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André Leroy, Jerzy Matczuk, Puczylowski Edmund

To cite this version:
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Abstract

A description of right (left) quasi-duo Z-graded rings is given. It shows, in particular,
that a strongly Z-graded ring is left quasi-duo if and only if it is right quasi-duo. This
gives a partial answer to a problem posed by Dugas and Lam in [1].

A ring R with an identity is called [1] right (left) quasi-duo if every maximal right (left)
ideal of R is two-sided. Quasi-duo rings were studied in many papers (Cf. [1], [5] and papers
quoted there). The main open problem in the area asks whether the classes of left and
right quasi-duo rings coincide (it is important, as it concerns the problem to what extend
the notion of primitivity is left-right symmetric, Cf. [1]). This problem was also an initial
motivation for our studies. Namely the results obtained in [2] on quasi-duo skew polynomial
rings show that it would be interesting to examine whether it could be possible to distinct
these classes within Z-graded rings or, more generally, to describe Z-graded right (left) quasi-
duo rings. The methods of [2] are rather specific for skew-polynomial rings and one cannot
apply them to Z-graded rings. In this paper we find another approach to that problem
and describe Z-graded right (left) quasi-duo rings. This description shows, in particular,
that a strongly Z-graded ring is right quasi-duo if and only if it is left quasi-duo. Thus, for
strongly Z-graded rings, the above mentioned Dugas-Lam problem has a positive solution.
As an application we also get back in another way the characterization of right (left) skew
polynomial and Laurent polynomial rings obtained in [2].

The results on the Jacobson radical, the pseudoradical and maximal ideals of Z-graded
rings (see Proposition 3, Theorem 2) can be of independent interest.

All rings in this paper are associative with identity. To denote that I is an ideal (left
ideal, right ideal) of a ring R we will write I C R (I <l R, I <r R). The Jacobson radical
of a ring R will be denoted by J(R).

It is clear that R is right (left) quasi-duo if and only if R/J(R) is right (left) quasi-duo
and that Jacobson semisimple right (left) quasi-duo rings are subdirect sums of division
rings, so they are reduced rings. The class of right (left) quasi-duo rings is closed under
homomorphic images and finite subdirect sums (Cf.[1]).

In what follows Z denotes the additive group of integers and R denotes a Z-graded ring.
Recall that R =

⊕
n∈Z Rn, the direct sum of additive subgroups Rn, with RnRm ⊆ Rn+m

for all n,m ∈ Z. If RnRm = Rn+m, then R is called strongly graded.
∗The research was supported by Polish MNiSW grant No. N N201 268435
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Elements of
⋃

n∈Z Rn are called homogeneous. Every r ∈ R can be written as a finite
sum r =

∑
m≤i≤n ri, where ri ∈ Ri is called the homogeneous component of r of degree i. If

rm and rn are nonzero, then the length l(r) of r is defined as n−m+ 1. Clearly a nonzero
element of R is homogeneous if and only if its length is equal to 1.

An ideal I of R is called homogeneous if I =
⊕

n∈Z(I ∩ Rn). The largest homogeneous
ideal contained in a given ideal I of R will be denoted by (I)h.

The following well known result of G. Bergman (Cf. [4]) plays a substantial role in the
paper.

Theorem 1. For every Z-graded ring R

(i) J(R) is a homogeneous ideal;

(ii) If r ∈
⋃

06=n∈Z Rn, then 1 + r is invertible if and only if r is nilpotent.

A homogeneous ideal P of R is called graded prime if IJ ⊆ P implies I ⊆ P or J ⊆ P
for arbitrary homogeneous ideals I and J of R. It is well known and not hard to check that
if P is a prime ideal of R, then (P )h is a graded prime ideal of R. It is also well known that
a homogeneous ideal of a Z-graded ring is prime if and only if it is graded prime.

The intersection of all nonzero graded prime ideals of R will be called the graded pseu-
doradical of R. The empty intersection, by definition, is equal to R.

The following result generalizes Lemma 3.2 from [3].

Theorem 2. Suppose that a Z-graded ring R contains a maximal ideal M such that (M)h =
0. Then the graded pseudoradical of R is nonzero.

Proof. Let a =
∑

m≤i≤n ai be a nonzero element of M of minimal length, where am 6= 0 6=
an. Since (M)h = 0, l(a) ≥ 2.

