6Bi40V8O86 -1 Pb6Bi40V8O86 -2  

Refined formula Bi23V4O45 Bi23V4O44 Bi23V4O44 

Symmetry Monoclinic Monoclinic 
 

Orthorhombic 

Space group C 2/m (N°12) C 2/m (N°12) 
 

I mmm(N°71) 

Cell parameters (Å) a=20.0822(4) 
b=11.6351(2) 
c=21.0878(5) 

   β=111.678(1)° 

a=20.0874(4) 
b=11.6841(2) 
c=29.5629(6) 

   β=98.816(1)° 

a=12.1371(4) 
b=11.6935(4) 
c=16.0191(6) 

 
Cell volume (Å3) 

 
4578.8(2) 

 
6856.5(2) 

 
2273.5(1) 

 
Relationship with  
δ-Bi2O3 cell 
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Z 

 
4 

 
6 

 
2 

 
F000 

 
9440 

 
14112 

 
4704 

Intensity collection 

2θ range (°) 4.08 – 80.7 2.78 – 78.84 4.22 – 89.56 

Data collected -33≤ h ≤36  
-20≤ k ≤17 
-36≤ l ≤38 

-35≤ h ≤35  
-20≤ k ≤19 
-48≤ l ≤52 

-13≤ h ≤23 
-22≤ k ≤23 
-30≤ l ≤28 

No. of reflections collected 63114 97783 29396 

No. of reflections measured 14458 20474 4709 

No. of independent (I>3σ(I)) 7142 10425 2332 
 

Redundancy 
 

4.365 
 

4.776 
 

6.243 
 

Completeness (%) 
/2θ(°) 

 
96.71 
/80.7° 

 
96.80 

/78.84° 

 
95 

/88.72° 
 

µ1 (Mo, Kα) mm-1 
 

94.929 
 

95.089 
 

95.59 
 

Tmin/Tmax ratio 
 

0.2416 
 

0.263 
 

0.248 

 
R(F2)int  before absorption 

correction  

 
0.2914 

 
0.1934 

 

 
0.2421 

R(F2)int after absorption 
correction 

0.0719 0.0604 
 

0.0811 

Refinement 

No. of parameters 223 315 
 

81 

Weighting scheme 1/σ2 1/σ2 1/σ2 

R(F) obs/all 0.0804 / 0.1767 0.0670 / 0.1528 0.0649 / 0.1442 

wR(F) obs/all 0.0903 / 0.0982 0.0699 / 0.0767 0.0826 / 0.0887 

ρmax, ρmin (e-/Å3) 3.59 / -7.61 7.84 / -8.14 4.42 / -4.75 

Second extinction correction 0.011(1) 0.019(1) 0.029(2) 
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As in the (M,Bi)46V8Oy family (M=Sr, Ca, Cd, Bi0.5Na0.5) reported in the precedent 

paragraph, the three crystal structures can be described as a stacking of 2 types of cationic 

layers containing either bismuth/lead/vanadium, or bismuth/lead. Vanadium is located in two 

third of the layers; a “slab” structural model can be seen from a stacking of triple layer blocks, 

where the vanadium is systematically located in both “external” layers. A sequence of 6 layers 

in Pb3Bi43 or Pb6Bi40-1 (Fig. 4) and 9 layers in Pb6Bi40-2 (Fig. 5) can be identified along the c 

axis, corresponding respectively to a stacking of 2 slabs and 3 slabs, thus describing each 

structure from a common structural feature. As previously indicated, the lead atom cannot be 

distinguished from bismuth by X-ray diffraction when using Mo Kα radiation. In order to try 

to localize the lead site, a tentative comparison of the crystal structures of M10Bi36V8O84 

(M=Sr, Ca, Cd) and the structures of Pb10Bi36P8O84 (≡Pb5Bi18P4O42) and Pb10Bi34P10O86 

(≡Pb5Bi17P5O43) [21, 23], where Pb and Bi atoms were unambiguously identified, was 

undertaken. 

 

Figure 4: (010) projections of Pb6Bi40-1 structure: cationic arrangement, crystalline cell 

and related fluorite sub-cell (a); viewing of VO4 tetrahedrons and two slabs 

stacking  (b); long range network from VO4 and O(Bi,M)4 assembly (c). 

 

Figure 5: (010) projections of Pb6Bi40-2 structure: cationic arrangement, crystalline cell 

and related fluorite sub-cell (a); viewing of VO4 tetrahedrons and three slabs 

stacking  (b); long range network from VO4 and O(Bi,M)4 assembly (c). 

