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HYPERELLIPTIC d-OSCULATING COVERS AND RATIONAL

SURFACES

ARMANDO TREIBICH

1. Introduction

1.1. Let P1 and (X, q) denote, respectively, the projective line and a fixed ellip-
tic curve marked at its origin, both defined over an algebraically closed field K
of arbitrary characteristic p 6= 2. We will study all finite separable marked mor-
phisms π : (Γ, p) → (X, q), called hereafter hyperelliptic covers, such that Γ is
a degree-2 cover of P1, ramified at the smooth point p ∈ Γ. Canonically associ-
ated to π there is the Abel (rational) embedding of Γ into its generalized Jacobian,
Ap : Γ → JacΓ, and {0} ( V 1

Γ,p . . . ( V gΓ,p, the flag of hyperosculating planes to

Ap(Γ) at Ap(p) ∈ JacΓ (cf. 2.1. & 2.2.). On the other hand, we also have the
homomorphism ιπ : X → Jac Γ, obtained by dualizing π. There is a smallest posi-
tive integer d such that the tangent line to ιπ(X) is contained in the d-dimensional
osculating plane V dΓ,p. We call it the osculating order of π, and π a hyperellip-

tic d-osculating cover (2.4.(2)). If π factors through another hyperelliptic cover,
the arithmetic genus increases, while the osculating order can not decrease (2.8.).

Studying, characterizing and constructing those with given osculating order d
but maximal possible arithmetic genus, so-called minimal-hyperelliptic d-osculating
covers, will be one of the main issues of this article. The other one, to which the first
issue reduces, is the construction of all rational curves in a particular anticanonical
rational surface associated to X (i.e.: a rational surface with an effective anticanon-
ical divisor). Both problems are interesting on their own and in any characteristic
p 6= 2. They were first considered, however, over the complex numbers and through
their link with solutions of the Korteweg-deVries hierarchy, doubly periodic with
respect to the d-th KdV flow (cf. [1], [3], [8], [9], [14] for d = 1 and [11], [2], [4], [5]
for d = 2). We sketch hereafter the structure and main results of our article.

(1) We start defining in section 2. the Abel rational embedding Ap : Γ → JacΓ,
and construct the flag {0} ( V 1

Γ,p . . . ( V gΓ,p = H1(Γ, OΓ), of hyperosculat-
ing planes at the image of any smooth point p ∈ Γ. We then define the
homomorphism ιπ : X → JacΓ, canonically associated to the hyperelliptic
cover π, and its osculating order (2.4.(2)). Regardless of the osculating
order, we prove that any degree-n hyperelliptic cover has odd ramification
index at the marked point, say ρ, and factors through a unique one of
maximal arithmetic genus 2n - ρ+1

2 (2.6.). We finish characterizing the os-

culating order by the existence of a particular projection κ : Γ → P1 (2.6.).

(2) The d-osculating criterion 2.6. paves the way to the algebraic surface
approach developed in the remaining sections. The main characters are
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2 ARMANDO TREIBICH

played by (two morphisms between) three projective surfaces, canonically
associated to the elliptic curve X :

� e : S⊥ → S : the blowing-up of a particular ruled surface πS : S → X ,
at the 8 fixed points of its involution;

� ϕ : S⊥ → S̃ : a projection onto an anticanonical rational surface.

(3) Once S, S⊥ and S̃ are constructed (3.2., 3.4.), we prove that any hyper-
elliptic d-osculating cover π : (Γ, p) → (X, q) factors canonically through a

curve Γ⊥ ⊂ S⊥, and projects, via ϕ : S⊥ → S̃, onto a rational irreducible

curve Γ̃ ⊂ S̃ (3.8.). We also prove that any hyperelliptic d-osculating cover
dominates a unique one of same osculating order d, but maximal arithmetic

genus, so-called minimal-hyperelliptic (3.9.). Conversely, given Γ̃ ⊂ S̃, we
study when and how one can recover all minimal-hyperelliptic d-osculating

covers having same canonical projection Γ̃ (3.11.) .

(4) Section 4. is mainly devoted to studying the linear equivalence class of
the curve Γ⊥ ⊂ S⊥, canonically associated to any hyperelliptic d-osculating
cover π, and associated invariants (4.3. & 4.4.). We end up with a numer-
ical characterization of minimal-hyperelliptic d-osculating covers (4.6.).

(5) At last, we dress the list of all ( - 1) and ( - 2)-irreducible curves of S̃ (5.7.),
needed to study its nef cone, and give, for any n, d ∈ N∗, two different
constructions of (d - 1)-dimensional families of smooth, degree-n, minimal-
hyperelliptic d-osculating covers : one based on Brian Harbourne’s results
on anticanonical rational surfaces ([6]), the other one based on [13] and
leading, ultimately, to explicit equations for the corresponding covers.

2. Jacobians of curves and hyperelliptic d-osculating covers

2.1. Let K be an algebraically closed field of characteristic p 6= 2, P1 the projective
line over K and (X, q) a fixed elliptic curve, also defined over K. The latter will be
equipped with its canonical symmetry [ - 1] : (X, q) → (X, q), fixing ωo := q, as well
as the other three half-periods {ωj , j = 1, 2, 3}. We will also choose once for all,
an odd local parameter of X centered at q, say z, such that z ◦ [ - 1] = - z.

By a curve we will mean hereafter a complete integral curve over K, say Γ, of pos-
itive arithmetic genus g > 0. The moduli space of degree-0 invertible sheaves over
Γ, denoted by JacΓ and called the generalized Jacobian of Γ, is a g-dimensional
connected commutative algebraic group, canonically identified to H1(Γ, O∗

Γ), with
tangent space at its origin equal to H1(Γ, OΓ). Recall also the Abel (rational) em-
bedding Ap : Γ → JacΓ, sending any smooth point p′ ∈ Γ to the isomorphism class
of OΓ(p

′ - p). For any marked curve (Γ, p) as above, and any positive integer j, let
us consider the exact sequence of OΓ-modules 0 → OΓ → OΓ(jp) → Ojp(jp) → 0,
as well as the corresponding long exact cohomology sequence :

0 → H0(Γ, OΓ) → H0
(
Γ, OΓ(jp)

)
→ H0

(
Γ, Ojp(jp)

) δ
→ H1(Γ, OΓ) → . . . ,
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where δ : H0
(
Γ, Ojp(jp)

)
→ H1(Γ, OΓ) is the cobord morphism. According to

the Weierstrass gap Theorem, for any d ∈ {1, . . . , g}, there exists 0 < j < 2g such

that δ
(
H0

(
Γ, Ojp(jp)

))
is a d-dimensional subpace, denoted hereafter by V dΓ,p.

For a generic point p of Γ we have V dΓ,p = δ
(
H0

(
Γ, Odp(dp)

))
(i.e. : j = d), while

for any p ∈ Γ, the tangent to Ap(Γ) at 0 is equal to V 1
Γ,p = δ

(
H0

(
Γ, Op(p)

))
.

Definition 2.2.

(1) The filtration {0} ( V 1
Γ,p . . . ( V gΓ,p = H1(Γ, OΓ) will be called the flag of

hyperosculating spaces to Ap(Γ) at 0.

(2) The curve Γ will be called a hyperelliptic curve, and p ∈ Γ a Weierstrass
point, if there exists a degree-2 projection onto P1, ramified at p. Or equivalently, if
there exists an involution, denoted in the sequel by τΓ : Γ → Γ and called the hyperel-
liptic involution, fixing p and such that the quotient curve Γ/τΓ is isomorphic to P1.

Proposition 2.3. ([12]§1.6.)
Let (Γ, p, λ) be a hyperelliptic curve of arithmetic genus g, equipped with a local

parameter λ, centered at a smooth Weierstrass point p ∈ Γ. For any odd integer
1 ≤ j := 2d - 1 ≤ g, consider the exact sequence of OΓ-modules :

0 → OΓ → OΓ(jp) → Ojp(jp) → 0 ,

as well as its long exact cohomology sequence

0 → H0(Γ, OΓ) → H0
(
Γ, OΓ(jp)

)
→ H0

(
Γ, Ojp(jp)

) δ
→ H1(Γ, OΓ) → . . . ,

δ being the cobord morphism.

For any, m ≥ 1, we also let [λ-m] denote the class of λ-m in H0
(
Γ, Omp(mp)

)
.

Then V dΓ,p is generated by
{
δ
(
[λ2l-1]

)
, l = 1, .., d

}
. In other words, the d-th oscu-

lating subspace to Ap(Γ) at 0 is equal to δ
(
H0

(
Γ, Ojp(jp)

))
, for j = 2d - 1.

Definition 2.4.

(1) A finite separable marked morphism π : (Γ, p) → (X, q), such that Γ is a hy-
perelliptic curve and p ∈ Γ a smooth Weierstrass point, will be called a hyperelliptic
cover. We will say that π dominates another hyperelliptic cover π : (Γ, p) → (X, q),
if there exists a degree-1 morphism j : (Γ, p) → (Γ, p), such that π = π ◦ j.

(2) Let ιπ : X → JacΓ denote the group homomorphism q′ 7→ Ap
(
π∗(q′- q)

)
.

There is a minimal integer d ≥ 1, called henceforth osculating order of π, such that
the tangent to ιπ(X) at 0 is contained in V dΓ,p. We will then call π a hyperelliptic
d-osculating cover.

Proposition 2.5.

Let π : (Γ, p) → (X, q) be a degree-n hyperelliptic cover with ramification index ρ at
p, f : (Γ, p) → (P1,∞) the corresponding degree-2 projection, ramified at p, and let
Γf,π denote the image curve (f, π)(Γ) ⊂ P1 ×X. Then (see diagram below),
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(1) the hyperelliptic involution τΓ satisfies [ - 1] ◦ π = π ◦ τΓ and ρ is odd ;
(2) Γf,π has arithmetic genus 2n - 1 and is unibranch at (∞, q);

(3) let (Γ, p) denote the partial desingularization of Γf,π at (∞, q), equipped

with its canonical projection via Γf,π, say π : (Γ, p) → (X, q), then:

π is a hyperelliptic cover of arithmetic genus 2n - 1
2 (ρ+ 1);

(4) π, as well as any hyperelliptic cover dominated by π, factors through π.

p ∈ Γ
π //

1:1

&&MMMMMMMMMM
q ∈ X

p ∈ Γ

1:1wwww

;;wwww

f
,,YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

(f,π) // (∞, q) ∈ Γf,π

88ppppppppppp

''NNNNNNNNNNN

�

� // P1 ×X

OO

��
∞ ∈ P1

Proof. (1) Let Albπ : JacΓ → JacX denote the Albanese homomorphism,
sending any L ∈ JacΓ to Albπ(L) := det(π∗L)⊗ det(π∗OΓ)

−1, and Γ0 denote the
open dense subset of smooth points of Γ. Up to identifying JacX with (X, q), we
know that Albπ ◦ ιπ = [n], the multiplication by n, and Albπ ◦ Ap is well defined
over Γ0 and equal there to π. Knowing, on the other hand, that Ap ◦τΓ = [−1]◦Ap,
we deduce that π ◦ τΓ = Albπ ◦Ap ◦ τΓ = [−1] ◦Albπ ◦Ap = [−1] ◦ π (over the open
dense subset Γ0, hence) over all Γ as asserted.