Let C (resp. D) denote the sets of all n-th (resp. m-th ) components of nonzero elements
from M ∩ (

⊕
m≤i≤nRi). Notice that C and D are non empty homogeneous sets depending

only on M .
If R has no nonzero graded prime ideals, then the graded pseudoradical of R is equal to

R, so the thesis holds.
Suppose now that we can pick a nonzero graded prime ideal Q of R. Then M +Q = R,

so 1 = b + q, where b =
∑

s≤l≤t bl ∈ M and 1 − b0 ∈ Q and bi ∈ Q, for s ≤ i ≤ t, i 6= 0.
This implies that precisely one homogeneous component of b =

∑
s≤l≤t bl ∈M is not in Q.

Suppose that b is an element in M with the smallest possible length amongst the elements of
M having precisely one homogeneous component not in Q. Let us write b =

∑
s≤l≤t bl ∈M

with bk /∈ Q.
If k 6= t we claim that C ⊆ Q. If not then there exists r =

∑
m≤i≤n ri ∈ M such

that rn 6∈ Q. Since Q is a prime graded ideal, there is c ∈ Rw, for some w ∈ Z, such
that bkcrn 6∈ Q. Notice that n − m + 1 = l(r) ≤ l(b) = t − s + 1 and the element
u = bcrn − btcr ∈ M is such that precisely one homogeneous component of u (namely
uk+w+n) is not in Q. Moreover, since (bcrn)l = (btcr)l = 0 if l < s+w+n and ut+w+n = 0,
we get l(u) < l(b), which is impossible, by the choice of b. This proves the claim.

If k = t we can prove in a similar way that D ⊆ Q.
We conclude that CRD ⊆ Q for any nonzero graded prime ideal Q of R. Since M is

prime and (M)h = 0, the ring R is a graded prime ring and hence CRD 6= 0. This yields
the desired result.

In what follows we denote by A the set of all maximal right ideals M of R such that
Rn 6⊆M , for some 0 6= n ∈ Z and by B the set of remaining maximal right ideals of R. Set
A(R) =

⋂
M∈AM and B(R) =

⋂
M∈BM .
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It is easy to describe B(R). Note that U =
∑

0 6=n∈Z R−nRn C R0. It is clear that if
M ∈ B, then M = M0 +

⊕
06=n∈Z Rn for a maximal right ideal M0 of R0 containing U .

Consequently B(R) = J +
∑

06=n∈Z Rn, where J is the ideal of R0 containing U such that
J(R0/U) = J/U . In particular, B(R) is a two-sided ideal of R.

If R is strongly graded, then for every 0 6= n ∈ Z, R0 = RnR−n. This shows that in this
case B = ∅, so B(R) = R and A(R) = J(R).

Now we will describe A(R). Let Al = {r ∈ R | Rnr ⊆ J(R), for every 0 6= n ∈ Z} and
Ar = {r ∈ R | rRn ⊆ J(R), for every 0 6= n ∈ Z}.

Proposition 3. Let R be a Z-graded ring. Then:

(i) A(R) = Al = Ar

(ii) A(R) ∩ (
⊕

0 6=n∈Z Rn) = J(R) ∩ (
⊕

06=n∈Z Rn).

Proof. (i). It is clear that Al C R. Hence AlRn <l R, for every 0 6= n ∈ Z. Since
(AlRn)2 ⊆ J(R) and R/J(R) is semiprime, AlRn ⊆ J(R). This proves that Al ⊆ Ar. Dual
arguments give the opposite inclusion and show that Al = Ar.

Take any M ∈ A. Then Rn 6⊆ M , for some 0 6= n ∈ Z. Obviously (Ar + M)Rn ⊆ M .
Thus Ar + M 6= R and maximality of M implies that Ar ⊆ M . Consequently Ar ⊆ A(R).
Clearly A(R) ∩ B(R) = J(R), B(R) C R and A(R) <r R, so A(R)B(R) ⊆ J(R). Hence,
since

⊕
06=n∈Z Rn ⊆ B(R), we get that A(R) ⊆ Ar.