 

Unfortunately, it was unsuccessful, mainly due to the existence of Bi/M mixed sites 

and the numerous possibilities of Pb localization to consider. An electron microprobe 

elemental analysis on Bi-Pb containing single crystals, did not give any conclusive 

information on the sample formulation. As the presence of lead is confirmed, this analysis of 

the Pb6Bi40-1 crystal (with a cell identical to Bi46V8O89) corresponds rather to a standard solid 

solution composition PbδBi46-δV8O89-δ/2. A thorough structural comparison of the vanadates 

with the already known fluorite type structure was undertaken with the aim of understanding 

their similarities and differences, and to identify a general layer like structural model. 
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3.3. The electrical conductivity properties. 

Investigation of materials conductivity was undertaken for M10Bi36V8O15 (M=Pb, Sr, 

Ca, Cd, Na0.5Bi0.5) nominal compositions. While preponderant oxide ion mobility can be 

reasonably presumed for Pb, Sr, Ca and Cd based materials, a Na+ cationic conductivity 

component cannot be excluded in the Na based family member, and could even become 

preponderant. For this latter Na sample we could not prepare a pellet with stable dimensions, 

going through the necessary sintering process; this thermal instability is probably related to 

the high sodium content of the material which yields a significant hygroscopicity. 

Conductivity measurements were carried out on ceramic pellets of the other materials; 

the temperature dependence of the conductivity was evidenced from Arrhenius plots log (σT) 

= f (103T-1). Representation of the 1st cooling (800-300°C) and of 2nd heating (300-840°C) 

runs overlap, and only the 2nd heating data are represented for clarity of the figure (Fig. 6). 

Table III regroups the significant values of this study for σ conductivity (500 and 800°C) and 

for Ea activation energy (500°C). 

The manufactured materials display an Arrhenius type electrical conduction 

behaviour, i.e. a linear relationship between log (σT) and 1/T. The absence of any break or 

jump in each graph (300-840°C) is in good agreement with the absence of any event 

occurring during the thermal behaviour samples examination (Guinier Lenné diffraction and 

differential thermal analyses). Only one phase is stable within the whole investigated 

temperature range. For a given temperature above 550°C, the conductivity level decreases in 

the order Pb, Sr, Ca and Cd. The Ca10Bi36V8O84 sample presents the weakest activation 

energy, clearly distinct from the three other samples at low temperature. At 300°C, the Ca and 

Pb based samples exhibit similar conductivity performances. 

 

Figure 6: Conductivity Arrhenius plots of M10Bi36V8O84 materials (M=Pb, Sr, Ca, Cd). 

 

Table III: σσσσ    total conductivity (ohm.cm)-1 at 500 and 800°C and Ea activation energy (eV) for 

M10Bi36V8O84 (M=Pb, Sr, Cd, Ca) samples. 

σ  (ohm.cm)-1 Ea (eV) Ionic radii of M2+
(VIII)  (Å) Sample 

500°C 800°C 500°C 
1.29 Pb10Bi36V8O84 8,91.10-5 4,57.10-3 0,92 

2.26 Sr10Bi36V8O84 3,75.10-5 1,87.10-3 1,01 

1.12 Ca10Bi36V8O84 3,73.10-5 1,05.10-3 0,79 

1.10 Cd10Bi36V8O84 4,27.10-6 2,52.10-4 0,93 
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3.4. Discussion 

In a previous paper about the MBi6V2O15- family type [26], we have described three 

isomorphous members (M=Sr, Ca and Cd), in the same space group C2/c. A methodology, 

based on structural results, allowed us to plot for the different (Bi, M) mixed site 

compositions, the mean cationic radius versus the unit cell volume. The dependence between 

the mean cationic radius and the cell volume for this series permitted us to construct a 

calibration curve that we used as a “standard chart”, and consequently, we were able to 

evaluate the Pb/Bi radii for the corresponding mixed sites of the isostructural lead containing 

sample. From these radii, the Bi/Pb occupancy factors were estimated and a chemical formula 

was proposed. The same approach was tried for the materials reported in the present paper, 

i.e. the (M,Bi)46V8Oy family, which crystallizes with closely related structures, but with 

various space groups. Unfortunately, no correlation between the mixed site cationic radii 

could be evidenced. 

