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NON-LINEAR EVOLUTION EQUATIONS AND HYPERELLIPTIC

COVERS OF ELLIPTIC CURVES

ARMANDO TREIBICH

1. Introduction

1.1. A huge variety of nonlinear integrable processes and phenomena in physics and
mathematics can be described by a few nonlinear partial derivative equations (e.g.:
Korteweg-deVries andKadomtsev-Petviashvili, 1D and 2D Toda, sine-Gordon, non-
linear Schrödinger). For almost 40 years a full range of methods coming from
distinct areas were developped in order to deal and present exact solutions of the
latter equations (e.g.: [1] till [37] and their references). Zero-curvature equations,
Lax pair’s presentation and inverse scattering methods revolutionized the whole
domain ([21], [37]). Rational and trigonometric exact solutions ([1], [6], [13]) were
followed by quasi-periodic ones, also called finite-gap, given in terms of the theta
function of an arbitrary hyperelliptic curve, via the Its-Matveev formula or its vari-
ants ([7], [14]). A few years later I.M. Krichever made a major contribution in
[17], extending the latter results to finite-gap solutions of the KP equation asso-
ciated to an arbitrary compact Riemann surface. M. Sato’s infinite dimensional
approach, developped in the beginning of the 80’s ([25], [26],[15]), further gener-
alized Krichever’s dictionnary as well as the classical theta and Baker-Akhiezer
function. From then on, all previously studied non-linear evolution equations were
reconsidered, and considerable effort was made in order to find doubly periodic so-
lutions to each one of them. The starting point to this new trend was Krichevers’s
seminal article [18]. The first doubly periodic solutions to the KdV equation and
a remarkable connection with the elliptic Calogero-Moser integrable system had
already been found (e.g.: [1] & [9], as well as [6] for the rational/trigonometric
case), but [18] generalizes to an equivalence between the elliptic C-M integrable
system and the KP solutions, doubly periodic in x. More precisely, given n ≥ 1
and the lattice L ⊂ C, the corresponding elliptic Calogero-Moser integrable system
is solved. Its (2n-dimensional) phase space is cut out by the Jacobian Varieties of
an n-dimensional family of genus n marked compact Riemann surfaces, each one of
which (is effectively constructed and) gives rise to KP solutions L-periodic in x ∈ C.
The analogous problems for the KdV, 1D Toda, NL Schrödinger, sine-Gordon equa-
tions and related problems ([22], [23], [24]) amount to finding hyperelliptic curves
equipped with a projection onto X , satisfying specific geometrical properties, as
briefly explained hereafter.
Let indeed π : (Γ, p) → (X, q) be an arbitrary ramified cover, where π(p) = q
and (X, q) is the elliptic curve (C/L, 0). Up to a translation, there exist canoni-
cal copies of Γ and X inside JacΓ, the Jacobian variety of Γ. Consider the flag
{0} ( V 1

Γ,p . . . ( V g
Γ,p, of hyperosculating spaces to Γ at p, and ToX the tangent
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line to (the copy of ) X , inside JacΓ.

The d-th case of the KP equation: 3
4uyy +

∂
∂x

(
ut +

1
4 (6uux - uxxx)

)
.

We will call π : (Γ, p) → (X, q) a d-osculating cover if ToX ⊂ V d
Γ,p\V d−1

Γ,p . Such
covers, studied and constructed for any d ≥ 1, give rise to KP solutions L-periodic
with respect to the d-th KP flow (cf. [35] for d = 1 and [33] for any other d).

The d-th case of the KdV equation: ut +
1
4 (6uux - uxxx).

Recall that p ∈ Γ is a Weierstrass point of the hyperelliptic curve Γ, if and only
if there exists a degree-2 projection Γ → P1, ramified at p. Or in other words, if
and only if there exists an involution, say τΓ : Γ → Γ, fixing p and such that the
quotient curve Γ/τΓ is isomorphic to P1. Let π : (Γ, p) → (X, q) be a d-osculating
cover such that Γ is hyperelliptic and p ∈ Γ a Weierstrass point. Then, all KdV
solutions classically associated to (Γ, p) are L-periodic with respect to the d-th KdV
flow.

The Non Linear Schrödinger: ipy + pxx ∓ 8|p|2p = 0

and the 1D Toda case: ∂2

∂t2ϕn = exp(ϕn -ϕn-1) - exp(ϕn+1 -ϕn).

Let π : (Γ, p+) → (X, q) be a 1-osculating cover (i.e.: also called a tangen-
tial cover in [32]) such that Γ is hyperelliptic and p+ ∈ Γ is not a Weierstrass
point. Then, all nonlinear Schrödinger & 1D Toda solutions classically associated
to (Γ, p+, τΓ(p

+)), are L-periodic in x and in t, respectively.

The sine-Gordon case: uxx - utt = sinu.

Let Γ be a hyperelliptic curve, equipped with a projection π : Γ → X and two
Weierstrass points, say p, p′ ∈ Γ, such that the tangent line ToX is contained in
the plane V 1

Γ,p + V 1
Γ,p′ , generated by the tangents to Γ at p and p′ (inside JacΓ).

Then, up to choosing suitable local coordinates of Γ at p and p′, the sine-Gordon
solutions classically associated to (Γ, p, p′) are L-periodic in x.

The KP case being rather well understood, we will focus on the three other
cases, and in particular, on ramified projections π : Γ → X , of a hyperelliptic
curve onto the fixed elliptic one, marked at, either one or two Weierstrass points
(KdV and sine-Gordon cases), or two points exchanged by the hyperelliptic in-
volution. Studying the tangent and osculating spaces at the marked points (in
JacΓ) is an interesting geometric problem which, I believe, does not need any fur-
ther motivation. It was first considered, however, through its links with L-periodic
solutions of the Korteweg-deVries equation (e.g.: [1], [9], [14], [18], [27], [35] for
d = 1 and [29], [2], [10], [11] for d = 2), as well as the Toda, sine-Gordon and
nonlinear Schrödinger equations (e.g.: [28], [5], [30]). Studying their general
properties (such as the relations between the genus and the degree of the cover),
and constructing examples in any genus, will be the main issues of this article.
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After fixing a lattice L ⊂ C defining the marked elliptic curve (X, q) := (C/L, 0),
we will develop in section 3 a well suited algebraic-surface approach, for studying
the structure of all ramified covers of X we are interested in, and their canonical
factorization through a particular algebraic surface. Natural numerical invariants
will then be defined, in terms of which we will characterize the latter covers and,
ultimately, construct arbitrarily high genus examples to each case.

1.2. We sketch hereafter the structure and main results of our article.

(1) We start section 2defining the Abel rational embedding of a curve Γ, of pos-
itive genus g, into its generalized Jacobian, JacΓ, and construct the flag of
hyperosculating spaces {0} ( V1,p . . . ( Vg,p = H1(Γ, OΓ), at the image of
any smooth point p ∈ Γ. From then on, we restrict to Jacobians of hyper-
elliptic curves such that JacΓ contains the elliptic curve (X, q) = (C/L, 0),
or equivalently, to any hyperelliptic cover π : (Γ, p) → (X, q). Dualizing
such a cover π, we obtain a homomorphism ιπ : X → JacΓ, with image an
elliptic curve isogeneous to X . Let d be the smallest positive integer, called
the osculating order of π, such that the tangent line defined by ιπ(X) is
contained in Vd,p ⊂ H1(Γ, OΓ). Whenever p ∈ Γ is a Weierstrass point, π
is called a hyperelliptic d-osculating cover, and gives rise to KdV solutions,
L-periodic with respect to the d-th KdV flow. Such covers are character-
ized by the existence of a particular projection κ : Γ → P1 (2.6.). Given
any hyperelliptic cover π, marked at, either two points exchanged by the
hyperelliptic involution, or two Weierstrass points, we also find analogous
characterizations for π to solve, the NL Schrödinger & 1D Toda or the
sine-Gordon case (2.9., 2.10.).

(2) The latter characterizations 2.6. pave the way to the algebraic surface
approach developed in the remaining sections. The main characters are
played by three projective surfaces and corresponding morphisms, canoni-
cally associated to X :

� πS : S → X : a particular ruled surface;

� e : S⊥ → S : the blow-up of S, at the 8 fixed points of its involution;

� ϕ : S⊥ → S̃ : a projection onto an anticanonical rational surface.

(3) We construct in section 3 the projective surfaces S and S⊥, equipped with

natural involutions τ and τ⊥, as well as S̃, the quotient of S⊥ by τ⊥. We
then prove that any hyperelliptic d-osculating cover π : (Γ, p) → (X, q)

factors through S⊥, and projects onto a rational irreducible curve in S̃
(3.7. & 3.8.). An analogous characterization is in order, for π to solve the
NL Schrödinger & 1D Toda or the sine-Gordon case (3.9.).

(4) In section 4 we fix a complex elliptic curve (X, q) = (C/L, 0), and give the
original motivation for studying hyperelliptic d-osculating covers of X . We
start recalling the definition of the Baker-Akhiezer function ψD, associated
to the data (Γ, p, λ,D), where Γ is a smooth complex projective curve of
positive genus g, λ a local parameter at p ∈ Γ and D a non-special effective
divisor of Γ. In case (Γ, p) is a hyperelliptic curve marked at a Weierstrass
point, we give the Its-Matveev (I-M) exact formula for the KdV solution
associated to ψD, as a function of infinitely many variables {t2j -1, j ∈ N∗}.
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We end up section 4 proving that any hyperelliptic d-osculating cover of
C/L, gives rise to KdV solutions L-periodic in t2d-1.