(ii). By (i), A(R)Rn +RmA(R) ⊆ J(R), for arbitrary n,m ∈ Z \ {0}. This implies that
if I is the ideal of R generated by A(R) ∩ (

⊕
06=n∈Z Rn), then I2 ⊆ J(R). Consequently

A(R) ∩ (
⊕

06=n∈Z Rn) ⊆ I ⊆ J(R). Now it is easy to complete the proof of (ii).

Theorem 4. If a Z-graded ring R is right (left) quasi-duo, then R/M is a field, for every
M ∈ A.

Proof. We will prove the result when R is right quasi-duo. If R is left quasi-duo, symmetric
arguments can be applied. Let M ∈ A. Passing to the factor ring R/(M)h, we can assume
without loss of generality that (M)h = 0. Since R is right quasi-duo, R/M is a division
ring. Making use of those two facts, one can easily check that R is a domain. Moreover, by
Theorem 2, the graded pseudoradical P of R is nonzero.

Let 0 6= n ∈ Z and a ∈ Pn = P ∩ Rn. Clearly a is not nilpotent, as R is a domain.
Thus, by Theorem 1, 1+a is not invertible. Hence there exists a maximal right ideal T of R
containing 1+a. Since R is quasi-duo, T CR. Now (T )h is a prime homogeneous ideal of R,
so if (T )h 6= 0, then P ⊆ T . This is impossible as otherwise 1 = (1 + a)− a ∈ T . Therefore
(T )h = 0. Now for every homogeneous element b of R, ab−ba = (1+a)b−b(1+a) ∈ (T )h = 0.
This shows that a belongs to the center Z(R) of R and implies that Pn ⊆ Z(R), for all
nonzero n ∈ Z. Since M ∈ A, by definition, there exists 0 6= m ∈ Z such that Rm 6⊆M . In
particular Rm 6= 0. Therefore, since P is a nonzero homogeneous ideal and R is a domain,
we can pick a nonzero integer n such that Pn 6= 0. Then P0Pn ⊆ Pn ⊆ Z(R) and, as R is a
domain, P0 ⊆ Z(R) follows. The above implies that P ⊆ Z(R) and shows that the division
ring R/M = (M + P )/M is commutative, i.e. it is a field.

Theorem 5. A Z-graded ring R is right (left) quasi-duo if and only if R0 is right (left)
quasi-duo and R/A(R) is a commutative ring.

Proof. Suppose that R is right quasi-duo. Let M be a maximal right ideal of R0. Clearly
MR is a proper right ideal of R. Consequently MR is contained in a maximal right ideal T
of R. Since R is right quasi-duo, T CR. It is clear that M = T ∩R0, so M CR0. Thus R0

is a right quasi-duo ring.
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When A 6= ∅, Theorem 4 implies that R/A(R) is a subdirect sum of fields, so it is a
commutative ring. If A = ∅, then A(R) = R and the ring R/A(R) is also commutative.

Suppose now that R0 is right quasi-duo and R/A(R) is commutative. Let I be the
ideal of R generated by

⋃
06=n∈Z Rn. Then, by Proposition 3(i), IA(R) ⊆ J(R). Hence

(I ∩ A(R))2 ⊆ J(R) and semiprimeness of J(R) implies that I ∩ A(R) ⊆ J(R). This
shows that R/J(R) is a homomorphic image of a subdirect sum of rings R/I and R/A(R).
Clearly R/I is a homomorphic image of R0. Consequently both R/I and R/A(R) are right
quasi-duo, so, further, R/J(R) and R are right quasi-duo.

When R is left quasi-duo, symmetric arguments apply.

Theorem 5 immediately gives the following

Corollary 6. Suppose a Z-graded ring R is right quasi-duo. Then:
1. R0 is right quasi-duo;
2. R is left quasi-duo iff R0 is left quasi-duo.

We know, by the remark made just before Proposition 3, that A(R) = J(R), provided
R is strongly Z-graded. Thus, by Theorem 5, we get:

Corollary 7. Suppose that R is strongly Z-graded. Then R is right quasi-duo iff R is left
quasi-duo iff R/J(R) is commutative.

Now, as an application of Theorem 5, we will get characterizations of right (left) quasi-
duo skew polynomial rings and skew Laurent polynomial rings obtained in [2].