(2) & (3) The projections f and π have degrees 2 and n, implying that Γf,π is
numerically equivalent to n.{∞}×X+2.P1×{q} and, by means of the adjunction
formula, that it has arithmetic genus 2n - 1. We also know that f and π have
ramification indices 2 and ρ at p ∈ Γ. Hence, Γf,π intersects the fibers P1 × {q}
and {∞} ×X at (∞, q), with multiplicities ρ and 2. Adding property 2.5.(1) we
deduce that its local equation at (∞, q) can only have even powers of z, and must
be equal to z2 = wρh(w, z2), for some invertible element h (i.e.: h(0, 0) 6= 0). In
particular Γf,π is unibranch and has multiplicity min{2, ρ} at (∞, q). Moreover,

for its desingularization over (∞, q), ρ−1
2 successive monoidal transformation are

necessary, each one of which decreases the arithmetic genus by 1. Hence Γ has
arithmetic genus 2n - 1 - ρ−1

2 = 2n - ρ+1
2 as asserted.

(4) Since Γ is already smooth at p, we immediately see that (f, π) factors through
π. Hence, π dominates π as asserted. Reciprocally, any other hyperelliptic cover
dominated by π must factor through

(
Γf,π, (∞, q)

)
, and should lift to its partial

desingularization (Γ, p). In other words, it should dominate π.�

Theorem 2.6.

The osculating order of an hyperelliptic cover π : (Γ, p) → (X, q), is the minimal
integer d ≥ 1 for which there exists a morphism κ : Γ → P1 satisfying :

(1) the poles of κ lie along π-1(q);
(2) κ+ π∗(z -1) has a pole of order 2d -1 at p, and no other pole along π-1(q) (2.1.).
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Furthermore, for such d there exists a unique morphism κ : Γ → P1 satisfying
properties (1)&(2) above, as well as (2.2.(2)):

(3) τ∗Γ(κ) = - κ.

Proof. According to 2.3., ∀r ≥ 1 the r-th osculating subspace V rΓ,p is generated

by
{
δ
(
[λ-(2l-1)]

)
, l = 1, .., r

}
. On the other hand, π being separable, the tangent to

ιπ(X) ⊂ JacΓ at 0 is equal to π∗
(
H1(X,OX)

)
, hence, generated by δ

(
[π∗(z-1)]

)
.

In other words, the osculating order d is the smallest positive integer such that

δ
(
[π∗(z-1)]

)
is a linear combination

∑d
l=1 alδ

(
[λ-(2l-1)]

)
, with ad 6= 0. Or equiva-

lently, thanks to the Mittag-Leffler Theorem, the smallest for which there exists a

morphism κ : Γ → P1, with polar parts equal to π∗(z -1) -
∑d
l=1 alλ

-(2l-1). The latter
conditions on κ are equivalent to 2.6.(1) & (2). Moreover, up to replacing κ by
1
2

(
κ - τ∗Γ(κ)

)
, we can assume κ is τΓ-anti-invariant. The difference of two such func-

tions should be τΓ-anti-invariant, while having a unique pole at p, of order strictly
smaller than 2d -1 ≤ 2g -1, where g denotes the arithmetic genus of Γ. Hence the
difference is identically zero, implying the uniqueness of such a morphism κ. �

Definition 2.7.

(1) The pair of marked projections (π, κ), satisfying 2.6.(1),(2)&(3), will be
called a hyperelliptic d-osculating pair, and κ the hyperelliptic d-osculating
function associated to π.

(2) If the latter π : (Γ, p) → (X, q) does not dominate any other hyperelliptic
d-osculating cover, we will call it minimal-hyperelliptic d-osculating cover.

Corollary 2.8.

Let π : (Γ, p) → (X, q) and π′ : (Γ′, p) → (X, q) be two hyperelliptic covers of oscu-
lating orders, d and d′ respectively, such that π dominates π′. Then d ≤ d′.

Proof. Let κ′ be the hyperelliptic d-osculating function associated to π′, and
j : (Γ, p) → (Γ′, p′) the birational morphism such that π = π′ ◦ j. Then, the poles
of κ′ ◦ j : Γ → P1 lie along π−1(q), while κ′ ◦ j+π∗(z−1) =

(
κ′+π′ ∗(z−1)

)
◦ j has a

pole of order 2d′ - 1 and no other pole along π−1(q). It follows (along the same lines

of proof as in 2.6.) that the tangent to ιπ(X) must be contained in V d
′

Γ,p. Hence,

the minimality of d implies d ≤ d′.�

3. The algebraic surface set up

3.1. We will construct hereafter the ruled surface πS : S → X and its
blowing-up e : S⊥ → S, both naturally equipped with involutions τ : S → S

and τ⊥ : S⊥ → S⊥, as well as a degree-2 projection S⊥
ϕ
→ S̃ to a known anticanon-

ical rational surface . We will then prove that any hyperelliptic d-osculating cover
π : (Γ, p) → (X, q) factors uniquely through πS⊥ : πS ◦ e : S⊥ → X and projects,

via S⊥
ϕ
→ S̃, onto an irreducible rational curve. Moreover, we will prove that π

dominates a unique hyperelliptic d-osculating cover (3.9.).

Definition 3.2.

(1) Fix an odd meromorphic function ζ : X → P1, with divisor of zeroes and poles
equal to (ζ) = q + ω1 -ω2 -ω3, and consider the open affine subsets Uo := X \ {q}
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and U1 := X \ {ω1}. We let πS : S → X denote the ruled surface obtained by
identifying P1 × Uo with P1 × U1 , over X \ {q, ω1}:

∀q′ 6= q, ω1, (To , q
′) ∈ P1 × Uo is identified with (T1 +

1
ζ(q′) , q

′) ∈ P1 × U1.

In other words, we glue the fibers of P1 ×U0 and P1 ×U1 , over any q′ 6= q, ω1,
by means of a translation. In particular the constant sections q′ ∈ Uk 7→ (∞, q′) ∈
P1×Uk (k = 0, 1), get glued together, defining a particular one denoted by Co ⊂ S.

(2) The involutions P1 ×Uk → P1 ×Uk, (Tk, q
′) 7→

(
-Tk, [ - 1](q

′)
)
(k = 0, 1),

get glued under the above identification and define an involution τ : S → S, such
that πS ◦τ = [ - 1]◦πS . In particular, τ has two fixed points over each half-period ωi:
one in Co, denoted by si, and the other one denoted by ri (i = 0, .., 3). It can also
be checked that translating along the fibers of K×Uk by any scalar a ∈ K (k = 0, 1),
extends to an automorphism ta : S → S, leaving fixed Co and such that πS ◦ta = πS .

(3) Whenever p ≥ 3, we choose ζ (3.2.(1)) as a local parameter of X centered
at q , and consider the unique meromorphic function fp : X → P1, having a local
development fp = 1

ζp + c
ζ + O(ζ), for some c ∈ K. We denote Cp ⊂ S the curve

defined over P1 × Uo by the equation T p
o + cTo + fp = 0 , and over P1 × U1 by the

equation T p
1 + cT1 + fp -

1
ζp -

c
ζ = 0.

Proposition 3.3.

The ruled surface S → X has a unique section of self-intersection 0, namely Co,
and its canonical divisor is equal to -2Co. In particular, S → X is isomorphic
to P(E) → X, the ruled surface associated to the unique indecomposable rank-2,
degree-0 vector bundle over X(cf. [7]§V.2, [14]§3.1.).

Proof. The meromorphic differentials dTo and dT1 get also glued together, im-
plying that KS , the canonical divisor of S is represented by -2Co. Any section of
πS : S → X , other than Co, is given by two non-constant morphisms fi : Ui → P1

(i = 1, 2), such that fo = f1 -
1
ζ outside {q, ω1}. A straightforward calculation

shows that a section as above intersects Co, while having self-intersection number
greater or equal to 2. It follows from the general Theory of Ruled Surfaces (cf.
[7]§V.2) that Co must be the unique section with zero self-intersection. Hence,
the ruled surface πS : S → X defined above, is isomorphic to the projectivization
of the unique indecomposable rank-2, degree-0 vector bundle overX(cf. [7]§V.2). �

Definition 3.4.(cf. [14]§4.1.)
Let e : S⊥ → S denote hereafter the monoidal transformation of S at {si, ri, i =
0, .., 3}, the eight fixed points of τ , and τ⊥ : S⊥ → S⊥ its lift to an involution fixing
the corresponding exceptional divisors

{
s⊥i := e−1(si), r

⊥

i := e−1(ri), i = 0, .., 3
}
.

Taking the quotient of S⊥ with respect to τ⊥, we obtain a degree-2 projection

ϕ : S⊥ → S̃, onto a smooth rational surface S̃, ramified along the exceptional
curves {s⊥i , r

⊥

i , i = 0, .., 3}.

Lemma 3.5.

Whenever p ≥ 3, the curve Cp (3.2.(3)) is irreducible and linearly equivalent to
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pCo. Moreover, any irreducible curve numerically equivalent to a multiple of Co, is
either Co itself or a translate of Cp. In particular Cp and pCo generate the complete
linear system

∣∣pCo
∣∣, and S is an elliptic surface.

Proof. The curve Cp is τ -invariant, does not intersect the section Co and
projects ontoX with degree p. Hence, Cp is linearly equivalent to pCo and has mul-
tiplicity one at ro ∈ S. In order to prove its irreducibility, we may assume Cp → X
is separable, or equivalently, that c 6= 0 in 3.2.(3). Otherwise Cp → X would be
purely inseparable and Cp isomorphic to X . The curve Cp is then smooth and

transverse to the fiber So := π−1
S (q), and their intersection number at ro ∈ So ∩Cp

is equal to 1. Let C′ denote the unique irreducible τ -invariant component of Cp

going through ro, and suppose that C′ 6= Cp . Then C′ has zero self-intersection
and the projection C′ → X has odd degree p’ , for some 1 < p’ < p . Otherwise
(i.e.: if p’ = 1), C′ would give another section of πS having zero self-intersection.
Contradiction! Its complement, say C′′ := Cp \ C′, is a smooth, effective divisor
linearly equivalent to (p -p’ )Co. Translating C′ by an appropiate automorphism
ta (3.2.(2)), we may assume that ta(C

′) intersects C′′, hence ta(C
′) ⊂ C” because

their intersection number is equal to 0. It follows that any irreducible component
of Cp is a translate of C′, forcing the prime number p to be a multiple of p′ > 1.
Therefore, p = p’ and Cp = C′ is irreducible as asserted. Consider at last, any
other irreducible curve, say C, linearly equivalent to mCo for some m > 1. It has
zero intersection number with Cp and must intersect some translate of Cp , implying
that they coincide. In particular m = p and any element of

∣∣pCo
∣∣, other than pCo,

is a translate of Cp .�

The Lemma and Propositions hereafter, proved in [12]§2.3.,§2.4.,& §2.5., will be
instrumental in constructing the equivariant factorization ι⊥ : Γ → S⊥ (3.2.).