(5) In section 5 we take up again the algebraic surface set up developped in
section 3, recalling that any hyperelliptic d-osculating cover π : (Γ, p) →
(X, q) factors through an equivariant morphism ι⊥ : Γ → ι⊥(Γ) ⊂ S⊥,

before projecting onto the rational irreducible curve Γ̃ := ϕ
(
ι⊥(Γ)

)
⊂ S̃.

The ramification index of π at p and the degree of ι⊥ : Γ → ι⊥(Γ) ⊂ S⊥,
say ρ and m, are natural numerical invariants attached to π. We also
define its type, γ = (γi) ∈ N4, by intersecting ι⊥∗ (Γ) with four suitably
chosen exceptional divisors (5.2.). We assume henceforth that m = 1 and
calculate the linear equivalence class of Γ⊥ ⊂ S⊥. Basic congruences and
inequalities for the latter invariants follow (5.4. & 5.5.). For example, the
genus of Γ satisifies (2g+1)2 ≤ (2d - 1)

(
8n+2d - 1

)
. Any hyperelliptic cover

solving the other three cases also factors through S⊥ and projects onto a

rational irreducible curve in S̃. Similar congruences and inequalities for
their invariants follow as well (5.6., 5.7. & 5.8.)

(6) At last, in section 6 we focus on MHX(n, d, 1, 1, γ), the set of of degree-n
hyperelliptic d-osculating covers, of type γ, not ramified at the marked point
and birational to their natural images in S⊥ (i.e.: such that ρ = m = 1).
For any given (n, d) ∈ N∗ × N∗, we find explicit types γ ∈ N4 satisfying
γ(2) = (2d - 1)(2n - 2)+ 3, for which we give an effective construction (lead-
ing ultimately to explicit equations) of the corresponding covers. We thus
obtain (d - 1)-dimensional families of arbitrarily high genus marked curves,
solving the d-th KdV case. A completely analogous constructive approach
can be worked out for the other three cases.

2. Jacobians of curves and hyperelliptic d-osculating covers

2.1. Let P1 denote the projective line over C and (X, q) the elliptic curve (C/L, 0),
where L is a fixed lattice of C. By a curve we will mean hereafter a complete integral
curve over C, say Γ, of positive arithmetic genus g > 0. If Γ is smooth, its Jacobian
variety is a complete connected commutative algebraic group of dimension g. For
a singular irreducible curve of arithmetic genus g instead, the analogous picture
decouples into canonically related pieces, as briefly explained hereafter.
We have, on the one hand, the moduli space of degree-0 invertible sheaves over
Γ, still denoted by JacΓ and called the generalized Jacobian of JacΓ. It is a
connected commutative algebraic group, canonically identified to H1(Γ, O∗

Γ), with
tangent space at its origin equal to H1(Γ, OΓ). In particular, it is g-dimensional,
although not a complete variety any more.

The latter is related to the Jacobian variety of the smooth model of Γ. More

generally, let j : Γ̂ → Γ be any partial desingularization and consider the natural
injection OΓ → j∗(O

∗
Γ̂
), with quotient Nj , a finite support sheaf of abelian groups.

From the corresponding exact cohomology sequence we can then extract

0 → H0(Γ, Nj) → H1(Γ, O∗
Γ)

j∗→ H1(Γ̂, O∗
Γ̂
) → 0
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or

0 → H0(Γ, Nj) → JacΓ
j∗→ Jac Γ̂ → 0.

Hence, the homomorphism j∗ : JacΓ → Jac Γ̂,L 7→ j∗(L), is surjective, with
kernel the affine algebraic group H0(Γ, Nj).

On the other hand, we have the moduli space W (Γ), of torsionless, zero Euler
characteristic, coherent sheaves over Γ, also called compactified Jacobian of Γ, on
which JacΓ acts by tensor product. Taking direct images by any partial desingular-

ization j : Γ̂ → Γ, defines an equivariant embedding j∗ : W (Γ̂) → W (Γ), such that

∀F̂ ∈W (Γ̂), ∀L ∈ JacΓ, we have the projection formula j∗(F̂ ⊗j∗(L)) = j∗(F̂ )⊗L.
Hence, a JacΓ-invariant stratification of W (Γ), encoding the web of different par-
tial desingularizations between Γ and its smooth model. Let me stress that, up to
choosing the marked points, any singular irreducible hyperelliptic curves gives rise
to KdV, 1D Toda and NL Schrödinger solutions, parameterized by the compactified
Jacobian W (Γ) (cf. [26]6.).

For any curve Γ, let Γ0 and JacΓ denote, respectively, the open subset of
smooth points of Γ and its generalized Jacobian. Recall that for any smooth point
p ∈ Γ0, the Abel morphism, Ap : Γ0 → JacΓ, p′ 7→ OΓ(p

′-p), is an embed-
ding and Ap(Γ

0) generates the whole jacobian. For any marked curve (Γ, p) as
above, and any positive integer j, let us consider the exact sequence of OΓ-modules
0 → OΓ → OΓ(jp) → Ojp(jp) → 0, as well as the corresponding long exact coho-
mology sequence :

0 → H0(Γ, OΓ) → H0
(
Γ, OΓ(jp)

)
→ H0

(
Γ, Ojp(jp)

) δ→ H1(Γ, OΓ) → . . . ,

where δ : H0
(
Γ, Ojp(jp)

)
→ H1(Γ, OΓ) is the cobord morphism and H1(Γ, OΓ)

is canonically identified with the tangent space to JacΓ at 0.
According to the Weierstrass gap Theorem, for any d = 1, . . . , g := genus(Γ),

there exists 0 < j < 2g such that δ
(
H0

(
Γ, Ojp(jp)

))
is a d-dimensional subpace,

denoted hereafter by Vd,p.

For a generic point p of Γ we have Vd,p = δ
(
H0

(
Γ, Odp(dp)

))
(i.e. : j = d).

In any case, the above filtration {0} ( V1,p . . . ( Vg,p = H1(Γ, OΓ) is the, so-
called, flag of hyperosculating spaces to Ap(Γ) at 0. For example, V1,p is equal to

δ
(
H0

(
Γ, Op(p)

))
, the tangent to Ap(Γ) at 0.

Proposition 2.2. ([33]1.6.)
Let (Γ, p, λ) be a hyperelliptic curve, equipped with a local parameter λ at a smooth
Weierstrass point p ∈ Γ0, and consider, for any odd integer j = 2d -1 ≥ 1, the exact
sequence of OΓ-modules :

0 → OΓ → OΓ(jp) → Ojp(jp) → 0 ,

as well as its long exact cohomology sequence

0 → H0(Γ, OΓ) → H0
(
Γ, OΓ(jp)

)
→ H0

(
Γ, Ojp(jp)

) δ→ H1(Γ, OΓ) → . . . ,
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δ being the cobord morphism.

For any, m ≥ 1, we also let [λ-m] denote the class of λ-m in H0
(
Γ, Omp(mp)

)
.

Then Vd,p is generated by
{
δ
(
[λ2l-1]

)
, l = 1, .., d

}
. In other words, the d-th oscu-

lating subspace to Ap(Γ) at 0 is equal to δ
(
H0

(
Γ, Ojp(jp)

))
, for j = 2d - 1.

Definition 2.3.
A finite marked morphism π : (Γ, p) → (X, q), such that Γ is a hyperelliptic curve
and p ∈ Γ a smooth Weierstrass point, will be called a hyperelliptic cover. Let
[ - 1] : (X, q) → (X, q) denote the canonical symmetry, fixing the origin q ∈ X, as
well as the three other half-periods {ωj, j = 1, 2, 3}, and τΓ : (Γ, p) → (Γ, p) the
hyperelliptic involution. Let us recall that the quotient curve Γ/τΓ is isomorphic to
P1 and [ - 1] ◦ π = π ◦ τΓ.

Definition 2.5.
Let π : (Γ, p) → (X, q) be a finite marked morphism and let ιπ : X → JacΓ
denote the group homomorphism q′ 7→ Ap

(
π∗(q′- q)

)
. We will say that π has oscu-

lating order d, or equivalently, that it is a d-osculating cover, if ToX ⊂ H1(Γ, OΓ),
the tangent to ιπ(X) at 0 is contained in Vd,p\Vd-1,p. If π also happens to be a
hyperelliptic cover, we will simply say that it is a hyperelliptic d-osculating cover.

The osculating order of π is a geometrical invariant, bounded by the arithmetic
genus of Γ, which we may want to know. The following hyperelliptic d-osculating
criterion, analog to Krichever’s tangential one (cf. [18] p.289), will be instrumental
for its calculation, as well as for further developpment in section 5..

Theorem 2.6.
Let π : (Γ, p) → (X, q) be an arbitrary hyperelliptic cover of arithmetic genus g.
Then its osculating order d ∈ {1, . . . , g} is characterized by the existence of a pro-
jection κ : Γ → P1 such that:

(1) the poles of κ lie along π-1(q);

(2) κ+ π∗(z -1) has a pole of order 2d -1 at p, and no other pole along π-1(q).

Furthermore, if τΓ : Γ → Γ denotes the hyperelliptic involution of Γ, there exists a
unique projection κ : Γ → P1 satisfying properties (1) & (2) above, as well as :

(3) τ∗Γ(κ) = - κ.

