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recherche français ou étrangers, des laboratoires
publics ou privés.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by HAL-Artois

https://core.ac.uk/display/52877587?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00265327


 1

Unprecedented insertion of styrene single units in polyisoprene using borohydrido rare 

earths / dialkylmagnesium catalysts : a new family of SBR rubbers. 

 

Philippe Zinck*, Michaël Terrier, André Mortreux, Andreia Valente and Marc Visseaux* 

Unité de Catalyse et Chimie du Solide, UMR CNRS 8181, 

ENSCL, Cité Scientifique, 59652 Villeneuve d’Ascq, France 

marc.visseaux@ensc-lille.fr 

 

Keywords: Catalysis, copolymerization, stereospecific polymers, rubber. 

 

Introduction 

The introduction of functional groups such as styrene in the backbone of polydienes is 

of interest for many fields of applications. Styrene-dienes copolymers commonly referred to 

as SBR rubbers were initially synthesized by radical and anionic processes, yielding poorly 

stereoregular materials. Higher selectivities[1] were achieved with the development of 

transition metal catalysis. Poly(1,4-cis butadiene–co-styrene) was by far the most widely 

studied SBR,[2] probably due to low price of butadiene vs. other conjugated dienes. Besides 

petroleum derivatives, isoprene was also used as a monomer for random copolymerization 

with styrene. This field was pioneered by radical polymerization in emulsion in water using 

potassium persulfate as initiator.[3] The anionic random copolymerization of isoprene and 

styrene was reported a decade later using lithium and sodium metals as well as alkyllithium as 

initiators.[4] As far as we know, the coordinative random polymerization of isoprene and 

styrene was only achieved in the 90’s. Simple metal complexes were combined to various 

magnesium and aluminium based cocatalysts: rare earths trichloride[5] and halocarboxylate,[6] 

nickel[7] and neodymium acetylacetonate[8] and half-titanocenes[9] originally developed for the 
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syndiotactic polymerization of styrene. The resulting polyisoprene backbones were mostly 

cis-stereoregular.[5,7] It must be here noticed that vulcanized poly(1,4-trans isoprene) exhibits 

better applicative properties such as hardness or abrasion resistance by a factor 1.5 to 2 as 

compared to vulcanized poly(1,4-cis isoprene)[10] or vulcanized polybutadiene.[11] Catalysts 

affording the insertion of styrene in poly(1,4-trans isoprene) are thus of interest not only from 

an academic point of view, but also regarding the applicative potentialities of the resulting 

material. 

The insertion of single styrene units has been achieved in polyethylene using notably 

constrained geometry catalysts[12], and single repeat unit insertions (SRUI) where notably 

reported for olefins and non-conjugated dienes in polyisoprene,[13] for butadiene[14] and 

norbornene[15] in polyethylene and in the frame of acyclic diene metathesis polymerization.[16] 

SRUI derives from a particular feature of the catalyst/comonomers combination, and its 

understanding may pave the way to catalysts enabling a fine control of the microstructure.   

We developed recently borohydrido organolanthanides catalytic systems that afford 

the polymerization of isoprene and styrene,[17] the metal-carbon active bond being generated 

in-situ from the alkylation of the metal complex by a dialkylmagnesium compound.[18] We 

report herein the unprecedented insertion of single styrene units in poly(1,4-trans isoprene) 

using Nd(BH4)3(THF)3 (1), La(BH4)3(THF)3 (2) and Cp*Nd(BH4)2(THF)2 (3) combined to n-

butylethylmagnesium with styrene content up to 30%. 

 

Results and discussion 

Typical experiments conducted at 50°C in toluene and stopped after 2 hours are 

reported Table 1. The true nature of the copolymer is assessed Figure 1 by the presence of 

new signals on the 13C NMR spectra corresponding to isoprene – styrene diads. The 

polyisoprene backbone shows a 96-98% 1,4-trans microstructure similar to that of the 
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homopolymer. Up to 30% styrene can be inserted in the range of our experimental conditions, 

yielding polymers with narrow molecular weight distributions. The presence of 

pentamethylcyclopentadienyl-Cp* in the coordination sphere of the neodymium atom allows a 

slightly higher quantity of styrene to be inserted, together with narrower molecular weight 

distributions (entries 8-10). The activity of the neodymium based systems is among the 

highest reported for isoprene / styrene random copolymerizations: 15-55 vs. 0.1-10 kg/mol/h 

for rare earths based systems,[5-6,8]  40 and 200 for Ni[7] and Ti[9] based catalytic systems, 

respectively. Replacing the neodymium atom by lanthanum results in a significant decrease of 

the activity, together with slight decreases of the amount of styrene insertion and the 

selectivity of the reaction (entries 3-4). 