Lemma 3.6.

There exists a unique, τ-anti-invariant, rational morphism κs : S → P1, with poles
over Co+π-1

S (q), such that over a suitable neighborhood U of q ∈ X, the divisor of
poles of κs+ π∗

S(z
-1) is reduced and equal to Co ∩ π

-1
S (U).

Proposition 3.7.

For any hyperelliptic cover π : (Γ, p) → (X, q), the existence of the unique hyperel-
liptic d-osculating function κ : Γ → P1 (2.7.(1)) is equivalent to the existence of a
unique morphism ι : Γ → S such that ι◦τΓ = τ ◦ι, π = πS◦ ι and ι∗(Co) = (2d -1)p.

Proposition 3.8.

For any hyperelliptic d-osculating pair (π, κ), the above morphism ι : Γ → S lifts
to a unique equivariant morphism ι⊥ : Γ → S⊥ (i.e.: τ⊥ ◦ ι⊥ = ι⊥ ◦ τΓ). In
particular, (π, κ) is the pullback of (πS⊥ , κs⊥) = (πS ◦ e, κs ◦ e), and Γ lifts to a
τ⊥-invariant curve, Γ⊥ := ι⊥(Γ) ⊂ S⊥, which projects onto the rational irreducible
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curve Γ̃ := ϕ
(
Γ⊥

)
⊂ S̃. In particular, 2d - 1 = e∗(Co) · ι

⊥
∗(Γ).

Γ⊥ ⊂ S⊥
ϕ //

e

�� π
S⊥

��9
9

9
9

9
9

9
9

9
9

9
9

9
9

9
9

9 Γ̃ ⊂ S̃

Γ ι //

ι⊥
;;wwwwwwwwww

π

**TTTTTTTTTTTTTTTTTTTTTT ι(Γ) ⊂ S

πS

LL
LL

%%LLLLL

X

Proof. The monoidal transformation e : S⊥ → S, as well as ι : Γ → S, can be
pushed down to the corresponding quotients, making up the following diagram:

Γ

2:1

��

ι

""E
EE

EE
EE

EE
E S⊥

ϕ

��

e

}}{{
{{

{{
{{

{

Γ/τΓ
ι/

""E
EE

EE
EE

E
S

2:1

��

S̃
ẽ

}}{{
{{

{{
{{

S/τ

Moreover, since ẽ : S̃ → S/τ is a birational morphism and Γ/τΓ is a smooth

curve (in fact isomorphic to P1 ), we can lift ι/ : Γ/τΓ → S/τ to S̃, obtaining a

morphism ι̃ : Γ → Γ̃ ⊂ S̃, fitting in the diagram:

Γ̃ ⊂ S̃
ẽ

##F
FFFF

FFF

Γ

ι̃

=={{{{{{{{{

ι
""D

DD
DD

DD
DD

S/τ

S

2:1wwwww

;;www

Recall now that S⊥ is the fibre product of ẽ : S̃ → S/τ and S → S/τ (cf. [14]§4.1.).
Hence, ι and ι̃ lift to a unique equivariant morphism ι⊥ : Γ → Γ⊥ ⊂ S⊥, fitting
in

S̃
ẽ

  @
@@

@@
@@

@

Γ

ι̃

77oooooooooooooooo

ι

''PPPPPPPPPPPPPPP ι⊥ // S⊥

ϕ

??��������

e

  @
@@

@@
@@

@
S/τ

S

2:1}}}}

>>}}}

Furthermore, since ι̃ : Γ → S̃ factors through Γ → Γ/τΓ ∼= P1, its image

Γ̃ := ϕ
(
ι⊥(Γ)

)
= ι̃(Γ) ⊂ S̃ is a rational irreducible curve as claimed.�
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Corollary 3.9.

Any hyperelliptic d-osculating cover π : (Γ, p) → (X, q) dominates a unique minimal-
hyperelliptic d-osculating cover, with same image Γ⊥ ⊂ S⊥ as π.

Proof. Let π : (Γ, p) → (X, q) be an arbitrary hyperelliptic d-osculating cover
dominated by π : (Γ, p) → (X, q), ψ : (Γ, p) → (Γ, p) the corresponding birational
morphism and ι⊥ : Γ → S⊥ the factorization of π via S⊥. The uniqueness of ι⊥

implies that ι⊥ = ι⊥ ◦ψ. Hence, they have same image in S⊥, ι⊥(Γ) = ι⊥(Γ) = Γ⊥,

and project onto the same curve Γ̃ ⊂ S̃. Furthermore, ψ and ι⊥ being equivariant
morphisms, we can push down ψ : Γ → Γ to an identity between their quotients,

Γ/τΓ ∼= P1 =
→ P1 ∼= Γ/τΓ, as well as ι

⊥ to a morphism ι̃ : P1 → Γ̃ (of same degree

as ι⊥ : Γ → Γ⊥), as shown hereafter:

p ∈ Γ

2:1

$$

ψ ''PPPPPPPPPPPP

ι⊥

++VVVVVVVVVVVVVVVVVVVVVVV
π // q ∈ X

p ∈ Γ

2:1

��

ι⊥
// Γ⊥ ⊂ S⊥

ϕ

��

π
S⊥

ssss

99ssss

P1 ι̃ // Γ̃ ⊂ S̃

Taking the fiber product of ι̃ : P1 → Γ̃ and ϕ : Γ⊥ → Γ̃, say Γ⋆, we then factorize
ι⊥ in the above diagram, through a birational morphism Γ → Γ⋆ as follows:

p ∈ Γ

$$I
IIIIIIII

2:1
66

66
66

66

��6
6

6
6

6
6

6
6

ι⊥

**UUUUUUUUUUUUUUUUUUU
π // q ∈ X

p⋆ ∈ Γ⋆

2:1

��

ι⋆⊥
// Γ⊥ ⊂ S⊥

ϕ

��

π
S⊥

ssss

99ssss

P1 ι̃ // Γ̃ ⊂ S̃

where p⋆ ∈ Γ⋆ is the image of p ∈ Γ. Furthermore, since p is smooth and the unique
pre-image of p⋆, we deduce that the latter morphism factorizes via the desingular-
ization of Γ⋆ at the unibranch point p⋆. We will therefore assume till the end of the
proof, that Γ⋆ is indeed smooth at p⋆. On the other hand, the degree-2 projection
( Γ → P1 is ramified at p, hence) Γ⋆ → P1 is ramified at p⋆. Then, applying 3.8. one

immediately checks that the natural projection π⋆ := πS⊥ ◦ ι⋆⊥ : (Γ⋆, p⋆) → (X, q)
is a hyperelliptic d-osculating cover, dominated by π (and π as well). Thus, the
latter π⋆ is the unique minimal-hyperelliptic d-osculating cover dominated by π.�

Remark 3.10.

Theminimal-hyperelliptic d-osculating cover π⋆, explicitely constructed in the proof

of 3.9., can not be recovered from Γ̃ := ϕ(Γ⊥), unless m := deg (ι⊥ : Γ → Γ⊥)
is equal to 1. There exists indeed a (m - 1)-dimensional family of (non-isomorphic)
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minimal-hyperelliptic d-osculating covers, with same image Γ̃ ⊂ S̃, as shown here-
after. We will actually start in 3.11. from a minimal-hyperelliptic d-osculating
cover π (i.e.: identifying Γ with Γ⋆ ), and give its complete factorization, in terms

of the rational curve Γ̃ ⊂ S̃.

Corollary 3.11.

Let π : (Γ, p) → (X, q) be a minimal-hyperelliptic d-osculating cover, equipped (3.8.)

with ι⊥ : Γ → Γ⊥, its equivariant factorization through S⊥, as well as P1 j
→ Γ̃,

the desingularization of the rational irreducible curve Γ̃ := ϕ(Γ⊥). Then, there
exist unique marked morphisms ψ : (Γ, p) → (Γ♭, p♭), π♭ : (Γ♭, p♭) → (X, q) and
ι♭⊥ : (Γ♭, p♭) →

(
Γ⊥, ι⊥(p)

)
, such that (see the diagrams below):

(1) π and ι⊥ factor as π♭ ◦ ψ and ι♭⊥ ◦ ψ, respectively;

(2) deg(ψ) = m := deg(ι⊥), and ψ-1(p♭) = {p};

(3) π♭ is a minimal-hyperelliptic d♭-osculating cover, where 2d - 1 = m(2d♭-1);

(4) there exist a polynomial morphism R : (P1,∞)
m:1
−→ (P1,∞) and a degree-2

projection (Γ♭, p♭)
f♭

→ (P1,∞), such that Γ is the fiber product of R with f ♭ ;

(5) the arithmetic geni of Γ and Γ♭, say g and g♭, satisfy 2g+1 = m(2g♭+1).

(6) Γ is isomorphic to Γ⊥, if and only if, m = 1 and Γ̃ is isomorphic to P1.

Furthermore, the moduli space of degree-n minimal-hyperelliptic d-osculating

covers, having same image Γ̃ ⊂ S̃ as π, is birational to a (m-1)-dimensional linear
space.