Proof. According to 2.2., ∀k ∈ {1, .., g} the k-th osculating subspace Vk,p

is generated by
{
δ
(
[λ-(2l-1)]

)
, l = 1, .., k

}
. On the other hand, the tangent to

ιπ(X) ⊂ JacΓ at 0 is equal to π∗
(
H1(X,OX)

)
and generated by δ

(
[π∗(z-1)]

)
.

In other words, the osculating order d is the smallest positive integer such that

δ
(
[π∗(z-1)]

)
is a linear combination

∑d
l=1 alδ

(
[λ-(2l-1)]

)
, with ad 6= 0. Or equiva-

lently, thanks to the Mittag-Leffler Theorem, if and only if there exists a projection

κ : Γ → P1, with polar parts equal to π∗(z -1) -
∑d

l=1 alλ
-(2l-1). The latter conditions

on κ are equivalent to 2.6.(1) & (2). Moreover, up to replacing κ by 1
2

(
κ - τ∗Γ(κ)

)
, we

can assume κ is τΓ-anti-invariant. Now, the difference of two such functions should
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be τΓ-anti-invariant, while having a unique pole at p, of order strictly smaller than
2d -1 ≤ 2g -1. But the latter functions are all τΓ-invariant, implying that the pro-
jection κ ( satisfying conditions 2.6.(1), (2) & (3) ), is unique. �

Definition 2.7.
The pair of marked projections (π, κ), satisfying 2.6.(1), (2) & (3), will be called

a hyperelliptic d-osculating pair, and κ the hyperelliptic d-osculating function asso-
ciated to π. In the latter case, π gives rise to solutions of the KdV hierarchy, L
periodic in the d-th KdV flow, as will be proved in section 4.

The following Proposition calculates the tangent at any point of the curve
Ap(Γ) ⊂ JacΓ, and leads to a useful characterization of the hyperelliptic cov-
ers solving the other cases. Its proof follows along the same lines as 2.2.’s proof.

Proposition 2.8.
Let (Γ, r, λ) be a hyperelliptic curve equipped with a local parameter at an arbi-

trary smooth point r ∈ Γ. Then V 1
Γ,r ⊂ H1(Γ, OΓ), the tangent line to Ap(Γ) at

Ap(r), is generated by δ
(
[λ−1]

)
.

Corollary 2.9.
Let π : (Γ, p) → (X, q) be an arbitrary hyperelliptic cover, p+ ∈ Γ a non-

Weierstrass point, p− := τΓ(p
+), and let ToX ⊂ H1(Γ, OΓ) denote the tangent

line defined by the elliptic curve ιπ(X) ⊂ JacΓ. Then, the data (π, p+, p−) solves
the NL Schrödinger & 1D Toda case (i.e.: ToX = V 1

Γ,p+ = V 1
Γ,p−), if and only

if there exists a projection κ : Γ → P1 such that:

(1) the poles of κ lie in π-1(q) ∪ {p+, p−}.

(2) κ+ π∗(z -1) has simple poles at {p+, p−}, and no other pole along π-1(q).

(3) τ∗Γ(κ) = - κ.

Corollary 2.10.
Let π : (Γ, p) → (X, q) be an arbitrary hyperelliptic cover equipped with two

Weierstrass points po, p1, and let ToX ⊂ H1(Γ, OΓ) denote the tangent line defined
by the elliptic curve ιπ(X) ⊂ JacΓ. Then, the data (π, po, p1) solves the sine-

Gordon case (i.e.: ToX ⊂ V 1
Γ,po

+ V 1
Γ,p1

), if and only if there exists a projection

κ : Γ → P1 such that:

(1) the poles of κ lie in π-1(q) ∪ {po, p1}.

(2) κ+ π∗(z -1) has simple poles at {p1, p2}, and no other pole along π-1(q).

(3) τ∗Γ(κ) = - κ.
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3. The algebraic surface set up

3.1. We will construct hereafter a ruled surface πS : S → X , as well as a
blowing-up e : S⊥ → S, having a natural involution τ⊥ : S⊥ → S⊥, such that
any hyperelliptic osculating cover π : (Γ, p) → (X, q) factors through πS⊥ , via an
equivariant morphism ι⊥ : Γ → Γ⊥ := ι⊥(Γ) ⊂ S⊥ (i.e.: ι⊥ ◦ τΓ = τ⊥ ◦ ι⊥). We

will also prove that Γ̃ := ϕ(Γ⊥), its image in the quotient surface S̃ := S⊥/τ⊥, is an
irreducible rational curve. Generally speaking, our main strategy, fully developped
in section 5., will consist in translating numerical invariants of π : (Γ, p) → (X, q),
in terms of the numerical equivalence class of the corresponding rational irreducible

curve Γ̃ ⊂ S̃ and its geometric properties.

The whole relationship is sketched in the diagram below.

Γ⊥ ⊂ S⊥

π
S⊥

!!

e

%%K
KKKKKKKKKK

ϕ
// Γ̃ ⊂ S̃

p ∈ Γ

π

**UUUUUUUUUUUUUUUUUUUU

ι⊥
99ssssssssss

S

πS

��
q ∈ X

Definition 3.3.

(1) Besides the origin ωo := q ∈ X, there are three other half-periods, say
{ω1, ω2, ω3} ⊂ X, fixed by the canonical symmetry [ - 1] : (X, q) → (X, q).

(2) Consider the open affine subsets Uo := X \ {q} and U1 := X \ {ω1} and
fix an odd meromorphic function ζ : X → P1, with divisor of poles equal to
(ζ) = q + ω1 -ω2 -ω3. Let πS : S → X denote the ruled surface obtained by
identifying P1 × Uo with P1 × U1 over X \ {q, ω1} as follows :

∀q′ 6= q, ω1, (To , q
′) ∈ P1×Uo is glued with (T1+

1
ζ(q′) , q

′) ∈ P1×U1.

In other words, we glue the fibers of P1 × U0 and P1 × U1 , over any
q′ 6= q, ω1, by means of a translation. In particular the constant sections
q′ ∈ Ui 7→ (∞, q′) ∈ P1 × Ui, for i ∈ {0, 1}, get glued together, defining a
particular one of zero self-intersection, denoted by Co ⊂ S.

(3) The meromorphic differentials dTo and dT1 get also glued together, im-
plying that KS, the canonical divisor of S is represented by -2Co. Any
section of πS : S → X, other than Co, is given by two non-constant mor-
phisms fi : Ui → P1 (i = 1, 2), such that fo = f1 -

1
ζ outside {q, ω1}.

A straightforward calculation shows that any such a section intersects Co,
while having self-intersection number greater or equal to 2. It follows from
the general Theory of Ruled Surfaces (cf. [12]V.2) that Co must be the
unique section with zero self-intersection.
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(4) The only irreducible curve linearly equivalent to a multiple of Co is Co itself(
cf. [35]3.2.(1)

)
.

(5) The involutions P1 × Ui → P1 × Ui, (Ti, q
′) 7→

(
-Ti, [ - 1](q

′)
)
(i = 0, 1),

get glued under the above identification and define the involution τ : S → S,
such that πS ◦ τ = [ - 1] ◦ πS , already mentioned in 3.1.. In particular, τ
has two fixed points over each half-period ωi, one in Co, denoted by si, and
the other one denoted by ri (i = 0, .., 3).

(6) Let e : S⊥ → S denote hereafter the blow-up of S at {si, ri, i = 0, .., 3}, the
eight fixed points of τ , and τ⊥ : S⊥ → S⊥ its lift to an involution fixing
the corresponding exceptional divisors

{
s⊥i := e−1(si), r

⊥
i := e−1(ri), i =

0, .., 3
}
. Taking the quotient of S⊥ with respect to τ⊥, we obtain a degree-2

projection ϕ : S⊥ → S̃ onto a smooth rational surface S̃, ramified along the

exceptional curves {s⊥i , r⊥i , i = 0, .., 3}. Let C⊥
o and C̃o denote, respectively,

the strict transform in S⊥ of Co ⊂ S (respectively: the corresponding pro-

jections in S̃). For any i = 0, .., 3, let also s̃i and r̃i denote the projections

in S̃ of s⊥i and r⊥i , respectively. The canonical divisor of S̃, say K̃, satisfies

ϕ∗(K̃) = e∗( - 2Co) and is linearly equivalent to - 2C̃o -
∑3

i=0 s̃i.

The Lemma and Propositions hereafter, proved in [33]2.3., 2.4.&2.5., will be
instrumental in constructing the equivariant factorization ι⊥ : Γ → S⊥ (3.1.).

Lemma 3.6.
There exists a unique, τ-anti-invariant, rational morphism κs : S → P1, with poles
over Co+π-1

S (q), such that over a suitable neighborhood U of q ∈ X, the divisor of
poles of κs+ π∗

S(z
-1) is reduced and equal to Co ∩ π-1

S (U).

Proposition 3.7. For any hyperelliptic cover π : (Γ, p) → (X, q), the following
conditions are equivalent:

(1) there is a projection κ : Γ → P1, satisfying properties 2.6.(1), (2) & (3) ;

(2) there is a morphism ι : Γ → S such that π = πS ◦ ι , ι ◦ τΓ = τ ◦ ι and
ι∗(Co) = (2d -1)p.

In the latter case, π is a hyperelliptic d-osculating morphism (2.5.) and solves the
d-th KdV case.