Microstructure analysis from the 13C NMR spectra in the polystyrene zone (40-45 

ppm) is rendered difficult by the simultaneous presence of signals from isoprene-isoprene and 

styrene-isoprene sequences. A detailed analysis of the 1H NMR spectra in the ethylenic proton 

zone (Figure 2) shows in turn that styrene is inserted in the form of a single molecule. A new 

signal can be observed at lower field as styrene is inserted, whose intensity increases with the 

amount of styrene. The deconvolution of the spectra in this zone reveals that the intensity of 

the new signal corresponds to twice the molar ratio of styrene in the copolymer (Table 2). 

This means that the signal corresponds to the =CH proton of isoprene units that are 

neighbouring a styrene unit, and that each unit of styrene is surrounded by two isoprene units. 

A slight deviation from this calculation is observed for high content of styrene (32%) when a 

halfneodymocene is used as the precatalyst (entry 10). This can be due to (i) St-St sequences 

or to (ii) a partially alternating structure, where the ratio of neighbouring isoprene vs. styrene 

equals 1, that can result from the batch process. The values of the reactivity ratio (r1 = 0.09 

and r2 = 7.5 for 1; r1 = 0 and r2 = 6 for 3 – see SI) act for hypothesis (ii): r1 equals / close to 0 

means that the catalytic system does not allow / favour the insertion of styrene in a Ln-St 



 4

bond. This is probably due to steric and/or electronic requirements, since the 

halfneodymocene 3 leads to a smaller r1 reactivity ratio than the precursor 1. The presence of 

two coordinated bulky and electron-rich groups around the neodymium, i.e the penultimate 

styrene unit and the pentamethylcyclopentadienyl ligand leads to an increase of both the 

electronic density and the steric hindrance. This may render the coordination of a second 

styrene molecule difficult / impossible, and favour that of a smaller and more coordinating 

isoprene molecule. As a consequence, k11 and r1 equals / are close to 0, and one can observe 

SRUI.  

The single insertion is confirmed by the NMR spectra in the phenyl ipso carbon region 

represented Figure 3d. The sharp singlet observed around 145.8 ppm is characteristic of a 

styrenic unit in a single and unique environment, in a similar way to poly(ethylene-alt-

styrene)[19] or isotactic (mm triads) and syndiotactic (rr triads – Figure 3c) polystyrene.[20] The 

presence of mr triads where the constitutional repeating unit is surrounded by units in a 

different configuration leads indeed to a broadening of the phenyl ipso signal, as represented 

Figure 3a,b. 13C NMR data are moreover consistent with two styrene insertion modes, the 

major mode being attributed to a 2,1 insertion into a 1,4-trans PI backbone.[21]  

The presence of large amounts of styrene in the medium does not alter the selectivity 

of the reaction, in contrast to cis stereospecific pathways. In this latter case, increasing the 

styrene / isoprene molar ratio in the medium leads generally to important decreases of the 

amount of 1,4-cis[6b;7-8] units at the expense of 1,4-trans[7] and 3,4 sequences[8]. This is usually 

explained by a back-biting coordination mechanism involving the coordination of the double 

bond of the penultimate monomer on the catalyst.[22] This coordination is believed to play a 

significant role in the stereocontrol of the reaction, and the presence of electron-donor 

substances in the medium may not be inactive toward it. This back-biting based mechanism 

can not be advanced for our trans-specific system, the trends observed here leading to SBR 
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materials characterized by 30% styrene content together with a 96-98% 1,4-trans 

microstructure (entry 5 and 10). 

The insertion of styrene single units leads further to the disappearance of the 

crystalline fraction of the poly(1,4-trans isoprene) backbone, yielding a gummy elastomer in 

most cases. Only one semi-crystalline material is obtained with precatalyst 1 for low amount 

of styrene insertion, highlighting polyisoprene fractions of high cristallinity.  The introduction 

of the Cp* ligand in the coordination sphere of the neodymium atom affords in turn narrower 

chemical composition distributions that lead to amorphous polymeric materials. The glass 

transition of the copolymer lies as expected between that of the homopolymers, i.e -70 and 

100°C for polyisoprene and polystyrene respectively. The absence of second order transition 

around -70 and 100°C together with the monomodal character of the molecular weight 

distribution (see SI) indicates that homopolymers are not formed in the course of the reaction, 

in accordance with a single active species, most probably an allyl. The stereoselective 

polymerization of dienes is indeed believed to proceed via a π-allyl mediated mechanism 

involving a η3-η1 rearrangement[1,20-21] and lanthanide-allyl complexes are able to initiate the 

polymerization of styrene.[24] Mechanistic investigations in relation with deeper NMR 

investigations of the microstructure are currently under course. 
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Entry 
(a) 

Precatalyst Styrene in 
feed 

(mol %) 

Yield 

(%) 

Activity 

(kg.mol-

1.h-1) 