Proof. (1)-(2)-(3) Let Γ♭ denote the fiber product of Γ⊥
ϕ
→ Γ̃ and P1 j

→ Γ̃,

equipped with the corresponding birational morphism Γ♭
ι♭⊥
→ Γ⊥ and degree-2 cover

Γ♭
f♭

→ P1. The equivariant morphism ι⊥ can be pushed down, as in 3.9., to P1 ι̃
→ Γ̃

and factors through j, say ι̃ = j ◦ R. Moreover, the latter morphisms satisfy
ϕ ◦ ι⊥ = ι̃ = j ◦ R, implying the factorization through the fiber product Γ♭. In

other words, there exists a degree-m equivariant morphism Γ
ψ
→ Γ♭ (i.e.: ψ ◦ τΓ =

τΓ♭ ◦ ψ), such that ι⊥ = ι♭⊥ ◦ ψ, and with maximal ramification index at p ∈ Γ
(i.e.: ψ−1(p♭) = {p}, the fiber of ι⊥ over ι⊥(p)). In particular Γ♭ is unibranch
at p♭, and up to replacing (Γ♭, p♭) by its desingularization at p♭, we can assume
π♭ := πS⊥ ◦ ι♭⊥ : (Γ♭, p♭) → (X, q) is a hyperelliptic cover. This construction is
sketched in the diagrams below:
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p ∈ Γ

ι⊥
JJJJJJJJJJJ

%%JJJJJJJJJJJJf

��

π

++XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

ψ

��9
9

99
9

99
99

99
9

99
99

9

p ∈ Γ

f

��

ι⊥ &&LLLLLLLLLL

π // X X

Γ⊥ ⊂ S⊥

ϕ

��

π
S⊥

vvvv

::vvvvv

∞ ∈ P1

R
$$J

JJJJJJJJJ
p♭ ∈ Γ♭

f♭

��

ι♭⊥
//

π♭

55kkkkkkkkkkkkkkkkk

Γ⊥

ϕ

��

π
S⊥

{{{{

=={{{{

∞ ∈ P1 ι̃

m:1
// p̃ ∈ Γ̃ ⊂ S̃ ∞ ∈ P1

j // p̃ ∈ Γ̃

According to 3.8., the osculating order of π♭ (2.4.(2)), say d♭, satisfies 2d♭ -
1 = e∗(Co) · ι

♭⊥
∗(Γ

♭), while 2d - 1 = e∗(Co) · ι
⊥
∗(Γ). On the other hand, the

factorization ι⊥ = ι♭⊥ ◦ ψ gives ι⊥∗(Γ) = ι♭⊥∗

(
ψ∗(Γ)

)
= ι♭⊥∗(mΓ♭), and replacing

in the former equality gives 2d - 1 = m(2d♭ - 1). Moreover, the minimal-hyperelliptic
d♭-osculating cover dominated by π♭ (3.9.) has same image Γ⊥ as π♭, hence, it

must dominate the fiber product product of Γ⊥
ϕ
→ Γ̃ and P1 j

→ Γ̃, and Γ♭ as well.
In other words, π♭ is minimal-hyperelliptic.

(4) Recall that (Γ♭, p♭)
f♭

−→ (P1,∞) is classically represented in affine coordinates,
as the zero locus

{
y2 = P (x)

}
projecting onto the first coordinate, for some degree-

(2g♭+1) polynomial P (x), p♭ being identified with the smooth Weierstrass point

added at infinity. On the other hand, P1 R
→ P1, the pushed down of Γ

ψ
→ Γ♭

defined above, has maximal ramification index at f(p) ∈ P1 (i.e.: f(p) ∈ P1 is the
unique pre-image of f ♭(p♭) ∈ P1). Therefore, up to identifying the latter points with

∞ ∈ P1, we may say that (P1,∞)
R
→ (P1,∞) is defined by a degree-m polynomial

R(t). Taking the fiber product of Γ♭
f♭

−→ P1 with P1 R
−→ P1, amounts then to

replacing x by R(t), giving the affine equation
{
y2 = P

(
R(t)

)}
, where the composed

polynomial P
(
R(t)

)
has odd degree equal to (2g♭+1)m. Hence, the latter fiber

product is a hyperelliptic curve, say ΓR, of arithmetic genus gR such that 2gR+1 =
m(2g♭+1), equipped with a smooth Weierstrass point pR ∈ ΓR and a marked

projection (ΓR, pR)
m:1
−→ (Γ♭, p♭), fitting in the following diagram:

p ∈ Γ

π

,,ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ

%%J
JJJJJJJJ

2:1
7

77
77

7
77

��7
7

77
7

77
7 pR ∈ ΓR

2:1

��
m:1
KKKK

%%KK
KK

πR // X

∞ ∈ P1

R
%%K

KKKKKKKKK
p♭ ∈ Γ♭

f♭

��

ι♭⊥
//

π♭

55kkkkkkkkkkkkkkkkk

Γ⊥

ϕ

��

=={{{{{{{{{

∞ ∈ P1
j // p̃ ∈ Γ̃
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We can also check that pR ∈ ΓR is the unique pre-image of p♭ ∈ Γ♭, i.e.: the

ramification index of (ΓR, pR)
m:1
−→ (Γ♭, p♭) at pR is equal to m. Hence, if κ♭ is

the hyperelliptic d♭-osculating function for π♭, its inverse image gives a hyperelliptic
d-osculating function for πR. In other words, πR is a hyperelliptic d-osculating
cover dominated by the minimal-hyperelliptic d-osculating cover π. Hence, they
are isomorphic, implying that π factors as π♭ ◦ψ, 2g+1 = m(2g♭+1), and Γ is the

fiber product of P1 R
−→ P1 and Γ♭

f♭

−→ P1, as claimed.

(5) It follows from the latter constructions that Γ is isomorphic to Γ⊥, if and

only if j : P1 → Γ̃ is an isomorphism and m = 1.

Consider at last, any other minimal-hyperelliptic d-osculating cover having same

image Γ̃ ⊂ S̃. The latter must also factor through the above minimal-hyperelliptic
d♭-osculating cover π♭. We may replace then R by any other degree-m separable

polynomial P : P1 → P1, and take its fiber product with Γ♭
f♭

−→ P1, to produce the

general degree-n minimal-hyperelliptic d-osculating cover having image Γ̃. Up to
isomorphism, they are parameterized by a (m-1)-dimensional linear space. �

4. The hyperelliptic d-osculating covers as divisors of a surface

4.1. The next step concerns studying the τ⊥-invariant irreducible curve Γ⊥ ⊂ S⊥,
associated in 3. to any hyperelliptic cover π. We calculate its linear equivalence
class, in terms of the numerical invariants of π, and dress the basic relations be-
tween them. We also prove, whenever p :=char(K) ≥ 3, the supplementary bound
2g + 1 ≤ p(2d - 1)

(
4.4.(1) & (6)

)
. We end up giving a numerical characterization

for π to be minimal-hyperelliptic (4.6.).

Definition 4.2.

For any i = 0, .., 3, the intersection number between the divisors ι⊥∗(Γ) and r
⊥

i will
be denoted by γi, and the corresponding vector γ = (γi) ∈ N4 called the type of π.
Furthermore, for any µ = (µi) ∈ N4, µ(1) and µ(2) will denote, respectively:

µ(1) :=
∑3

i=0 µi and µ(2) :=
∑3

i=0 µ
2
i .

Lemma 4.3.

Let (Γ, p)
π
→ (X, q) be a degree-n hyperelliptic d-osculating cover, of type γ and

ramification index ρ at p. Consider its unique equivariant factorization through
S⊥, ι⊥ : Γ → Γ⊥, and let m denote its degree and ι := e ◦ ι⊥ its composition with

the blowing up S⊥ e
→ S. Then :

(1) ι∗(Γ) is equal to m.ι(Γ) and linearly equivalent to nCo+(2d-1)So;
(2) ι∗(Γ) is unibranch, and transverse to the fiber So := π∗

S(q), at so = ι(p);
(3) ρ is odd, bounded by 2d - 1 and equal to the multiplicity of ι∗(Γ) at so;
(4) the degree m divides n, 2d - 1 and ρ, as well as γi, for any i ∈ {0, .., 3};
(5) γo+1 ≡ γ1 ≡ γ2 ≡ γ3 ≡ n(mod.2);

(6) ι⊥∗(Γ) is linearly equivalent to e∗
(
nCo+(2d -1)So

)
- ρ s⊥o -

∑3
i=0 γi r

⊥

i .

Proof. (1) Checking that ι∗(Γ) is numerically equivalent to nCo+(2d -1)So
amounts to proving that the intersections numbers ι∗(Γ) · So and ι∗(Γ) · Co are
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equal to n and 2d - 1. The latter numbers are equal, respectively, to the degree of
π : Γ → X and the degree of ι∗(Co) = (2d - 1)p, hence the result. Finally, since
ι∗(Γ) and Co only intersect at so ∈ So, we also obtain their linear equivalence.

(2) & (3) Let κ : Γ → P1 be the hyperelliptic d-osculating function associated to
π, uniquely characterized by properties 2.6.(1),(2)&(3), and U ⊂ X a symmetric
neighborhood of q := π(p). Recall that κ + π∗(z-1) is τΓ-anti-invariant and well
defined over π-1(U), where it has a (unique) pole of order 2d - 1 at p. Studying its
trace with respect to π we can deduce that ρ must be odd and bounded by 2d - 1.

On the other hand, let
(
ι∗(Γ), So

)
so

and
(
ι∗(Γ), Co

)
so

denote the intersection

multiplicities at so, between ι∗(Γ) and the curves So and Co. They are respectively
equal, via the projection formula for ι , to ρ and 2d - 1. At last, since ι∗(Γ) is
unibranch at so and

(
ι∗(Γ), So

)
so

= ρ ≤ 2d - 1 =
(
ι∗(Γ), Co

)
so
, we immediately

deduce that ρ is the multiplicity of ι∗(Γ) at so (and So is transverse to ι∗(Γ) at so).
(4) By definition of m, we clearly have ι∗(Γ) = m.ι(Γ), while {ρ, γi, i = 0, .., 3}

are the multiplicities of ι∗(Γ) at different points of S. Hence, m divides n and 2d-1,
as well as all integers {ρ, γi, i = 0, .., 3}.

(5) For any i = 0, .., 3, the strict transform of the fiber Si := π−1
S (ωi), by the

monoidal transformation e : S⊥ → S, is a τ⊥-invariant curve, equal to S⊥

i :=

e∗(Si) - s
⊥

i - r⊥i , but also to ϕ∗(S̃i), where S̃i := ϕ(S⊥

i ). Hence, the intersection
number ι⊥∗(Γ) · S

⊥

i is equal to the even integer

ι⊥∗(Γ) · S
⊥

i = ι⊥∗(Γ) · ϕ
∗(S̃i) = ϕ∗(ι

⊥
∗

(
Γ)

)
· S̃i = 2Γ̃ · S̃i,

implying that n = ι⊥∗(Γ) · e
∗(Si) is congruent mod.2 to

ι⊥∗(Γ) · S
⊥

i + ι⊥∗(Γ) · (s
⊥

i + r⊥i ) ≡ ι⊥∗(Γ) · (s
⊥

i + r⊥i )(mod.2).

We also know, by definition, that γi := ι⊥∗(Γ) · r
⊥

i , while ι
⊥
∗(Γ) · s

⊥

o = ρ, the
multiplicity of ι∗(Γ) at so, and ι

⊥
∗(Γ) · s

⊥

i = 0 if i 6= 0, because si /∈ ι(Γ). Hence,
n is congruent mod.2, to ρ+ γo ≡ 1+ γo (mod.2), as well as to γi, if i 6= 0.