Proposition 3.8.
For any hyperelliptic d-osculating pair (π, κ), the above morphism ι : Γ → S lifts
to a unique equivariant morphism ι⊥ : Γ → S⊥ (i.e.: τ⊥ ◦ ι⊥ = ι⊥ ◦ τΓ). In
particular, (π, κ) is the pullback of (πS⊥ , κs⊥) = (πS ◦ e, κs ◦ e), and Γ lifts to a
τ⊥-invariant curve, Γ⊥ := ι⊥(Γ) ⊂ S⊥, which projects onto the rational irreducible
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curve Γ̃ := ϕ
(
Γ⊥

)
⊂ S̃.

Γ⊥ ⊂ S⊥ ϕ //

e

��
π
S⊥

99
99

99
99

��9
99

99
99

9

Γ̃ ⊂ S̃

Γ ι //

ι⊥wwwww

;;wwww

π
TTTTTTTTTTT

**TTTTTTTTTTT

ι(Γ) ⊂ S

πS

LL
LL

%%L
LLLL

X

Proof. The blow-up e : S⊥ → S, as well as ι : Γ → S, can be pushed down to
the corresponding quotients, making up the following diagram:

Γ

2:1

��

ι

""E
EE

EE
EE

EE
E S⊥

ϕ

��

e

}}{{
{{

{{
{{

{

Γ/τΓ
ι/

""E
EE

EE
EE

E
S

2:1

��

S̃
ẽ

}}{{
{{

{{
{{

S/τ

Moreover, since ẽ : S̃ → S/τ is a birational morphism and Γ/τΓ is a smooth

curve (in fact isomorphic to P1 ), we can lift ι/ : Γ/τΓ → S/τ to S̃, obtaining a

morphism ι̃ : Γ → S̃, fitting in the diagram:

S̃

ẽ
@@

@@

  @
@@

Γ

ι̃����

@@����

ι
==

==

��=
==

=

S/τ

S

2:1}}}}

>>}}}

Recall now that S⊥ is the fibre product of ẽ : S̃ → S/τ and S → S/τ (cf. [35]4.1.).
Hence, ι and ι̃ lift to a unique equivariant morphism ι⊥ : Γ → S⊥, fitting in

S̃

ẽ
@@

@@

  @
@@

Γ

ι̃oooooooo

77oooooooo

ι
PPPPPPPP

''PPPPPPPP

ι⊥ // S⊥

ϕ
���

??����

e
@@

@@

  @
@@

@

S/τ

S

2:1}}}}

>>}}}

Furthermore, since ι̃ : Γ → S̃ factors through Γ → Γ/τΓ ∼= P1, its image

Γ̃ := ϕ
(
ι⊥(Γ)

)
= ι̃(Γ) ⊂ S̃ is a rational irreducible curve as claimed.�

Analogously to the KdV case, any data (π, p+, p−) or (π, p1, p2), solving the
NL Schrödinger & 1D Toda or the sine-Gordon case, factors through an
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equivariant morphism ι⊥ : Γ → S⊥, and its image Γ⊥ := ι⊥(Γ) projects onto a

rational irreducible curve in S̃.

Proposition 3.9. Let π : (Γ, p) → (X, q) be an arbitrary hyperelliptic cover
equipped with two points p′ 6= p′′ ∈ Γ such that the (divisor) sum p′ + p′′ is τΓ-
invariant. Then, the following conditions are equivalent:

(1) there is a projection κ : Γ → P1, satisfying properties 2.9.(1), (2) & (3) or
2.10.(1), (2) & (3);

(2) there is a morphism ι : Γ → S such that π = πS ◦ ι , ι ◦ τΓ = τ ◦ ι and
ι∗(Co) = p′ + p′′.

In the latter case, (π, p′, p′′) solves, either the NL Schrödinger & 1D Toda case,
if τΓ(p

′) = p′′, or the sine-Gordon case, if p′ and p′′ are Weierstrass points.

Proposition 3.10.
For any data (π, p′, p′′, κ) as in 3.9., the morphism ι : Γ → S lifts to a unique
equivariant morphism ι⊥ : Γ → S⊥ (i.e.: τ⊥ ◦ ι⊥ = ι⊥ ◦ τΓ). In particular,
(π, κ) is the pullback of (πS⊥ , κs⊥) = (πS ◦ e, κs ◦ e), and Γ lifts to a τ⊥-invariant
curve, Γ⊥ := ι⊥(Γ) ⊂ S⊥, which projects onto the rational irreducible curve

Γ̃ := ϕ
(
Γ⊥

)
⊂ S̃.

4. Complex hyperelliptic curves and elliptic KdV solitons

4.1. - Let Γ be a smooth complex projective curve of positive genus g, equipped
with a local coordinate at p ∈ Γ, say λ, as well as a non-special degree-g effective
divisor D with support disjoint from p. Then the so-called Baker-Akhiezer func-
tion associated to the spectral data (Γ, p, λ,D) and denoted by ψD, is the unique
meromorphic function on C∞ × (Γ\{p}) such that for any ~t = (t1, t2, . . . ) ∈ C∞:

(1) the divisor of poles of ψD(~t, ), on Γ\{p}, is bounded by D;
(2) in a neighbourhood of p, ψD(~t, λ) has an essential singularity of type:

ψD(~t, λ) = exp
( ∞∑

0<i

tiλ
-i
)(
1+

∞∑

0<i

ξDi (~t)λi
)
.

For any i ≥ 1, differentiating ψD, either with respect to ti, or i times with respect
to x := t1, we obtain a meromorphic function with divisor of poles D+ ip and same
type of essential singularity at p as ψD. We can therefore construct a differential
polynomial of degree i in ∂

∂x , with functions of ~t as coefficients, say Pi(
∂
∂x), such

that ∂
∂ti
ψD -Pi(

∂
∂x)ψD has the same properties as ψD. The uniqueness of the latter

BA function implies that ψD(~t, λ) satisfies the (so-called KP) hierarchy of partial
derivatives equations ∂

∂ti
ψD = Pi(

∂
∂x )ψD, i ∈ N∗.

4.2. Let us suppose in the sequel that (Γ, p) is a hyperelliptic curve, marked
at a Weierstrass point, and λ an odd local parameter at p ∈ Γ. Or in other
words, that there exists a degree-2 projection f : Γ → P1, with a double pole at p,
and f(λ) = 1

λ2 +O(λ2). It is classically known then that the BA function ψD(~t, λ),
corresponding to any non-special degree-g effective divisor D of Γ, does not depend,
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up to an exponential, on the even variables {t2j , j ∈ N∗}. For example, choosing λ

such that f(λ) = 1
λ2 , we will have ψD = exp

(∑
j t2jf

j
)
ψ
D
∣∣{t2j=0}

.

It then follows that ψ
D
∣∣{t2j=0}

solves the KdV hierarchy and u := - 2 ∂
∂xξ

D
1 the

Korteweg-deVries equation:

ut3 =
1

4
(6u · ux + uxxx) (x := t1).

A more concrete formula, (due to A.Its and V.Matveev, cf. [14]), is in order:

(I-M) u(t1, t3, t5, . . . ) = 2
∂2

∂x2

(
log θΓ(Z -

∞∑

0<j

t2j -1Uj )
)
+ c,

where
i) θΓ : Cg → C denotes the Riemann theta-function of Γ;
ii) Z ∈ Cg projects onto Ap(D) and c ∈ C;

iii) ∀j ≥ 1, (2j)! ·Uj = A
(2j -1)
p (λ)∣∣λ=0

, the (2j-1)-th derivative of Ap(λ) at λ = 0.

Remark 4.3.

(1) The vectors {Uk, 1 ≤ k ≤ j} generate Vj,p, the j -th hyperosculating space
to Ap(Γ) at Ap(p) (see 2.1.).

(2) The above construction of KdV solutions can be generalized to any singular
marked hyperelliptic curve (Γ, p), as recalled in [26]. The corresponding
solutions are then parameterized by W (Γ), the compactified jacobian of Γ.
Roughly speaking, any L ∈ W (Γ), in the complement of the theta divisor,
corresponds to a non-special degree-g effective divisor, with support at the
smooth points of Γ. Working in the frame of Sato’s Grassmannian (cf. [25],
[26]6.), one can still define an analogous BA function, as well as a KdV
solution. Hence, the highest the arithmetic genus, the biggest the family
of KdV solutions. We are thus naturally led to allow singular marked
hyperelliptic curves.

(3) According to the (I-M) formula, the KdV solution u = - 2 ∂
∂xξ

D
1 is a t2d-1-

elliptic KdV soliton (i.e.: doubly periodic in t2d-1), if and only if Ud gener-
ates an elliptic curve X ⊂ JacΓ. Or in other words, if (Γ, p) → (X, q) is a
smooth hyperelliptic d-osculating cover.

(4) We will actually prove that any KdV solution associated to a hyperelliptic
d-osculating cover, is doubly periodic in t2d-1, without assuming the above
(I-M) formula, or that Γ is a smooth curve (see 4.5.). The original idea
goes back to [18], p.288-289.

Notations 4.4.
Choose a lattice L ⊂ C, equipped with a Z-basis (2ω1, 2ω2), such that the elliptic

curve (X, q) is isomorphic to the complex torus (C/L, 0), and let ζ(z) : C → P1,
denote the ζ-Weierstrass meromorphic function. Recall (cf. [18], p.283) that ζ is
holomorphic outside L and characterized by the following properties:

∀z ∈ C \ L





ζ(z) = z-1+O(z) , in a neighborhood of 0 ∈ C,

ζ(z+2ωj) = ζ(z)+ ηj , j = 1, 2 ,
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for some η1, η2 ∈ C, satisfying Legendre’s relation: η1 2ω2 - η2 2ω1 = 2π
√
-1.