Examining successively the various members of the series (M,Bi)42V12Oy 

independently of the changes of space group (respectively C2, Cm ou C2/m for Bi42V12O93 

[17], C2/c or C121 for (M,Bi)42V12Oy with M=Pb, Sr, Ca, Cd or Na0.5Bi0.5) a linear correlation 

can be identified between the cell volume and the ions volume for the corresponding formula 

units (calculated from M2+, Bi3+, V5+ and O2- ionic radii (VI) [27, 28]–Fig. 7; correlation factor 

r2=0.94). M for Bi substitution, even when rM2+>rBi3+ (M=Sr, Pb), leads to a decrease of the 

cell volume. This tendency is resulting from the decrease of the oxygen content when 

compared to Bi42V12O93. An analogous cell contraction is observed for (M,Bi)46V8Oy 

crystalline materials obtained from substitutions in Bi46V8O89 using smaller elements than 

bismuth (Na0.5Bi0.5, Ca, Cd; linear correlation factor r2=0.91), whereas a dilatation of the 

lattice is observed with Sr. 

 

Figure 7: Cell volume – ions volume correlation for (MBi)46V8Oy and (MBi)42V12Oy 

families. 

 

This Sr specific behaviour can be explained by the more important defective character 

of the Bi46V8O89 oxide sublattice compared to Bi42V12O93; thus the influence of the oxygen 

content decrease, during the Sr2+ for Bi3+ substitution, is minor when compared to the 

dilatation effect due to the increase of the cationic radius. The absence of “cell volume-ions 

volume” correlation in (M,Bi)46V8Oy series, while a linear correlation is observed for the 
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Bi42V12O93 related family, is not clear at present. These observations led us to renounce to Pb 

evaluation in the here investigated corresponding materials. 

The organization in cationic layer triplets (hereafter slabs) is a common structural 

character to numerous phases in this system. The mixed oxide phases with the rhombohedral 

Bi-Sr-O-type [29], containing bismuth - alkaline-earth, or bismuth - rare earth can be so 

described. In this case, the number of slabs is specific to each variety: a single slab determines 

the ε-variety, whereas a stacking of three slabs is necessary to describe β2 or β1 variety.  

The cationic planes correspond to (111) crystallographic planes of a distorted cubic 

standard fluorite cell. In the M6Bi36V12O90 series [24], it consists of a crushing of the fluorite 

type lattice perpendicularly to these planes, thus leading, in each plane, to increased inter 

cationic distances compared to their initial location in a truly cubic cell. This type of crushing 

is also observed for the rhomboedral Bi-Sr-O type structures [29]. In the (M,Bi)46V8Oy series 

considered in the present paper, the fluorite lattice is stretched. The reference thickness unit, 

i.e. “slab + inter-slab”, which corresponds in all cases to the main diagonal (aF√3) of a 

standard fluorite cell, is here longer than the diagonal of a truly cubic fluorite cell (maximum 

of inequality for Ca based sample). 

Another representation of these structures consists in layer like arrangements of 

O(Bi,M)4 anti-tetrahedrons (M=Pb, Bi, Sr, Ca, Cd, Bi0.5Na0.5) and VO4 tetrahedrons, as 

presented in the MBi6V2O15-type family [24] where a stacking of disconnected slabs has been 

identified; on the contrary, the slabs of (M,Bi)46V8Oy materials are linked by O(Bi,M)4 anti-

tetrahedrons. There exists a relationship between the number of oxygen of the lateral slab 

layers and the inter-slab distance, since a slight dilatation of inter-slab space is observed 

between Bi50V4O85 and Bi46V8O89: as 4 vanadium atoms substitute for bismuth atoms, a 

contraction of the layers should appear (bismuth ionic radius being larger than the vanadium 

one); however, this is negligible compared to dilatation. The influence of the cationic size is 

thus counterbalanced by the major influence of introduced oxygen atoms. On the other hand, 

increasing the vanadium content ratio (from (M,Bi)46V8Oy materials to MBi36V12O90 ≡ 

MBi6V2O15) induces the trapping of interslab oxygen atoms, towards the slabs, to form 

vanadate anions. So the slabs are more easily distinguished. The presence of the oxygen ratio 

in the interslab spaces leads to the formation of “bridging” O(Bi,M)4 entities between the 

slabs. 