(6) The Picard group Pic(S⊥) is the direct sum of e∗(Pic(S)) and the rank-
8 lattice generated by the exceptional curves {s⊥i , r

⊥

i , i = 0, .., 3}. In particular,
knowing that ι∗(Γ) is linearly equivalent to nCo+(2d - 1)So, and having already
calculated ι⊥∗(Γ) · s

⊥

i and ι⊥∗(Γ) · r
⊥

i , for any i = 0, .., 3, we can finally check that

ι⊥∗(Γ) is linearly equivalent to e∗
(
nCo+(2d - 1)So

)
- ρ s⊥o -

∑3
0 γi r

⊥

i . �

Theorem 4.4.

Consider any hyperelliptic d-osculating cover π : (Γ, p) → (X, q), of degree n, type
γ, arithmetic genus g and ramification index ρ at p. Let m denote the degree of
its canonical equivariant factorization ι⊥ : Γ → Γ⊥ ⊂ S⊥, and g̃ the arithmetic

genus of the rational irreducible curve Γ̃ := ϕ(Γ⊥). Then, the numerical invariants
{n, d, g, g̃, ρ,m, γ} satisfy the following inequalities:

(1) 2g+1 ≤ γ(1) ;

(2) 4m2g̃ = (2d-1)(2n-2m)+ 4m2-ρ2-γ(2) and γ(2) ≤ 2(2d - 1)(n -m)+4m2 - ρ2;
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(3) (2g+1)2 ≤ 8(2d - 1)(n -m)+13m2- 4ρ2 ≤ 8(2d - 1)n+(2d - 1)2 ;

(4) ρ = 1 implies m = 1, as well as (2g+1)2 ≤ 8(2d -1)(n - 1)+ 9 ;

(5) if p≥ 3, we must also have γ(1) ≤ p(2d - 1) .

Proof. (1) For any i = 0, .., 3, the fiber of πS⊥ := πS ◦ e : S⊥ → X over the
half-period ωi, decomposes as s⊥i + r⊥i +S⊥

i , where S
⊥

i is a τ⊥-invariant divisor and

s⊥i is disjoint with ι⊥∗(Γ), if i 6= 0, while ι⊥
∗
(s⊥i ) = ρ p, by 4.3.(2). Hence, the

divisor Ri := ι⊥
∗
(r⊥i ) of Γ is linearly equivalent to Ri ≡ π−1(ωi) - (n - γi) p (and

also 2Ri ≡ 2γi p ). Recalling at last, that
∑3
j=1 ωj ≡ 3ωo, and taking inverse image

by π, we finally obtain that
∑3

i=0Ri ≡ γ(1) p . In other words, there exists a well
defined meromorphic function, (i.e.: a morphism), from Γ to P1, with a pole of
(odd!) degree γ(1) at the Weierstrass point p. The latter can only happen (by the
Riemann-Roch Theorem) if 2g+1 ≤ γ(1), as asserted.

(2) The curve Γ⊥ is τ⊥-invariant and linearly equivalent
(
4.3.(4)&(6)

)
to:

Γ⊥ ∼ 1
m

(
e∗
(
nCo+(2d -1)So

)
- ρs⊥o -

∑3
i=0 γi r

⊥

i

)
.

Recall also that g̃ ≥ 0 and K̃, the canonical divisor of S̃, is linearly equivalent

to ϕ∗

(
e∗( -C0)

)
([14]§4.2.(3)). Applying the projection formula for S⊥

ϕ
→ S̃, to

Γ⊥ = ϕ∗(Γ̃), we obtain 0 ≤ g̃ = 1
4m2

(
(2d - 1)(2n - 2m)+ 4m2 - ρ2 - γ(2)

)
, implying

γ(2) ≤ (2d -1)(2n -2m)+ 4m2- ρ2 , as claimed.

(3) & (4) We start remarking that, for any j = 1, 2, 3, (γo - γj) is a non-zero
multiple of m. Hence,

∑
i<j(γi - γj)

2 ≥ 3m2, and replacing in 4.4.(1) we get:

(2g+1)2 ≤ (γ(1))2 = 4γ(2) -
∑

i<j

(γi - γj)
2 ≤ 4γ(2) - 3m2.

Taking into account 4.4.(3), we obtain the inequality 4.4.(4). At last, since m
divides ρ (4.3.(4)), ρ = 1 implies m = 1. Replacing in 4.4.(3) gives us 4.4.(4).

(5) Finally, let us assume p ≥ 3 and denote by C⊥

p ⊂ S⊥ the unique τ⊥-invariant

irreducible curve, linearly equivalent to e∗(pCo) -
∑3
i=0 r

⊥

i . In particular, it can not

be equal to Γ⊥, hence C⊥
p · Γ⊥ = p(2d - 1) - γ(1) must be non-negative.�

Corollary 4.5.

Let π : Γ → X be a degree-n separable projection of a hyperelliptic curve onto
the elliptic curve X, and let g denote its arithmetic genus. Then, there exists a
smooth Weierstrass point p ∈ Γ such that π : (Γ, p ) →

(
X, π(p)

)
is a hyperelliptic

d-osculating cover, non ramified at p, with d satisfying: (2d - 1)(2n - 2) ≥ g2 + g - 2.

Proof. Consider the global desingularization morphism j : Γ → Γ, composed,
either with π, or with the degree-2 cover Γ → Γ/τΓ ∼= P1. As a ramified cover of X
and P1, we deduce from the Hurwitz formula that Γ is a smooth hyperelliptic curve
of positive genus, say g, with 2g+2 Weierstrass points, while π := π ◦ j : Γ → X
has, at most, 2g - 2 ramifications points. We can choose, therefore, a Weierstrass
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point p ∈ Γ, at which π is not ramified. In particular, its image p := j( p) ∈ Γ
must be a unibranch point. On the other hand, since π is not ramified at p and
factors through π : Γ → X , we see that π restricts to a local isomorphism between
neighborhoods of p ∈ Γ and q := π(p) ∈ X :

π : p ∈ Γ
j
→ p ∈ Γ

π
→ q ∈ X

Hence, p is a smooth Weierstrass point of Γ, at which π is not ramified, and
π : (Γ, p) → (X, q) is a hyperelliptic d-osculating cover (2.4.(2)), for some integer
d ≤ g. Applying 4.4.(4), we obtain (2d - 1)(2n - 2) ≥ (g+2)(g - 1) as claimed. �

Corollary 4.6.

Let π : (Γ, p) → (X, q) be a hyperelliptic d-osculating cover of type γ and arithmetic
genus g. Then 2g+1 ≤ γ(1), with equality if and only if π is minimal-hyperelliptic.

Proof. Recall that π dominates a unique minimal-hyperelliptic d-osculating
(3.9.), say π⋆, factoring through the same curve Γ⊥ ⊂ S⊥. Therefore, π⋆ has same
type γ as π, but a bigger arithmetic genus, say g⋆, satisfying 2g+1 ≤ 2g⋆+1 ≤ γ(1)

(4.4.(1)). Hence, it is certainly enough to assume π is minimal-hyperelliptic and
prove that 2g+1 ≥ γ(1).

Recall also, that ι⊥ : Γ → Γ⊥ has odd degree m and factors through the cover
π♭ : (Γ♭, p♭) → (X, q), of type γ♭ and arithmetic genus g♭, such that γ(1) = mγ♭(1)

and 2g+1 = m(2g♭+1)
(
3.11. & 4.3.(4)

)
. Hence 2g+1 = m(2g♭+1) ≤ mγ♭(1) =

γ(1), with equality if and only if 2g♭+1 = γ♭(1). We have thus reduced the problem,
from π to the minimal-hyperelliptic π♭. So let us suppose in the sequel that m = 1,
or in other words, that (Γ, p) = (Γ♭, p♭). Let (Γ♦, p♦) denote the fiber product of

the marked morphisms
(
Γ⊥, ι⊥(p)

) ϕ
−→ (Γ̃, p̃ ) and (P1,∞)

j
−→ (Γ̃, p̃ )

(
3.11.

)
. The

marked curve (Γ, p) = (Γ♭, p♭), is in fact the desingularization of Γ♦ at its unibranch
point p♦ (3.11.), and fits in the following diagram:

p ∈ Γ

ι⊥

��:
:

:
:

:
:

:
:

:
:

:
:

:
:

:
:

:

1:1
LL

LL
L

&&LLLL

π

��

2:1
VVVVVVVVVVV

**VVVVVVVVVV

p♦ ∈ Γ♦ f♦ //

1:1

��

∞ ∈ P1

j

��
ι⊥(p) ∈ Γ⊥

π
S⊥

rr
rr

yyrrrr

ϕ // p̃ ∈ Γ̃

q ∈ X

Let g̃, g⊥, g♦ and g denote the arithmetic geni of Γ̃,Γ⊥,Γ♦ and Γ, respectively.
Knowing the numerical equivalence class of Γ⊥ we easily obtain

(
e.g.: 4.4.(2)

)
:

g̃ = 1
4

(
(2d -1)(2n -2)+ 4 - ρ2 - γ(2)

)
and g⊥ = 2g̃+ 1

2 (ρ - 2+ γ(1)).

We can then deduce g♦, arguing as follows (like in the proof of [14]§5.8.(2)):

since Γ⊥ ϕ
−→ Γ̃ is a flat degree-2 morphism, and P1 has arithmetic genus = 0, we
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must have the relation g⊥ - g♦ = 2(g̃ - 0) = 2g̃. Hence, g♦ = 1
2 (ρ - 2+ γ(1)). We

might as well argue that the desingularization morphism P1 j
→ Γ̃ is obtained by

monoidal transformation S̃ (i.e.: j is the restriction of a finite sequence of monoidal

transformations S̃′
j

−→ S̃ such that the strict transform of Γ̃ ⊂ S̃ is isomorphic to

P1), implying that Γ♦ is contained in the fiber product of S⊥
ϕ

−→ S̃ and S̃′
j

−→ S̃,
for which we can calculate its canonical divisor. Applying the adjunction formula
gives the above value of g♦.