Proposition 4.5.
Let π : (Γ, p) → (X, q) be a genus-g, hyperelliptic d-osculating cover, κ the unique

hyperelliptic d-osculating function associated to π, and choose λ, an odd local pa-
rameter at p, such that κ+π∗(z-1) = λ-(2d-1). Then, for any non-special degree-g
effective divisor D, with support disjoint from p, the KdV solution u = - 2 ∂

∂xξ
D
1

associated to (Γ, p, λ,D) (see 4.2.), is L-periodic in t2d-1.

Proof. Denote again by ψD(~t, λ) the BA function associated to D. Recall (see
2.4.) that κ has poles only over π-1(q), and

κ+ π∗
(
ζ(z)

)
= κ+π∗

(
z-1+O(z)

)
= λ-(2d -1)+O(λ)

has a pole of order 2d -1 at p. We then prove, coupling the properties of ζ and κ,
that for j = 1, 2, the function

φj(p
′) = exp

(
2ωj

(
κ(p′)+ ζ

(
π(p′)

))
- ηjπ(p

′)

)

is well defined and holomorphic all over Γ\{p}, thanks to Legendre’s relations, and
has an essential singularity at p of the following type:

φj(p
′) = exp

(
2ωjλ

-(2d-1)+O(π(p′)
))

= exp
(
2ωjλ

-(2d-1)
)(
1+O(λ)

)
.

The main final argument run as follows. The uniqueness of the BA function
ψD(~t, λ) implies that

ψD(~t+2ωj~e2d-1, λ) = φj(λ) · ψD(~t, λ) ,

where ~e2d-1 = (0, . . . 0, 1, 0 . . . ) ∈ C∞ is the vector having a 1 at the (2d-1)-th place
and 0 everywhere else. At last, comparing their developments around p we obtain
the following equality:

∂

∂x
ξD1 (~t+2ωj~e2d-1) =

∂

∂x
ξD1 (~t) , j = 1, 2.

In other words, the KdV solution u = - 2 ∂
∂xξ

D
1 associated to the data (Γ, p, λ,D),

is L-periodic in t2d-1. �

5. The hyperelliptic d-osculating covers as divisors of a surface

5.1. Let us consider again the algebraic surface set up constructed in section 3,
with the equivariant factorization of any hyperelliptic d-osculating cover through

S⊥, and its projection onto a rational irreducible curve Γ̃ ⊂ S̃. The corresponding
diagram of morphisms, given hereafter, will also be useful for the NL Schrödinger
& 1D Toda and sine-Gordon cases.
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Γ⊥ ⊂ S⊥

e

%%K
KKKKKKKKKK

ϕ
// Γ̃ ⊂ S̃

p ∈ Γ

π

**UUUUUUUUUUUUUUUUUUUU

ι⊥
99ssssssssss

ι // S

πS

��
q ∈ X

Definition 5.2.
For any i = 0, .., 3, the intersection number between the divisors ι⊥∗ (Γ) and r⊥i will
be denoted by γi, and the corresponding vector γ = (γi) ∈ N4 called the type of π.
Furthermore, γ(1) and γ(2) will denote, respectively, the sums

γ(1) :=
∑3

i=0 γi and γ(2) :=
∑3

i=0 γ
2
i .

Remark 5.3.
The next step concerns studying the above rational irreducible curves Γ̃ ⊂ S̃.
We will characterize their linear equivalence classes, and dress the basic relations
between them and the numerical invariants of the corresponding hyperelliptic d-
osculating covers. These results, already known for d = 1 ([35]) and d = 2 ([10]),
can be proven within the same framework for any other d > 2.

Lemma 5.4.
Let π : (Γ, p) → (X, q) be a degree-n hyperelliptic d-osculating cover, ι⊥ : Γ → Γ⊥ its
unique equivariant factorization through S⊥ and ι := e ◦ ι⊥. We let again γ denote
the type of π, ρ its ramification index at p and m the degree of ι⊥ : Γ → ι⊥(Γ).
Then :

(1) ι∗(Γ) is equal to m.ι(Γ) and linearly equivalent to nCo+(2d-1)So;
(2) ι∗(Γ) is unibranch, and transverse to the fiber So := π∗

S(q) at so = ι(p);
(3) ρ is odd, bounded by 2d - 1 and equal to the multiplicity of ι∗(Γ) at so;
(4) the degree m divides n, 2d - 1 and ρ, as well as γi, ∀i = 0, .., 3;
(5) γo+1 ≡ γ1 ≡ γ2 ≡ γ3 ≡ n(mod.2);

(6) ι⊥∗ (Γ) is linearly equivalent to e∗
(
nCo+(2d -1)So

)
- ρ s⊥o -

∑3
i=0 γi r

⊥
i .

Proof. (1) - Checking that ι∗(Γ) is numerically equivalent to nCo+(2d -1)So

amounts to proving that the intersections numbers ι∗(Γ) · So and ι∗(Γ) · Co are
equal to n and 2d - 1. The latter numbers are equal, respectively, to the degree of
π : Γ → X and the degree of ι∗(Co) = (2d - 1)p, hence the result. Finally, since
ι∗(Γ) and Co only intersect at so ∈ So, we also obtain their linear equivalence.

(2) & (3) - Let κ : Γ → P1 be the hyperelliptic d-osculating function associated to
π, uniquely characterized by properties 2.6.(1), (2) & (3), and U ⊂ X a symmetric
neighborhood of q := π(p). Recall that κ + π∗(z-1) is τΓ-anti-invariant and well
defined over π-1(U), and has a (unique) pole of order 2d - 1 at p. Studying its trace
with respect to π we can deduce that ρ must be odd and bounded by 2d - 1.

On the other hand, let
(
ι∗(Γ), So

)
so

and
(
ι∗(Γ), Co

)
so

denote the intersection

multiplicities at so, between ι∗(Γ) and the curves So and Co. They are respectively
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equal, via the projection formula for ι , to ρ and 2d - 1. At last, since ι∗(Γ) is
unibranch at so and

(
ι∗(Γ), So

)
so

= ρ ≤ 2d - 1 =
(
ι∗(Γ), Co

)
so
, we immediately

deduce that ρ is the multiplicity of ι∗(Γ) at so (and So is transverse to ι∗(Γ) at so).
(4) - By definition of m, we clearly have ι∗(Γ) = m.ι(Γ), while {ρ, γi, i = 0, .., 3}

are the multiplicities of ι∗(Γ) at different points of S. Hence, m divides n and 2d-1,
as well as all integers {ρ, γi, i = 0, .., 3}.

(5) - For any i = 0, .., 3, the strict transform of the fiber Si := π−1
S (ωi), by the

blow-up e : S⊥ → S, is a τ⊥-invariant curve, equal to S⊥
i := e∗(Si) - s

⊥
i - r⊥i , but

also to ϕ∗(S̃i), where S̃i := ϕ(S⊥
i ). Hence, the intersection number ι⊥∗ (Γ) · S⊥

i is
equal to the even integer

ι⊥∗ (Γ) · S⊥
i = ι⊥∗ (Γ) · ϕ∗(S̃i) = ϕ∗(ι

⊥
∗

(
Γ)

)
· S̃i = 2Γ̃ · S̃i,

implying that n = ι⊥∗ (Γ) · e∗(Si) is congruent mod.2 to

ι⊥∗ (Γ) · S⊥
i + ι⊥∗ (Γ) · (s⊥i + r⊥i ) ≡ ι⊥∗ (Γ) · (s⊥i + r⊥i )(mod.2).

We also know, by definition, that γi := ι⊥∗ (Γ) · r⊥i , while ι⊥∗ (Γ) · s⊥o = ρ, the
multiplicity of ι∗(Γ) at so, and ι

⊥
∗ (Γ) · s⊥i = 0 if i 6= 0, because si /∈ ι(Γ). Hence, n

is congruent mod.2, to ρ+ γo ≡ 1+ γo (mod.2), as well as to γi, if i 6= 0.

(6) - The Picard group Pic(S⊥) is the direct sum of e∗(Pic(S)) and the rank-
8 lattice generated by the exceptional curves {s⊥i , r⊥i , i = 0, .., 3}. In particular,
knowing that ι∗(Γ) is linearly equivalent to nCo+(2d - 1)So, and having already
calculated ι⊥∗ (Γ) · s⊥i and ι⊥∗ (Γ) · r⊥i , for any i = 0, .., 3, we can finally check that

ι⊥∗ (Γ) is linearly equivalent to e∗
(
nCo+(2d - 1)So

)
- ρ s⊥o -

∑3
0 γi r

⊥
i . �

We are now ready to deduce the basic inequalities relating the numerical invariants,
associated so far to any such cover π (i.e.:

{
n, d, g, ρ,m, γ

}
). The arithmetic genus

of the irreducible curve Γ̃ := ϕ(Γ⊥) ⊂ S̃, say g̃, can be deduced from 5.4.(6) via the

projection formula for ϕ : S⊥ → S̃. We start proving the inequality 2g + 1 ≤ γ(1),
before deducing the main one (5.5.(4)) from g̃ ≥ 0.