Styrene in 
polymer 

(mol %) (b) 

1,4-trans 
polyisoprene  

units (%) (b) 

1,4-cis 
polyisoprene  

units (%) (b) 

3,4 
polyisoprene  

units (%) (b) 

nM  (c) 

(g/mol) 

PDI 
(d) 

Tg 

(°C) 
(f) 

T

(°
(f)

1 1 0 85 60 - 96 2 2 72 000 2.0 - 66 

2 1 20 88 (e) 54 5 98 < 0.5 (g) 2 65 000 1.6 - 61 

3 1 50 90 (e) 38 15 97 1 2 43 000 1.8 - 54 

4 2 50 24 (e) 13 11 94 4 2 15 000 1.5 - 63 

5 1 80 79 (e) 17 27 98 2 < 0.5 (g) 23 000 1.8 - 40 

6 1 100 17 18 - - - - 10 000 1.6 n.d n

7 3 0 66 47 - 98 0 2 67 000 1.8 - 66 

8 3 20 70 (e) 42 5 97 0 3 66 000 1.6 - 66 

9 3 50 74 (e) 32 16 98 0 2 47 000 1.4 - 51 

10 3 80 69 (e) 15 32 96 < 0.5 (g) 4 27 000 1.4 - 30 

11 3 100 8 8 - - - - 8 000 1.5 n.d n

(a) 2h reaction at 50°C in 0.5 ml toluene;  molar ratio Monomer/Nd/Mg  2000/1/1 
(b) Determined by 1H NMR spectroscopy 
(c) Number-average molecular weight measured by size exclusion chromatography 
(d) Polydispersity index measured by size exclusion chromatography –PDI=Mw/Mn 
(e) Isoprene yield (weight percentage) 
(f) Determined by differential scanning calorimetry (10°C/min) 
(g) Signal of the corresponding defect too small to be integrated (< 0.5%) 
 
Table 1. Copolymerization results. 
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Entry 
(a) 

Precatalyst Styrene in 
feed 

(mol %) 

Styrene units  in 
copolymer 

(mol %) (b) 

Regular 
isoprene  

units in 
copolymer (%) 

(c) 

1,4-trans isoprene  

 neighbouring units in 
copolymer (%) (c) 

2 1 20 5 84 11 (10) (d) 

3 1 50 15 57 28 (30) (d) 

5 1 80 27 21 52 (53) (d) 

4 2 50 11 66 23 (22) (d) 

8 3 20 5 86 9 (9) (d) 

9 3 50 16 50 34 (32) (d) 

10 3 80 32 12 56 (64) (d) 

(a) 2h reaction at 50°C in 0.5 ml toluene;  molar ratio Monomer/Nd/Mg  2000/1/1 
(b) Determined by 1H NMR spectroscopy 
(c) Determined by 1H NMR spectroscopy after deconvolution - “Regular” units are  

isoprene units that are only involved in Ip-Ip sequences, and not in St-Ip sequences 
(d) In brackets, calculated number considering two neighbouring units per styrene 
 

Table 2. Environment of styrene units. 
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Figure 1.  13C NMR spectra of a poly(1,4-trans isoprene-co-styrene) containing 15% mol. 

styrene obtained using precatalyst 1. The proposed assignment of the signals is based on 

DEPT experiments. Styrene insertion mode is represented by under script numbers (primary-1 

and secondary-2) and was assigned arbitrarily. 
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Figure 2.  1H NMR spectra of polyisoprene and poly(1,4-trans isoprene-co-styrene) in the 

ethylenic proton zone corresponding to entry 1 (0% styrene inserted, polyisoprene), 8 (5% 

styrene inserted), 3 (15% styrene inserted) and 10 (32% styrene inserted). 
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Figure 3.  13C NMR spectra in the phenyl ipso carbon region for atactic polystyrene resulting 

from an AIBN initiated radical polymerization (a), for syndiotactic rich (85%) and fully 

syndiotactic polystyrene resulting from a coordinative polymerization using 3 / n-

butylethylmagnesium (b) and CpTiCl3/MAO  (c) respectively and for poly(1,4-trans isoprene-

co-styrene) obtained using precatalyst 1 (entry 5). 
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Table of content 

The insertion of styrene single units in polyisoprene has been accessed for the first time using 

borohydrido rare earths / dialkylmagnesium systems, yielding a new family of SBR rubbers. 

The resulting poly(1,4-trans isoprene – co – styrene) exhibits quite narrow molecular weight 

distributions, with up to 30% styrene inserted. The presence of a bulky and electron-rich 

ligand in the coordination sphere of the metal leads to a slight increase of the amount of 

styrene inserted, together with narrower chemical composition and molecular weight 

distributions. The presence of important quantities of styrene in the medium does not alter the 

selectivity of the reaction, as observed for cis stereoselective polymerization mechanisms. 
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