At last, composing (Γ, p)
1:1
→ (Γ♦, p♦) with (Γ♦, p♦)

f♦

−→ (P1,∞), we get the

degree 2 cover f : Γ
f
→ P1, and a morphism (f, π) : Γ → Γf,π ⊂ P1 ×X as in 2.5.,

fitting in:

∞ ∈ P1

p ∈ Γ 1:1 //

f

44hhhhhhhhhhhhhhhhhhhhhh

π

**VVVVVVVVVVVVVVVVVVVVVV p♦ ∈ Γ♦

f♦

77ppppppppppp
// (∞, q) ∈ Γf,π

2:1

OO

n:1

��

�

� // P1 ×X

q ∈ X

We have shown in the proof of 2.5.(3), that 1
2 (ρ - 1) consecutive monoidal trans-

formations are necessary to desingularize Γf,π at its unibranch point (∞, q), and
each monoidal transformation lowers its arithmetic genus by 1. On the other hand,
since (Γ, p) dominates (Γ♦, p♦) and is smooth over (∞, q), we easily deduce that
g♦ - g ≤ 1

2 (ρ -1). Hence g
♦ - 12 (ρ -1) =

1
2 (-1+ γ(1)) ≤ g. �

5. On hyperelliptic d-osculating covers of arbitrary high genus

5.1. - We will let C⊥

o and C⊥

p denote, hereafter, the strict transforms of Co

and Cp by e : S⊥ → S and C̃o := ϕ(C⊥
o ). Recall that to any hyperelliptic cover

π : (Γ, p) → (X, q) we have uniquely associated a morphism ι⊥ : Γ → Γ⊥ ⊂ S⊥,

a rational irreducible curve Γ̃ := ϕ(Γ⊥) ⊂ S̃ and a vector (n, d, ρ, γ) ∈ N∗3 × N4,
satisfying the following restrictions (4.3. & 4.4.) :

(1) ρ is odd, bounded by 2d - 1, and γo+1 ≡ γ1 ≡ γ2 ≡ γ3 ≡ n(mod.2);
(2) if p ≥ 3, we must have γ(1) ≤ p(2d - 1).

Furthermore, π can be canonically recovered from Γ̃ := ϕ(Γ⊥) if, and
only if, Γ is birational to Γ⊥, in which case:

(3) Γ̃ has arithmetic genus g̃ := 1
4

(
(2d - 1)(2n - 2)+ 4 - ρ2 - γ(2)

)
≥ 0;

(4) Γ⊥ = ϕ∗(Γ̃) is linearly equivalent to e∗
(
nCo+(2d -1)So

)
- ρso

⊥ -
∑3
i=0 γiri

⊥;

(5) Γ̃ intersects s̃o := ϕ(so
⊥), at a unique unibranch point, with multiplicity ρ;

(6) Γ⊥ and Γ̃ intersect C⊥
o and C̃o, (at most) at p⊥o := C⊥

o ∩ s⊥o and ϕ(p⊥o ),
respectively, with multiplicities 2d - 1 - ρ and 1

2 (2d - 1 - ρ).

Definition 5.2.

For any (n, d, ρ, γ) ∈ N∗3 × N4 satisfying 5.1.(1),(2)&(3), we let Λ(n, d, ρ, γ) de-

note the unique element of Pic(S̃) such that ϕ∗
(
Λ(n, d, ρ, γ)

)
is linearly equivalent
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to e∗
(
nCo + (2d -1)So

)
- ρso

⊥ -
∑3

i=0 γiri
⊥, and MHX(n, d, ρ, γ) denote the moduli

space of degree-n minimal-hyperelliptic d-osculating covers of type γ, ramification
index ρ at their marked point, and birational to their canonical images in S⊥.

Proposition 5.3.

Any π ∈ MHX(n, d, ρ, γ) can be canonically recovered from Γ̃ ⊂ S̃
(
3.11.(2)

)
.

Conversely, any rational irreducible curve Γ̃ ⊂ S̃ satisfying properties 5.1.(1)-(6),
gives rise to a unique element of MHX(n, d, ρ, γ).

Proof. Given Γ̃ ⊂ S̃ satisfying 5.1.(1)-(6), we denote Γ⊥ := ϕ∗(Γ̃) ⊂ S⊥

and consider the fiber product of (Γ⊥, p⊥)
ϕ
→

(
Γ̃, ϕ(p⊥)

)
with the desingulariza-

tion morphism (P1,∞)
j
→

(
Γ̃, ϕ(p⊥)

)
, say (Γ, p). Proceeding as in the proof of

3.11., for the construction of π♭, we can easily prove that the natural domination
(Γ, p) → (Γ⊥, p⊥), composed with π⊥ : (Γ⊥, p⊥) → (X, q) is indeed the announced
minimal-hyperelliptic d-osculating cover.�

Studying MHX(n, d, ρ, γ) for a general vector (n, d, ρ, γ), is a difficult and elu-

sive problem. We will henceforth restrict to the simpler case where ρ = 1 and Γ̃ is
isomorphic to P1. In other words, we will focus on degree-n minimal-hyperelliptic
d-osculating covers with ρ = m = 1, and type γ satisfying γ(2) = (2d - 1)(2n - 2)+ 3
(as well as γ(1) ≤ p(2d - 1), if p≥ 3).

Proposition 5.4. ([12]§3.4)
Any curve Γ ⊂ S intersecting Co at a unique smooth point p ∈ Γ is irreducible,
unless p≥ 3 and Cp is a component of Γ.

Proposition 5.5.

Let Γ⊥ ⊂ S⊥ be a curve with no irreducible component in {r⊥i , i = 0, .., 3}, and
intersecting C⊥

o (at most) at a unique smooth point p⊥ ∈ Γ⊥. Then, Γ⊥ is an
irreducible curve, unless p ≥ 3 and C⊥

p is a component of Γ⊥.

Proof. The properties satisfied by Γ⊥ assure us that Γ := e∗(Γ
⊥), its direct

image by e : S⊥ → S, does not contain Co, and that Γ⊥ is the strict transform of
Γ. We can also check, that Γ is smooth at p := e(p⊥) and Γ∩Co = {p}. It follows,
by 5.4., that (Γ, as well as its strict transform) Γ⊥ is, either an irreducible curve,
or p ≥ 3 and C⊥

p is a component of Γ⊥.�

Proposition 5.6. ([14]§6.2. & [10])
Any α = (αi) ∈ N4 such that α(2) = 2a+1 is odd (and α(1) ≤ p, whenever p ≥ 3),

gives rise to an exceptional curve of the first kind Γ̃α ⊂ S̃. More precisely, let
k ∈ {0, 1, 2, 3} denote the index satisfying αk + 1 ≡ αj(mod.2), for any j 6= k,

and Sk := π−1
S (ωk), then Γ̃α is a ( - 1)-curve and ϕ∗(Γ̃α) ⊂ S⊥ is the unique τ⊥-

invariant irreducible curve linearly equivalent to e∗(aCo + Sk) - s
⊥

k -
∑3
i=0 αir

⊥

i .

Proof. Let Λ denote the unique numerical equivalence class of S̃ satisfying

ϕ∗(Λ) = e∗(aCo + Sk) - s
⊥

k -
∑3
i=0 αir

⊥

i . It has self-intersection Λ · Λ = - 1, and

Λ · K̃ = - 1 as well, hence, ho
(
S̃, OS̃(Λ)

)
≥ χ

(
OS̃(Λ)

)
= 1, and there exists an
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effective divisor Γ̃ ∈
∣∣Λ

∣∣. If p = 0, such a divisor Γ̃ is known to be unique and
irreducible ([14]§6.2.). Its proof takes in account that for any m > 1 there is no
irreducible curve in S, numerically equivalent to mCo. However, when p ≥ 3 the
latter property fails, due to the existence of Cp ⊂ S, implying that the intersec-

tion number Cp · Λ = p -α(1) must be non-negative. Conversely, if α(1) ≤ p, Λ

intersects non-negatively C̃p := ϕ(Cp
⊥), (as well as all other (-1) and (-2)-curves

in S̃), and M.Lahyane’s irreducibility criterion for (-1)-classes applies to Λ ([10]). �

According to 5.6., any α ∈ N4 such that α(2) is odd (and α(1) ≤ p , if p ≥ 3),

gives rise to an exceptional curve of the first kind Γ̃α ⊂ S̃. Conversely, we have the

Corollary 5.7.

Any irreducible curve in S̃, with negative self-intersection, is either equal to some

Γ̃α as above (5.6.), to C̃p if p ≥ 3, or belongs to the set
{
C̃o, s̃i, r̃i, i = 0, .., 3

}
.

Proof. The arithmetic genus of an arbitrary irreducible curve Γ̃ ⊂ S̃ is non-

negative and equal to g̃ := 1+ 1
2

(
Γ̃ · Γ̃ + Γ̃ · K̃

)
≥ 0, where K̃ denotes the canonical

divisor of S̃. In particular Γ̃ · Γ̃ + Γ̃ · K̃ ≥ - 2. Moreover, since ϕ∗(K̃) = e∗(- 2Co)

(cf. [14]) and Co is nef, we immediately deduce that Γ̃ · K̃ ≤ 0. Hence, Γ̃ · Γ̃ < 0

implies, either Γ̃ · Γ̃ = - 2 and Γ̃ · K̃ = 0, or Γ̃ · Γ̃ = - 1 = Γ̃ · K̃. It follows, in any

case, that g̃ = 0, hence Γ̃ is isomorphic to P1. If Γ̃ · Γ̃ = - 1 = Γ̃ · K̃, one can easily

check, via the projection formulae for S⊥
ϕ
→ S̃ and S⊥ e

→ S, that Γ⊥ := ϕ∗(Γ̃) is a
τ⊥-invariant divisor in S⊥ and its projection in S, Γ := e∗(Γ

⊥), satisfies:

Γ·Co = e∗(Γ
⊥)·Co = Γ⊥ ·e∗(Co) = - 1

2Γ
⊥ ·e∗( - 2Co) = - 1

2Γ
⊥ ·ϕ∗(K̃) = - Γ̃·K̃ = 1.

It immediately follows that Γ (as well as Γ⊥) is irreducible. Otherwise it would
break as a sum of two divisors exchanged by τ : S → S, in which case the above
intersection number Γ·Co should have been even. In other words, Γ is an irreducible
τ -invariant curve, intersecting Co at sk, for a unique k ∈ {0, 1, 2, 3}. Hence, Γ is
linearly equivalent to aCo+Sk, for some a ∈ N.

Recall also that Γ⊥ · (C⊥
o +

∑3
i=0 s

⊥

i ) = Γ⊥ · e∗(Co) = 1, and let α = (αi) de-

note the vector of intersection numbers (Γ⊥ · r⊥i ). Then, Γ⊥ is linearly equivalent

to e∗(aCo+Sk) - s
⊥

k -
∑3
i=0 αir

⊥

i , and intersecting with the numerically equivalent

curves
{
S⊥

i := e∗(Si) - s
⊥

i - r⊥i , i = 0, 1, 2, 3
}

one easily finds out that αk+1 ≡
αi(mod.2), for any i 6= k. Moreover, its self-intersection is equal to

2a - 1 -α(2) = Γ⊥ · Γ⊥ = ϕ∗(Γ̃) · Γ⊥ = Γ̃ · ϕ∗(Γ
⊥) = 2Γ̃ · Γ̃ = - 2.

In other words, 2a+ 1 = α(2) and Γ̃ = Γ̃α (5.6.).