Theorem 5.5.
Consider any hyperelliptic d-osculating cover π : (Γ, p) → (X, q), of degree n, type
γ, arithmetic genus g and ramification index ρ at p, and let m denote the degree of
its canonical equivariant factorization ι⊥ : Γ → ι⊥(Γ) ⊂ S⊥. Then the numerical
invariants {n, d, g, ρ,m, γ} satisfy the following inequalities:

(1) 2g+1 ≤ γ(1) ;

(2) ρ = 1 implies m = 1 ;

(3) γ(2) ≤ 2(2d - 1)(n -m)+ 4m2 - ρ2 ;

(4) (2g+1)2 ≤ 8(2d - 1)(n -m)+13m2- 4ρ2 ≤ 8(2d - 1)n+(2d - 1)2. .
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Hence, if π is not ramified at p, we must have m = 1, as well as:

(5) (2g+1)2 ≤ 8(2d -1)(n - 1)+ 9.

Proof. (1) - For any i = 0, .., 3, the fiber of πS⊥ := πS ◦ e : S⊥ → X over the
half-period ωi, decomposes as s⊥i + r⊥i +S⊥

i , where S⊥
i is a τ⊥-invariant divisor and

s⊥i is disjoint with ι⊥∗ (Γ), if i 6= 0, while ι⊥
∗
(s⊥i ) = ρ p, by 5.4.(2). Hence, the

divisor Ri := ι⊥
∗
(r⊥i ) of Γ is linearly equivalent to Ri ≡ π−1(ωi) - (n - γi) p (and

also 2Ri ≡ 2γi p ). Recalling at last, that
∑3

j=1 ωj ≡ 3ωo, and taking inverse image

by π, we finally obtain that
∑3

i=0Ri ≡ γ(1) p . In other words, there exists a well
defined meromorphic function, (i.e.: a morphism), from Γ to P1, with a pole of
(odd!) degree γ(1) at the Weierstrass point p. The latter can only happen (by the
Riemann-Roch Theorem) if 2g+1 ≤ γ(1), as asserted.

(2) - According to 5.4.(4), m divides ρ. Hence, ρ = 1 implies m = 1.

(3) - The curve ι⊥(Γ) is τ⊥-invariant and linearly equivalent
(
5.4.(4)-(6)

)
to:

ι⊥(Γ) ∼ 1
m

(
e∗
(
nCo+(2d -1)So

)
- ρs⊥o -

∑3
i=0 γi r

⊥
i

)
.

Recall also that ϕ∗(K̃), the inverse image by ϕ of the canonical divisor of S̃,

is linearly equivalent to ϕ∗(K̃) ∼ e∗(- 2C0). Applying the projection formula for

ϕ : S⊥ → S̃, to the divisor ι⊥(Γ), we calculate g(Γ̃), the arithmetic genus of

Γ̃ := ϕ
(
ι⊥(Γ)

)
⊂ S̃ :

0 ≤ g(Γ̃) = 1
4m2

(
(2d -1)(2n -2m)+ 4m2- ρ2 - γ(2)

)
,

implying

γ(2) ≤ (2d -1)(2n -2m)+ 4m2- ρ2,
as claimed.

(4) & (5) - We start remarking that, for any j = 1, 2, 3, (γo - γj) is a non-zero
multiple of m. Hence,

∑
i<j(γi - γj)

2 ≥ 3m2, and replacing in 5.5.(1) we get:

(2g+1)2 ≤ (γ(1))2 = 4γ(2) -
∑

i<j

(γi - γj)
2 ≤ 4γ(2) - 3m2.

Taking into account 5.5.(3), we obtain the inequality 5.5.(4), as well as 5.5.(5),
which corresponds to the particular case ρ = m = 1. �

Lemma 5.6.
Let π : (Γ, p) → (X, q) be an arbitrary degree-n hyperelliptic cover, equipped with
two points p′ 6= p′′ ∈ Γ such that the (divisor) sum p′ + p′′ is τΓ-invariant. Assume
the data (π, p′, p′′) solves the NL Schrödinger & 1D Toda or the sine-Gordon

case, i.e.: ToX = V 1
Γ,p′ + V 1

Γ,p′′ (2.9. & 2.10.). We let again ι : Γ → S denote

the corresponding morphism (3.10.), Γ⊥ the image of its lift ι⊥ : Γ → S⊥, and
γ = (γi) ∈ N4 its type, obtained by intersecting Γ⊥ with the curves {r⊥i }. Then:
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(1) ι(Γ) is birational to Γ and numerically equivalent to nCo + 2So;

(2) ι(Γ) intersects Co at {ι(p′), ι(p′′)}, with multiplicity 1 at each point, if
π(p′) 6= π(p′′), and with multiplicity 2 if π(p′) = π(p′′);

(3) if π(p′) = π(p′′), then γo ≡ γ1 ≡ γ2 ≡ γ3 ≡ n(mod.2), π(p′) = ωio is a half-

period and ι⊥∗ (Γ) is linearly equivalent to e∗
(
nCo+2So

)
- 2s⊥io -

∑3
i=0 γi r

⊥
i ;

(4) if π(p′) 6= π(p′′) /∈ {ωi}, then γo ≡ γ1 ≡ γ2 ≡ γ3 ≡ n(mod.2) and ι⊥∗ (Γ) is

linearly equivalent to e∗
(
nCo + 2So

)
-
∑3

i=0 γi r
⊥
i ;

(5) if π(p′) 6= π(p′′) are two half-periods of (X, q), say {ωk, ωj}, for some k 6= j,
then γk + 1 ≡ γj + 1 ≡ γi ≡ γl ≡ n(mod.2), where {j, k, i, l} = {0, 1, 2, 3}
and ι⊥∗ (Γ) is linearly equivalent to e∗

(
nCo + Sk +Sj

)
- s⊥k - s⊥j -

∑3
i=0 γi r

⊥
i ;

Analogously to what we proved for the d-th KdV case (5.5.), we obtain the fol-
lowing relations between the degree and arithmetic genus of the other cases.

Theorem 5.7. (NL Schrödinger & 1D Toda case)
Let π : (Γ, p) → (X, q) be an arbitrary degree-n hyperelliptic cover of arithmetic
genus g, equipped with two points p+ 6= p− ∈ Γ exchanged by the hyperelliptic in-
volution τΓ. Assume (π, p+, p−) solves the NL Schrödinger & 1D Toda case

and let γ ∈ N4 denote its type (5.6.). Then, γi ≡ n(mod.2), for any i, and :

(1) 2g + 2 ≤ γ(1);

(2) π(p+) 6= π(p−) implies γ(2) ≤ 4n, as well as (g + 1)2 ≤ 4n;

(3) π(p+) = π(p−) and n ≡ 0(mod.2) imply γ(2) ≤ 4n - 4 and (g+1)2 ≤ 4n - 4;

(4) π(p+) = π(p−) and n ≡ 1(mod.2) imply γ(2) ≤ 4n - 8 and (g+1)2 ≤ 4n - 8.

Theorem 5.8. (sine-Gordon case)
Let π : (Γ, p) → (X, q) be an arbitrary degree-n hyperelliptic cover of arithmetic
genus g, equipped with two Weierstrass points p1, p2 ∈ Γ. Assume (π, p1, p2) solves
the sine-Gordon case and let γ ∈ N4 denote its type (5.6.). Then:

(1) 2g ≤ γ(1);

(2) π(p1) 6= π(p2) implies γ(2) ≤ 4n, as well as g2 ≤ 4n;

(3) π(p1) = π(p2) and n ≡ 0(mod.2) imply γ(2) ≤ 4n - 4 and g2 ≤ 4n - 4;

(4) π(p+) = π(p−) and n ≡ 1(mod.2) imply γ(2) ≤ 4n - 8 and g2 ≤ 4n - 8.
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6. On hyperelliptic d-osculating covers of arbitrary high genus

6.1. - Let C⊥
o denote the strict transform of Co in S

⊥, C̃o := ϕ(C⊥
o ) its projection

in S̃ and consider an arbitrary degree-n hyperelliptic d-osculating cover of type γ,
say π : (Γ, p) → (X, q), with ramification index ρ at p. We will let ι⊥ : Γ → S⊥

denote its unique equivariant factorization through πS⊥ : S⊥ → X (5.1.), Γ⊥ :=

ι⊥(Γ) its image in S⊥ and Γ̃ the corresponding projection into S̃. Recall (5.4. &
5.5.) that the above numerical invariants must satisfy the following restrictions :

(1) ρ is an odd integer bounded by 2d - 1;
(2) γo+1 ≡ γ1 ≡ γ2 ≡ γ3 ≡ n(mod.2).

Furthermore, whenever m := deg(ι⊥ : Γ → Γ⊥) is equal to 1
(
i.e.: Γ is

birational to Γ⊥
)
, π can be canonically recovered from Γ̃ := ϕ(Γ⊥), and

they all satisfy the following properties:

(3) Γ̃ is an irreducible rational curve of non-negative arithmetic genus equal to
g̃ := 1

4

(
(2d - 1)(2n - 2)+ 4 - ρ2- γ(2)

)
≥ 0;

(4) Γ⊥ is linearly equivalent to e∗
(
nCo + (2d -1)So

)
- ρso

⊥ -
∑3

i=0 γiri
⊥;

(5) Γ̃ intersects s̃o := ϕ(so
⊥) at a unique point, where it is unibranch and has

multiplicity ρ;

(6) Γ̃ intersects C̃o (at most) at p̃o := C̃o ∩ s̃o (i.e.: Γ̃ ∩ C̃o ⊂ C̃o ∩ s̃o), with
multiplicity 1

2 (2d - 1 - ρ). In particular, if ρ = 2d - 1, Γ̃ and C̃o are disjoint
curves.