Let σ be an endomorphism of a ring S and S[x;σ] be the associated skew polyno-
mial ring with coefficients from S written on the left. Denote by N(S) the set {s ∈ S |
sσ(s) · · ·σn(s) = 0, for some positive integer n}. Clearly N(S) = {s ∈ S ⊆ S[x;σ] | (sx)n =
0, for some positive integer n}. Let N(S)[x;σ] be the set of all polynomials from S[x;σ]
which have all their coefficients in N(S). Notice also that σ(N(S)) ⊆ N(S). Thus, if
N(S) C S then N(S)[x;σ] C S[x;σ], σ induces an endomorphism, also denoted by σ, on
S/N(S) and (S/N(S))[x;σ] ' S[x;σ]/N(S)[x;σ].

Lemma 8. Suppose that the skew polynomial ring S[x;σ] is right (left) quasi-duo. Then
J(S[x;σ]) ⊆ N(S)[x;σ] ⊆ A(S[x;σ]).

Proof. Since S[x;σ] is right (left) quasi-duo, the ring S[x;σ]/J(S[x;σ]) is reduced, so every
nilpotent element of S[x;σ] belongs to J(S[x;σ]). Thus, in particular, xN(S) ⊆ J(S[x;σ])
and consequently SxnN(S) ⊆ J(S[x;σ]), for all n > 0. The ring S[x;σ] is Z-graded in the
canonical way and the last inclusion together with Proposition 3(i) yield N(S) ⊆ A(S[x;σ]).
This shows that N(S)[x;σ] ⊆ A(S[x;σ]).

Let axn ∈ J(S[x;σ]), for some n > 0. Then, by Theorem 1, axn and xna are also
nilpotent elements of S[x;σ] and so xna ∈ J(S[x;σ]). Hence Sxmxn−1a ⊆ J(S[x;σ]), for
all m > 0 and Proposition 3(i) shows that xn−1a ∈ J(S[x;σ]). Repeating this procedure
we obtain xa ∈ J(S[x;σ]) and Theorem 1 implies that a ∈ N(S). Since J(S[x;σ]) is a
homogenous ideal, we obtain J(S[x;σ]) ⊆ N(S)[x;σ].

Corollary 9. ([2]) S[x;σ] is right (left) quasi-duo if and only if S is right (left) quasi-duo,
N(S) C S, J(S[x;σ]) = J(S) ∩ N(S) + N(S)[x;σ]x and (S/N(S))[x;σ] is a commutative
ring.

Proof. Suppose that the ring S[x;σ] is right (left) quasi-duo. Then, by Proposition 3(i),
A(S[x;σ]x) ⊆ J(S[x;σ]). Thus, by Lemma 8, we get A(S[x;σ]) = N(S)[x;σ]. This implies
that N(S) is an ideal of S. Now, by Theorem 5, the ring (S/N(S))[x;σ] ' S[x;σ]/N(S)[x;σ]
is commutative.



Quasi-duo Z-graded rings 5

Since B(S[x;σ]) = J(S)+S[x;σ]x and J(T ) = A(T )∩B(T ), we also obtain J(S[x;σ]) =
J(S) ∩N(S) +N(S)[x;σ]x.

Conversely, by making use of Proposition 3(i), it is evident that when J(S[x;σ]) =
J(S) ∩ N(S) + N(S)[x;σ], then A(S[x;σ]) = N(S)[x;σ]. Now if the ring (S/N(S))[x;σ]
is commutative and S is right (left) quasi-duo, then S[x;σ] is right (left) quasi-duo, by
Theorem 5.

Corollary 10. ([2]) Let σ be an automorphism of a ring S. Then the skew Laurent poly-
nomial ring S[x, x−1;σ] is right (left) quasi-duo if and only if N(S) C S, J(S[x, x−1;σ]) =
N(S)[x, x−1;σ] and (S/N(S))[x, x−1;σ] is a commutative ring.

Proof. Since S[x, x−1;σ] is a strongly graded, A(S[x, x−1;σ]) = J(S[x, x−1;σ]).
Suppose now that S[x, x−1;σ] is right (left) quasi-duo. Then, as N(S)x consists of nilpo-

tent elements, N(S)[x, x−1;σ] ⊆ J(S[x, x−1;σ]). The opposite inclusion follows immediately
from Theorem 1. Obviously N(S) C S and by Theorem 5, (S/N(S))[x, x−1;σ] is a commu-
tative ring. This proves the only if” part. The ”if” part is a direct consequence of Theorem
5.
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