At last, let us suppose that Γ̃ · Γ̃ = - 2 and Γ̃ · K̃ = 0, but Γ̃ does not belong to{
s̃i, r̃i, i = 0, .., 3

}
. It then follows that Γ⊥ := ϕ∗(Γ̃) is a τ⊥-invariant divisor of S⊥,

of self-intersection Γ⊥ · Γ⊥ = - 4, equal to the strict transform of Γ := e(Γ⊥) ⊂ S.

Therefore, it must be, either an irreducible degree-2 cover of Γ̃, or break as the

sum of two copies of Γ̃ ≃ P1, interchanged by τ⊥. In the latter case, Γ⊥ should be
the strict transform of the divisor πS

−1(q′+ [ - 1]q′), for some q′ ∈ X , in which case
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Γ⊥ · Γ⊥ 6= - 4. Hence, Γ⊥ is indeed irreducible (and Γ = e∗(Γ
⊥) as well). On the

other hand, recalling that ϕ∗(K̃) = e∗( - 2Co) and ϕ∗(Γ
⊥) = 2Γ̃, we obtain

Γ · ( - 2Co) = e∗(Γ
⊥) · ( - 2Co) = Γ⊥ · e∗( - 2Co) = Γ⊥ · ϕ∗(K̃) = 2Γ̃ · K̃ = 0,

implying Γ is numerically equivalent to a multiple of Co According to 3.5. this can
only happen if Γ = Co and Γ⊥ = C⊥

o , or p≥ 3, Γ = Cp and Γ⊥ = C⊥

p . �

Lemma 5.8.

Let Λ := Λ(n, d, 1, γ) be as in 5.2., Γ̃ an arbitrary exceptional curve of the first kind

on S̃ and α ∈ N4 the unique vector as in 5.6. such that Γ̃ = Γ̃α (5.7.). Then:

4(2d-1)Γ̃α · Λ =





(
γ- (2d - 1)α

)(2)
- (2d - 1)2 - 3 , if Γα · s̃o = 1

(
γ -(2d - 1)α

)(2)
+ 2(2d - 1) - (2d - 1)2 - 3 otherwise.

Proof. Straightforward verification.�

For Λ(n, d, 1, γ) to be nef, we must have Λ(n, d, 1, γ) · Γ̃α ≥ 0, for any α as
above. On the other hand, minimizing their value is tantamount (5.8.) to min-
imizing the norm of γ - (2d - 1)α. In order to do it we make the following definitions.

Definition 5.9.

(1) Given (n, d, γ) ∈ N∗ × N∗ × N4 satisfying γo + 1 ≡ γj(mod.2), ∀j = 1, 2, 3,

as well as γ(2) = (2d - 1)(2n - 2)+ 3, we let γ = (2d - 1)µ+ 2ε be the unique
decomposition, with µ ∈ N4 having same parity as γ, and ε ∈ Z4 such
that max{|εi|} ≤ d - 1. We will also assume, here and henceforth, that
γ(1) = (2d - 1)µ(1) + 2ε(1) ≤ p(2d - 1), whenever p ≥ 3.

(2) We define ♮µ = (♮µi) ∈ N4 in order to have (♮µi -µi)εi = |εi| , ∀i = 0, · · · , 3:

♮µi = µi + 1 if εi ≥ 0 or ♮µi = µi − 1 if εi < 0

(3) At last, we choose two indices io 6= jo, where |εi| attains its two maximal
values, and let ♭µ = (♭µi) ∈ N4 be such that for all i ∈ {0, 1, 2, 3} :

♭µi =
♮ µi if i ∈ {io, jo} or ♭µi = µi if i /∈ {io, jo}

Remark 5.10.

The vector ♭µ may not be uniquely defined by 5.9.(3). It should also be clear
that µ ≡ γ(mod.2), and 4ε(2) ≡ 3

(
mod.(2d - 1)

)
. Conversely, we have the

Proposition 5.11.

Given any n ∈ N∗ and γ = (2d-1)µ+ 2ε, with µ ∈ N4 and ε ∈ Z4, such that:

µo + 1 ≡ µ1 ≡ µ2 ≡ µ3(mod.2)

4ε(2) ≡ 3
(
mod.(2d− 1)

)
and |εi| ≤ d -1, i = 0, · · · , 3,

γ(2) = (2d-1)(2n-2) + 3,

(as well as γ(1) ≤ p(2d - 1 ), if p ≥ 3),
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the minimal value of Λ(n, d, 1, γ) · Γ̃α, taken amongst all α ∈ N4 with α(2) odd, is
attained at α equal, either to µ, to ♮µ, or to ♭µ.

Corollary 5.12.

The divisor Λ(n, d, 1, γ) is nef if and only if the vector 2ε = γ - (2d - 1)µ ∈ Z4 (5.9.),
such that 4ε(2) ≡ 3

(
mod.(2d - 1)

)
and max{|εi|} ≤ d - 1, satisfies the supplementary

conditions :

(1) ε(2) ≥ d2 - d+ 1;

(2) (2d - 1)(♮µ -µ) · ε = (2d - 1)
(∑3

i=0 |εi|
)
≤ 3d2 - 3d+ ε(2);

(3) (2d - 1)(♭µ -µ) · ε = max
{
|εi|+|εj|, ∀i 6= j,

}
≤ d2 - 1 + ε(2).

As we shall see, given any n, d ∈ N∗, there exist types γ = (2d - 1)µ+2ε ∈ N4,
such that γo+1 ≡ γ1 ≡ γ2 ≡ γ3(mod.2) and γ(2) = (2n - 2)(2d - 1)+3, for which
Λ := Λ(n, d, 1, γ) is, either nef or not. We will actually construct in 5.13. and
5.14., explicit examples where, either ε satisfies 5.12.(1),(2) &(3), hence Λ is nef,
or it does not satisfy 5.12.(1), hence Λ is not nef. We actually conjecture that
5.13. exhausts all types such that γ(2) = (2d - 1)(2n - 2)+ 3 and Λ(n, d, 1, γ) is nef.

Proposition 5.13

Let us fix d ≥ 2 , k ∈ {0, 1, 2, 3} , and µ ∈ N4 such that µo + 1 ≡ µj(mod.2) (for
j = 1, 2, 3). Pick any vector 2ε = (2εi) ∈ 2Z4 , satisfying (∀i = 0, . . . , 3) :

either |2εi| = (2d-2)(1-δi,k) , or





|2εi| = d - (-1)δi,k if d is odd ,

|2εi| = d - 2δi,k if d is even .

Then, for n satisfying γ(2) = (2d -1)(2n-2) + 3, and assuming γ := (2d -1)µ + 2ε
belongs to N4 (as well as γ(1) ≤ p(2d - 1), if p ≥ 3), the divisor Λ(n, d, 1, γ) is nef.

Proof. One only needs to check (straightforward verification!), that any such ε
satisfies 5.12.(1),(2) & (3). �

Proposition 5.14.

Let us fix d ≥ 3 and µ ∈ N4 such that µo + 1 ≡ µj(mod.2) (for j = 1, 2, 3), and let
k denote the residue (mod.4) of d+1. Choose any integer vector ε ∈ Z4 subject to
the conditions

4ε(2) = 3 + (2d - 1)(d - 2 + k) and γ := (2d - 1)µ+ 2ε ∈ N4 ,

and let n satisfy γ(2) = (2d - 1)(2n - 2) + 3. Then Λ(n, d, 1, γ) is not nef.

Proof. Take any vector ε ∈ Z4 satisfying ε(2) = 8h2 + 3(2k - 3)h+ k2 - 3k + 3.
A straightforward verification shows that ε2i ≤ ε(2) < (2d - 1)2, ∀i = 0, .., 3 and

4ε(2) = 3 + (2d - 1)(d - 2 + k). In particular, 4ε(2) < 3 + (2d - 1)2 = 4d2 - 4d + 4,
hence ε does not satisfy property 5.12.(1). Therefore, choosing any µ ∈ N4 such
that µo + 1 ≡ µj(mod.2) (for j = 1, 2, 3), and defining γ ∈ N4 and n ∈ N by

γ := (2d -1)µ + 2ε and γ(2) = (2d -1)(2n-2) + 3, respectively, the corresponding
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divisor Λ(n, d, 1, γ) is not nef. �

Lemma 5.15.

Let (n, d, γ) ∈ N∗ × N∗ × N4 be such that d ≥ 2, γ(2) = (2d - 1)(2n - 2) + 3 and
Λ(n, d, 1, γ) is nef. Then, for any j = 1, 2, 3, there exists at most one exceptional

curve of the first kind Γ̃ ⊂ S̃, such that Γ̃ · Λ(n, d, 1, γ) = 0 and Γ̃ · s̃j = 1. In

particular, the sum of the latter exceptional curves, denoted by Z̃(n, d, 1, γ), is a
reduced divisor with (at most) three irreducible components.

Proof. Straightforward verification again!. �

Remark 5.16.

According to Brian Harbourne’s results on anticanonical rational surfaces (cf. [6]),

for any nef divisor D ∈ Pic(S̃), such that - K̃ ·D ≥ 2, the complete linear system

|D| is base point free and dim|D| = 1
2D · (D - K̃). The following result is in order.

Lemma 5.17.

Let (n, d, γ) ∈ N∗ × N∗ × N4 be such that d ≥ 2, γ(2) = (2d - 1)(2n - 2) + 3, and let

Λ and Z̃ denote, respectively, Λ(n, d, 1, γ) and Z̃(n, d, 1, γ), the divisors defined in
5.15.. Then, Λ nef implies :

(1) Λ - C̃o -
∑3

j=1 s̃j - Z̃ is nef ;

(2)
∣∣Λ - C̃o -

∑3
j=1 s̃j - Z̃

∣∣ is base point free;

(3)
∣∣Λ - C̃o

∣∣ =
∑3
j=1 s̃j + Z̃ +

∣∣Λ - C̃o -
∑3

j=1 s̃j - Z̃
∣∣ ;

(4) dim
∣∣Λ

∣∣ = 2d - 2, dim
∣∣Λ - C̃o

∣∣ = d - 2 and h1
(
S̃, OS̃(Λ - C̃o)

)
= 0 .

Definition 5.18.

Let p̃o ∈ S̃ denote the unique point of intersection {p̃o} := C̃o∩ s̃o and consider any
divisor Λ := Λ(n, d, 1, γ) as in 5.15.. We define the following subsets of

∣∣Λ
∣∣:

∣∣Λ
∣∣
C̃o,p̃o

: =
{
D ∈

∣∣Λ
∣∣, D ∩ C̃o = {p̃o} or C̃o ⊂ D

}
;(1)

∣∣Λ
∣∣s̃o
C̃o,p̃o

: =
∣∣Λ

∣∣
C̃o,p̃o

⋂(
s̃o +

∣∣Λ - s̃o
∣∣ ) .(2)

Proposition 5.19.