Definition 6.2.
For any (n, d, ρ, γ) ∈ N7 satisfying the above restrictions, we let Λ(n, d, ρ, γ) denote

the unique element of Pic(S̃) such that ϕ∗
(
Λ(n, d, ρ, γ)

)
is linearly equivalent to

e∗
(
nCo + (2d -1)So

)
- ρso

⊥ -
∑3

i=0 γiri
⊥, and MHX(n, d, ρ, 1, γ) denote the moduli

space of degree-n hyperelliptic d-osculating covers of type γ, ramification index ρ at
their marked point, and birational to their canonical images in S⊥.

Remark 6.3.
We will restrict to the simpler case where ρ = 1, Γ is isomorphic to Γ⊥ and

Γ̃ is isomorphic to P1. In other words, we will focus on degree-n hyperelliptic d-
osculating covers with ρ = m = 1, and of type γ satisfying γ(2) = (2d - 1)(2n - 2)+ 3.
We will actually choose γ = (2d - 1)µ+2ε, where µ is an arbitrary µ ∈ N4 satisfying
µo+1 ≡ µ1 ≡ µ2 ≡ µ3(mod.2) and ε ∈ Z4 is equal to ε = (d -1, d -1, d -1, 0). Given
such triplet (n, d, γ) we give a straightforward construction ofMHX(n, d, 1, 1, γ) as
a (d -1)-dimensional family of curves, embedded in S⊥ (6.9.). Moreover, it can also
be proved that any π ∈MHX(n, d, 1, 1, γ) has a unique birational model in P1×X ,
as a linear combination of d specific polynomials with elliptic coefficients. The same
can be done for 2ε = (d+1, d -1, d -1, d -1) if d is odd, or for 2ε = (d -2, d, d, d) if d
is even; or when permuting and/or changing the signs of their coefficients.

We will need the following existence and irreducibility criteria.
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Proposition 6.4. ([33]3.4)
Any curve Γ ⊂ S intersecting Co at a unique smooth point p ∈ Γ is irreducible.

Proposition 6.5.
Let Γ⊥ ⊂ S⊥ be a curve with no irreducible component in {r⊥i , i = 0, .., 3}, and
intersecting C⊥

o (at most) at a unique smooth point p⊥ ∈ Γ⊥. Then Γ⊥ is an irre-
ducible curve.

Proof. The properties satisfied by Γ⊥ assure us that it is the strict transform
of its direct image by e : S⊥ → S, Γ := e∗(Γ

⊥), and that the latter does not con-
tain Co. We can also check, that Γ is smooth at p := e(p⊥) and Γ ∩ Co = {p}. It
follows, by 6.4., that (Γ, as well as its strict transform) Γ⊥ is an irreducible curve.�

Proposition 6.6. ([35]6.2. )
Any α = (αi) ∈ N4 such that α(2) = 2n + 1 is odd gives rise to an exceptional

curve of the first kind Γ̃α ⊂ S̃. More precisely, let k ∈ {0, 1, 2, 3} denote the index

satisfying αk + 1 ≡ αj(mod.2), for any j 6= k, and Sk := π−1
S (sk), then Γ̃α has

self-intersection - 1 and ϕ∗(Γ̃α) ⊂ S⊥ is the unique τ⊥-invariant irreducible curve

linearly equivalent to e∗(nCo + Sk) - s
⊥
k -

∑3
i=0 αir

⊥
i .

Proof. Let Λ denote the unique numerical equivalence class of S̃ satisfying

ϕ∗(Λ) = e∗(nCo + Sk) - s
⊥
k -

∑3
i=0 αir

⊥
i . It has self-intersection Λ · Λ = - 1, and

Λ · K̃ = - 1 as well. It follows that ho
(
S̃, OS̃(Λ)

)
≥ χ

(
OS̃(Λ)

)
= 1, hence there

exists an effective divisor Γ̃ ∈
∣∣Λ

∣∣. Such a divisor is known to be unique and irre-
ducible ([35]6.2.). �

Corollary 6.7. ([35])

Let α ∈ N4 be such that αo+1 ≡ αj(mod.2), Γ̃α the corresponding exceptional curve

(see 6.6.), and Γ⊥
α := ϕ∗(Γ̃α) its inverse image in S⊥, marked at its Weierstrass

point pα := Γ⊥
α ∩ s⊥o . Then, (Γ⊥

α , pα) gives rise to KdV solutions, L-periodic in
x = t1 (the first KdV flow).

The latter corollary will be generalized as follows: given any n, d ∈ N∗, we will
construct types γ = (2d - 1)µ+2ε ∈ N4, such that γo+1 ≡ γ1 ≡ γ2 ≡ γ3(mod.2) and
γ(2) = (2n - 2)(2d - 1)+3, for which the linear system |Λ(n, d, 1, γ)| (see 6.2.) has
dimension d - 1 and a generic element isomorphic to P1. Hence, they will give rise
to (d - 1)-dimensional families of marked curves solving the d-th KdV case.

Theorem 6.8.
Let us fix d ≥ 2 , k ∈ {0, 1, 2, 3} , and µ ∈ N4 such that µo + 1 ≡ µj(mod.2) (for
j = 1, 2, 3). Pick any vector 2ε = (2εi) ∈ 2Z4 , satisfying (∀i = 0, . . . , 3) , either

|2εi| = (2d - 2)(1 - δi,k) ,

or





|2εi| = d - (-1)δi,k if d is odd ,

|2εi| = d - 2δi,k if d is even ,
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as long as γ := (2d -1)µ + 2ε ∈ N4, and let n satisfy γ(2) = (2d -1)(2n-2) + 3.
Then |ϕ∗

(
Λ(n, d, 1, γ)

)
| contains a (d - 1)-dimensional subspace such that its generic

element, say Γ⊥, satisfies the following properties :

(1) Γ⊥ is a τ⊥-invariant smooth irreducible curve of genus g : = 1
2 (-1+γ

(1));

(2) Γ⊥ can only intersect C⊥
o at p⊥o := C⊥

o ∩ s⊥o ;

(3) ϕ(Γ⊥) ⊂ S̃ is isomorphic to P1.

Corollary 6.9.
Given (n, d, γ) ∈ N∗×N∗×N4 as above, the moduli space MHX(n, d, 1, 1, γ) (6.2.)
has dimension d - 1, and a smooth generic element of genus g : = 1

2 (-1+ γ(1)).

Proof of Theorem 6.8..
We will only work out the case γ := (2d -1)µ+2ε, with ε = (0, d - 1, d - 1, d - 1) .
For any other choice of ε, the corresponding proof runs along the same lines and

will be skipped. In our case, the arithmetic genus g and the degree n satisfy:

2g + 1 = (2d - 1)µ(1) + 6(d - 1) and 2n = (2d -1)µ(2)+4(d -1)(µ1+µ2+µ3)+ 6d -7.

Consider µ : = µ+(1, 1, 1, 1), µ′ : = µ+(0, 2, 1, 1), µ′′ = µ+(0, 0, 1, 1), and let

Z
⊥
, Z ′⊥, Z ′′⊥ ⊂ S⊥ denote the unique τ⊥-invariant curves linearly equivalent to:

1) Z
⊥ ∼ e∗(mCo+So) - s

⊥
o -

∑
i µir

⊥
i , where 2m +1 = µ (2);

2) Z ′⊥ ∼ e∗(m′Co+S1) - s
⊥
1 -

∑
i µ

′
ir

⊥
i , where 2m′ +1 = µ′(2);

3) Z ′′⊥ ∼ e∗(m′′Co+S1) - s
⊥
1 -

∑
i µ

′′
i r

⊥
i , where 2m′′+1 = µ′′(2).

Moreover, if µo 6= 0 we choose µ = µ+(- 1, 1, 1, 1) and 2m+1 = µ(2), and let

Z⊥ ⊂ S⊥ denote the unique τ⊥-invariant curve Z⊥ ∼ e∗(mCo+So) - s
⊥
o -

∑
i µi

r⊥i .

However, if µo = 0 we will simply put Z⊥ : = Z
⊥
+2r⊥o , so that in both cases,

the divisors D⊥
0 := Z

⊥
+Z⊥+2s⊥0 and D⊥

1 := Z ′⊥+Z ′′⊥+2s⊥1 will be linearly
equivalent. Let us also define,

µ(1) : = µ′′ = µ+ (0, 0, 1, 1),

µ(2) : = µ+ (0, 1, 0, 1),

µ(3) : = µ+ (0, 1, 1, 0),

and let Z⊥
(k)(k = 1, 2, 3) be the τ⊥-invariant curve of S⊥, linearly equivalent to

e∗(m(k)Co+Sk) - s
⊥
k -
∑

i µ(k)ir
⊥
i , where 2m(k)+1 =

∑
i µ

2
(k)i.

At last, consider Z⊥ ∼ e∗(mCo+So) - s
⊥
o -

∑
i µir

⊥
i , where 2m+1 =

∑
i µ

2
i (6.2.).