It is worth to note that the conductivity performances of M10Bi36V8O84 materials in the 

high temperature domain increase in the order Cd→Ca→Sr→Pb. This order corresponds to 
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the regular increase of the unit cell volume and to decrease of the inter layer distances within 

the slab therefore producing an expansion of the interlab space. This space can be reasonably 

presumed as the host sublattice for the mobile ions, considering the analogy of these 

structures with the rhombohedral Bi-Sr-O type conductors [29]. The latter as well as the 

M10Bi36V8O84 materials are slightly more conductive than the MBi6V2O15 (≡M6Bi36V12O90) 

family. It is difficult to identify the parameters responsible for these better conductivity 

properties: both the ionic compactness of the structure and the oxide ions number are lower 

for M10Bi36V8O84, and when the first characteristic favours the conductivity, the second one 

would diminish it. In fact M10Bi36V8O84 series, contrarily to MBi6V2O15-one, exhibits oxygen 

ions in the interslab space, with OBi4 and O(Bi,M)4 environments. It is reasonable to think 

that these ions are responsible for the conductivity enhancement. 

On the other hand, to the Ca10Bi36V8O84 material which exhibits the lowest activation 

energy, is associated the structure characterized by the most stretched fluorite type lattice. 

This high stretching rate is likely responsible of the opening of migration pathways for the 

oxide ions, and consequently to a decrease of the activation energy. 

 

 4. Conclusion 

 

The cationic slab model built out of [(Bi/M, V) / Bi/M /(Bi/M, V)] triple layers where 

the vanadium atoms are systematically located in the external layers, appears to be adapted to 

the whole family of phases highlighted in this work, but fits also other  fluorite related 

structural types, i.e. vanadates or phosphates reported in the literature: Bi50V4O85 [18], 

Bi46X8O89 (X=V, P) [16], Pb10Bi36P8O84 (≡Pb5Bi18P4O42) [21], Bi42P12O93 (≡Bi14P4O31) [18]. 

The crystal structure investigation of Pb10(1-x)Bi36+10xV8O84+5x solid solution samples has 

shown the existence of two kinds of triple layer stacking (6 cationic layers organized in 2 

slabs, or 9 cationic layers in 3 slabs). The lead atoms could not be located and specifically 

identified from Bi. 
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5. Supplementary material. 

 

Crystal Structure Data for the various phases gathered in Table I and Table IV, have 

been sent to the Fachinformationzentrum Karlsruhe, 76344 Eggenstein-Leopoldshafen, 

Germany  

(fax: (+49)7247-808-666; e-mail: crystaldata@fiz-karlsruhe.de;  

http://www.fiz-karlsruhe.de/ecid/Internet/en/icsd/depot_anforderung.html), 

as supplementary material CSD Nos. 418365 (Ca10Bi36V8O84), 418366   (Cd10Bi36V8O84), 

418367 (Na5Bi41V8O84), 418368 (Pb3Bi43V8O87.5), 418369 (Pb6Bi40V8O86 -1),  

418370 (Pb6Bi40V8O86 -2), 418371 (Sr10Bi36V8O84). Copies of this information can be 

obtained by contacting the FIZ (quoting the article details and the corresponding CSD 

number). 
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Figure captions 

 

Fig. 1: (010) projections of Sr10Bi36V8O84 related structure: cationic arrangement, 

crystalline cell and related fluorite sub-cell (a); viewing of VO4 tetrahedrons (b); 

long range network from VO4 and O(Bi,M)4 assembly (c). For clarity, only one 

configuration of tetrahedrons is presented. 

 

Fig.  2: Evidence of VO4 disordering in Sr10Bi36V8O84 related structure. 

 

Fig.  3: Evolution of Pb10(1-x)Bi36+10xV8O84+5x X-ray diffractograms versus x. 

 

Fig. 4: (010) projections of Pb6Bi40-1 structure: cationic arrangement, crystalline cell 

and related fluorite sub-cell (a); viewing of VO4 tetrahedrons and two slabs 

stacking  (b); long range network from VO4 and O(Bi,M)4 assembly (c). For 

clarity, only one configuration of tetrahedrons is presented. 

 

 

Fig. 5: (010) projections of Pb6Bi40-2 structure: cationic arrangement, crystalline cell 

and related fluorite sub-cell (a); viewing of VO4 tetrahedrons and three slabs 

stacking  (b); long range network from VO4 and O(Bi,M)4 assembly (c). For 

clarity, only one configuration of tetrahedrons is presented. 

 

 

Fig.  6:  Conductivity Arrhenius plots of M10Bi36V8O84 materials (M=Pb, Sr, Ca, Cd). 

 

Fig. 7: Cell volume – Ions volume correlation for (MBi)46V8Oy and (MBi)42V12Oy  

formulas. 

 

 

 