The (d-1)-dimensional subspace of
∣∣ϕ∗

(
Λ(n, d, 1, γ)

)∣∣ we are looking for, will be
made of all above curves. We first remark the following facts :

a) we can check, via the adjunction formula, that any τ⊥-invariant element of∣∣ϕ∗
(
Λ(n, d, 1, γ)

)∣∣ has arithmetic genus g : = 1
2 (-1+ γ(1)), and is the pull-back by

ϕ : S⊥ → S̃, of a divisor of zero arithmetic genus of S̃;

b) the following d - 1 divisors
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{
F⊥
j := C⊥

o +

3∑

k=1

(Z⊥
(k)+2s⊥k )+jD

⊥
o +(d -2 - j)D⊥

1 , j = 0, ..., d -2
}
,

as well as

G⊥ := Z⊥+(d -1)D⊥
o ,

are τ⊥-invariant, belong to
∣∣ϕ∗

(
Λ(n, d, 1, γ)

)∣∣ and have p⊥o := C⊥
o ∩ s⊥o as their

unique common point;

c) the curve F⊥
o is smooth at p⊥o , while any other F⊥

j has multiplicity 1 < 2j+1 < 2d

at p⊥o . In particular, they span a (d - 2)-subspace of
∣∣ϕ∗

(
Λ(n, d, 1, γ)

)∣∣, having a

generic element smooth and transverse to s⊥o at p⊥o ;

d) the curve G⊥ has multiplicity 2d at p⊥o , and no common irreducible component
with any F⊥

j (∀j = 0, . . . , d - 2), implying that 〈G⊥, F⊥
j , j = 0, .., d - 2 〉 ⊂

∣∣ϕ∗(Λ)
∣∣,

the (d - 1)-subspace they span, is fixed component-free;

e) any irreducible curve Γ⊥ ∈ 〈G⊥, F⊥
j , j = 0, .., d - 2 〉 projects onto a smooth irre-

ducible curve (isomorphic to P1). In particular Γ⊥ must be smooth outside ∪3
i=0r

⊥
i .

f) the curves G⊥ and F⊥
o have no common point on any r⊥i (i = 0, .., 3), implying

that Γ⊥, the generic element of 〈G⊥, F⊥
j , j = 0, .., d - 2 〉, is smooth at any point of

∪3
i=0r

⊥
i and satisfies the announced properties, i.e.:

(1) - Γ⊥ is τ⊥-invariant, smooth and satisfies the irreducibility criterion 6.5.;

(2) - p⊥o is the unique base point of the linear system and Γ⊥ ∩ C⊥
o = {p⊥o };

(3) - its image ϕ(Γ⊥) ⊂ S̃ is irreducible, linearly equivalent to Λ(n, d, 1, γ) and
of arithmetic genus 1

4

(
(2d -1)(2n-2)+ 3 - γ(2)

)
= 0; hence, isomorphic to P1. �

Proof of Corollary 6.9..
The degree-2 projection ϕ : Γ⊥ → ϕ(Γ⊥) is ramified at p⊥o and ϕ(Γ⊥) is iso-

morphic to P1. Moreover, Γ⊥ is a smooth irreducible curve linearly equivalent to∣∣ϕ∗
(
Λ(n, d, 1, γ)

)∣∣, of arithmetic genus g := 1
2 (γ

(1) - 1).

In other words, the natural projection (Γ⊥, p⊥o ) ⊂ (S⊥, p⊥o )
π
S⊥−→ (X, q) is a

smooth degree-n hyperelliptic d-osculating cover of type γ, and genus g, such that
(2n-2)(2d -1)+ 3 = γ(2) and 2g+1 = γ(1). �

Remark 6.10.

(1) The irreducible components of the d generators 〈G⊥, F⊥
j , j = 0, .., d - 2 〉

are well known curves, for which one can provide explicit equations in
P1 ×X . Hence, any element of MHX(n, d, 1, 1, γ) is birational to the zero
set of a linear combination of d specific degree-n polynomials with coeffi-
cients in K(X), the field of meromorphic functions on X .
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(2) Effective solutions to theNL Schrödinger & 1D Toda and sine-Gordon
cases can also been found through an analogous method. Roughly speak-
ing, we construct infinitely many 1-dimensional familes of solutions (for
both cases), having arbitrary degree n, and arbitrary genus g. As we shall
see, the results differ on whether the pair of marked points have same pro-
jection in X or not (and depend on the parity of n as well). The main
results are given below (detailed proofs will be given elsewhere).

Proposition 6.11. (NL Schrödinger & 1D Toda restrictions)
Let π : (Γ, p) → (X, q) be an arbitrary hyperelliptic cover, equipped with two non-
Weierstrass points p+, p− ∈ Γ, such that (π, p+, p−) solves the NL Schrödinger
& 1D Toda case.Then, the arithmetic genus of Γ and the degree of π, say g and
n, satisfy:

(1) (g + 1)2 ≤ 4n - 4 , if π(p+) = π(p−) and n ≡ 0(mod 2);

(2) (g + 1)2 ≤ 4n - 8 , if π(p+) = π(p−) and n ≡ 1(mod 2);

(3) (g + 1)2 ≤ 4n , if π(p+) 6= π(p−).

Proposition 6.12. (sine-Gordon restrictions)
Let π : (Γ, p) → (X, q) be an arbitrary hyperelliptic cover, equipped with two Weier-
strass points po, p1 ∈ Γ, such that (π, po, p1) solves the sine-Gordon case.Then,
the arithmetic genus of Γ and the degree of π, say g and n, satisfy:

(1) g2 ≤ 4n - 4 , if π(po) = π(p1) and n ≡ 0(mod 2);

(2) g2 ≤ 4n - 8 , if π(po) = π(p1) and n ≡ 1(mod 2);

(3) g2 ≤ 4n -2 , if π(po) 6= π(p1).

Along with the latter restrictions we have the following effective results.

Theorem 6.13. (odd degree NL Schrödinger & 1D Toda case)
For any α ∈ N4 and a ∈ X there exists a hyperelliptic cover π : (Γ, p) → (X, q),
equipped with two non-Weierstrass points p+, p− ∈ Γ such that:

(1) π(p+) = a, p+ = τΓ(p
−) and (π, p+, p−) solves the NL Schrödinger case;

(2) Γ has arithmetic genus g := α(1) + 1;

(3) deg(π) = α(2) + α(1) + 1 if a /∈ {ωi}, hence π(p+) 6= π(p−);

(4) deg(π) = α(2) + α(1) + 3 if a ∈ {ωi}, hence π(p+) = π(p−).

Theorem 6.14. (even degree NL Schrödinger & 1D Toda case)
For any α ∈ N4 \{0} and a ∈ X such that, either α(1) ≡ 0(mod 2) and a /∈ {ωi}, or
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α(1) ≡ 1(mod 2) and a ∈ {ωi}, there exists a hyperelliptic cover π : (Γ, p) → (X, q),
equipped with two non-Weierstrass points p+, p− ∈ Γ such that:

(1) π(p+) = a, p+ = τΓ(p
−) and (π, p+, p−) solves the NL Schrödinger case;

(2) Γ has arithmetic genus g := α(1) - 1;

(3) deg(π) = α(2) if a /∈ {ωi}, and deg(π) = α(2) + 1 otherwise.

For a better presentation of our sine-Gordon’s results, we must also take in ac-
count the projections of (po, p1), the pair of Weierstrass points (see 2.10.). They ei-
ther project onto the same point, which can be chosen equal to π(po) = π(p1) = ωo,
or their projections differ by a non-zero half-period, say π(po) = ωo and π(p1) = ω1.
In all four cases we find 1-dimensional families of solutions. Additional properties,
such as the existence of a fixed point free involution or a real structure can also
be found. For example, if (X, q) has a real structure, we can extract from the first
three sine-Gordon cases a real 1-dimensional family having a real structure fixing
the Weierstrass points.

Theorem 6.15. (even degree sine-Gordon with distinct projections)
Pick any α ∈ N4 satisfying α2+α3 ≡ 1(mod 2). Then, there exists a 1-dimensional
family of hyperelliptic covers π : (Γ, p) → (X, q), equipped with a pair of distinct
Weierstrass points {po, p1} ∈ Γ, such that:

(1) π(pj) = ωj, for j = 0, 1 and (π, po, p1) solves the sine-Gordon case;

(2) Γ has arithmetic genus g := α(1)+1 and deg(π) = α(2)+αo+α1+1.

Theorem 6.16. (odd degree sine-Gordon with distinct projections)
Pick any α ∈ N4 satisfying αo+α1 ≡ 0(mod 2). Then, there exists a 1-dimensional
family of hyperelliptic covers π : (Γ, p) → (X, q), equipped with a pair of distinct
Weierstrass points {po, p1} ∈ Γ, such that:

(1) π(pj) = ωj, for j = 0, 1 and (π, po, p1) solves the sine-Gordon case;

(2) Γ has arithmetic genus g := α(1)+1 and deg(π) = α(2)+α2+α3+1.

Theorem 6.17. (even degree sine-Gordon with same projection)
Fix jo ∈ {1, 2, 3} and pick any α ∈ N4 satisfying αjo+1 ≡ αi(mod 2) for any i 6= jo.
Then, there exists a 1-dimensional family of hyperelliptic covers π : (Γ, p) → (X, q),
equipped with a pair of distinct Weierstrass points {po, p1} ∈ Γ, such that:

(1) π(po) = π(p1) = ωo and (π, po, p1) solves the sine-Gordon case;

(2) Γ has arithmetic genus g := α(1) and deg(π) = α(2) + 1.
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Theorem 6.18. (odd degree sine-Gordon with same projection)
For any α ∈ N4 there exists a 1-dimensional family of hyperelliptic covers π :
(Γ, p) → (X, q), equipped with a pair of distinct Weierstrass points {po, p1} ∈ Γ,
such that:

(1) π(po) = π(p1) = ωo and (π, po, p1) solves the sine-Gordon case;

(2) Γ has arithmetic genus g := α(1) + 2 and deg(π) = α(2) + α(1) + 3.
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