If Λ := Λ(n, d, 1, γ) is nef, then:

(1)
∣∣Λ

∣∣
C̃o,p̃o

is a (d - 1)-dimensional subspace of
∣∣Λ

∣∣;

(2) C̃o+
∣∣Λ - C̃o

∣∣ and
∣∣Λ

∣∣s̃o
C̃o,p̃o

are two different hyperplanes of
∣∣Λ

∣∣
C̃o,p̃o

;

(3) any element Γ̃ ∈
∣∣Λ

∣∣
C̃o,p̃o

, in the complement of the latter hyperplanes, is a

smooth integral divisor isomorphic to P1.

Proof.
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(1) According to 5.17.(4), we have h1
(
S̃, OS̃(Λ - C̃o)

)
= 0. Hence, the exact

sequence of OS̃-modules:

0 → OS̃(Λ -Co) → OS̃(Λ) → OC̃o
(Λ) → 0 ,

gives rise to the exact sequence

0 → H0
(
S̃, OS̃(Λ - C̃o)

)
→ H0

(
S̃, OS̃(Λ)

)
→ H0

(
C̃o, OC̃o

(Λ)
)
→ 0 .

Since deg
(
OC̃o

(Λ)
)
= d - 1, we can pick a section f ∈ H0

(
C̃o, OC̃o

(Λ)
)
which

only vanishes at p̃o
(
i.e.: with zero divisor (f)o = (d - 1)p̃o

)
, as well as a preimage

of f , say v ∈ H0
(
S̃, OS̃(Λ)

)
, such that its zero divisor D̃ := (v)o ∈

∣∣Λ
∣∣ only

intersects C̃o at p̃o
(
i.e.: D̃ ∩ C̃o = {p̃o}

)
. Any other section of OS̃(Λ), satisfying

the same property as v, is obtained by adding the image of an arbitrary element of

H0
(
S̃, OS̃(Λ- C̃o)

)
. In other words

∣∣Λ
∣∣
C̃o,p̃o

⊂
∣∣Λ

∣∣ is the (d - 1)-dimensional subspace

generated by D̃ and C̃o+
∣∣Λ- C̃o

∣∣.
(2) On the other hand, according to 5.17.(2)&(3), there exists D̃′ ∈

∣∣Λ- C̃o
∣∣

avoiding p̃o, in which case C̃o+D̃
′ ∈

∣∣Λ
∣∣ is smooth at p̃o. Up to replacing the

former divisor D̃ ∈
∣∣Λ

∣∣, by the generic element of the pencil generated by D̃ and

(C̃o+D̃
′), we can assume hereafter D̃ smooth and tangent to C̃o at p̃o. In particular,

for any D̃′′ ∈
∣∣Λ- C̃o

∣∣, either p̃o /∈ D̃′′ and C̃o+D̃
′′ is also smooth and tangent to

Co at p̃o, or p̃o ∈ D̃′′ and C̃o+D̃
′′ is singular at p̃o. In both cases, all but one

element of the pencil generated by D̃ and C̃o+D̃
′′ is smooth and tangent to Co at

p̃o. Therefore, such a generic element is transverse at p̃o to s̃o, and can not contain
s̃o as an irreducible component. At last, since Λ·s̃o = 1, the unique singular element

of the latter pencils must belong to s̃o+
∣∣Λ - s̃o

∣∣. Hence,
∣∣Λ

∣∣s̃o
C̃o,p̃o

and C̃o+
∣∣Λ - C̃o

∣∣
are indeed distinct hyperplanes of

∣∣Λ
∣∣
C̃o,p̃o

.

(3) Any Γ̃ ∈
∣∣Λ

∣∣
C̃o,p̃o

, in the complement of the latter hyperplanes, has arith-

metic genus 0. Let us also prove its irreducibility. We start remarking that Γ̃

can only intersect C̃o at p̃o, and does not contain C̃o nor s̃i , (i = 0, 1, 2, 3), as an

irreducible component. Hence, its inverse image Γ⊥ := ϕ∗(Γ̃) ⊂ S⊥ is linearly

equivalent to e∗(nCo+So) - s
⊥
o -

∑3
i=o γir

⊥

i , and neither C⊥
o , nor s⊥i (∀i = 0, . . . , 3),

is an irreducible component of Γ⊥. In order to check that Γ⊥ (hence Γ̃) is an irre-
ducible curve, by means of 5.5., we still need to show that r⊥i * Γ⊥, ∀i = 0, . . . , 3.

Otherwise Γ⊥ would have an irreducible component Γ
⊥

⊂ S⊥, linearly equivalent

to e∗(nCo+So) - s
⊥
o -

∑3
i=o γir

⊥

i , for some type γ strictly bigger than γ, implying

that ϕ( Γ
⊥

) ⊂ S̃ has a negative arithmetic genus. Contradiction.! In case p ≥ 3,
an analogous line of reasoning shows that Γ⊥ can not contain C⊥

p as an irreducible
component and 5.5. still applies.�

Recalling that MHX(n, d, 1, γ) is birationally isomorphic to |Λ(n, d, 1, γ)|C̃o,p̃o

(5.3.), we deduce the:

Corollary 5.20.

For any (n, µ) ∈ N∗×N4 satisfying µo+1 ≡ µ1 ≡ µ2 ≡ µ3(mod.2) and µ(2) = 2n+1,
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(and µ(1) ≤ p, if p ≥ 3), we let πµ denote the minimal-hyperelliptic 1-osculating

cover associated to the exceptional curve Γ̃µ ⊂ S̃ (cf. 5.6. & [14]§6.2.). Then,∣∣Λ(n, d, 1, γ)
∣∣ = {Γ̃µ} and MHX(n, 1, 1, µ) reduces to {πµ} .

More generally, for any (n, d, γ) ∈ N∗ × N∗ × N4 such that:

(1) γo + 1 ≡ γ1 ≡ γ2 ≡ γ3(mod.2) (and γ(1) ≤ p, if p ≥ 3),

(2) d ≥ 2 and γ(2) = (2d - 1)(2n - 2) + 3 ,

(3) Λ(n, d, 1, γ) is nef,

the moduli space MHX(n, d, 1, γ) is birational to
∣∣Λ(n, d, 1, γ)

∣∣
C̃o,p̃o

.

In particular, dim
(
MHX(n, d, 1, γ)

)
= d - 1, for any (n, d, γ) as in 5.13..

At last, we propose a less conceptual but more geometrical construction of
MHX(n, d, 1, γ). We will construct d effective divisors

{
G⊥, F⊥

j , j = 0, .., d - 2
}

of S⊥, with birational models given by explicit equations in P1×X , which generate
allMHX(n, d, 1, γ). Hence, any element ofMHX(n, d, 1, γ) is birational to the zero
set of a linear combination of d specific degree-n polynomials with coefficients in
K(X), the field of meromorphic functions on X .

Theorem 5.21.

For any (n, d, γ) ∈ N∗ × N∗ × N4 as in 5.13.,
∣∣ e∗

(
nCo+(2d-1)So

)
- s⊥o -

∑
i γir

⊥

i

∣∣
contains a (d-1)-dimensional subspace with a generic element, say Γ⊥, satisfying:

(1) Γ⊥ is a τ⊥-invariant smooth irreducible curve of genus g : = 1
2 (-1+γ

(1));

(2) Γ⊥ can only intersect C⊥

o at p⊥o := C⊥

o ∩ s⊥o ;

(3) ϕ(Γ⊥) ⊂ S̃ is isomorphic to P1.

Corollary 5.22.

Given (n, d, γ) ∈ N∗ × N∗ × N4 as above, the moduli space MHX(n, d, 1, γ) (5.2.)
has dimension d - 1, and its generic element is smooth of genus g : = 1

2 (-1+ γ(1)).

Proof of Theorem 5.21..
We will only work out the case γ := (2d -1)µ+2ε, with ε = (0, d - 1, d - 1, d - 1) .
For any other choice of ε, the corresponding proof runs along the same lines and

will be skipped. In our case, the arithmetic genus g and the degree n satisfy:

2g + 1 = (2d - 1)µ(1) + 6(d - 1) and 2n = (2d -1)µ(2)+4(d -1)(µ1+µ2+µ3)+ 6d -7.

Consider µ : = µ+(1, 1, 1, 1), µ′ : = µ+(0, 2, 1, 1), µ′′ = µ+(0, 0, 1, 1), and let

Z
⊥

, Z ′⊥, Z ′′⊥ ⊂ S⊥ denote the unique τ⊥-invariant curves linearly equivalent to:

1) Z
⊥

∼ e∗(mCo+So) - s
⊥

o -
∑
i µir

⊥

i , where 2m +1 = µ (2);

2) Z ′⊥ ∼ e∗(m′Co+S1) - s
⊥

1 -
∑
i µ

′

ir
⊥

i , where 2m′ +1 = µ′(2);

3) Z ′′⊥ ∼ e∗(m′′Co+S1) - s
⊥

1 -
∑
i µ

′′

i r
⊥

i , where 2m′′+1 = µ′′(2).
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Moreover, if µo 6= 0 we choose µ = µ+(- 1, 1, 1, 1) and 2m+1 = µ(2), and let

Z⊥ ⊂ S⊥ denote the unique τ⊥-invariant curve Z⊥ ∼ e∗(mCo+So) - s
⊥
o -

∑
i µir

⊥

i .

However, if µo = 0 we will simply put Z⊥ : = Z
⊥

+2r⊥o , so that in both cases,

the divisors D⊥

0 := Z
⊥

+Z⊥+2s⊥0 and D⊥

1 := Z ′⊥+Z ′′⊥+2s⊥1 will be linearly
equivalent. Let us also define,

µ(1) : = µ′′ = µ+ (0, 0, 1, 1),

µ(2) : = µ+ (0, 1, 0, 1),

µ(3) : = µ+ (0, 1, 1, 0),

and let Z⊥

(k)(k = 1, 2, 3) be the τ⊥-invariant curve of S⊥, linearly equivalent to

e∗(m(k)Co+Sk) - s
⊥

k -
∑

i µ(k)ir
⊥

i , where 2m(k)+1 =
∑

i µ
2
(k)i.

At last, consider Z⊥ ∼ e∗(mCo+So) - s
⊥
o -

∑
i µir

⊥

i , where 2m+1 =
∑

i µ
2
i (5.2.).

Let Λ ∈ Pic(S̃) denote the unique class such that
∣∣ e∗

(
nCo+(2d-1)So

)
- s⊥o -

∑
i γir

⊥

i

∣∣ =∣∣ϕ∗(Λ)
∣∣. The (d-1)-dimensional subspace of

∣∣ϕ∗(Λ)
∣∣ we are looking for, will be made

of all above curves. We first remark the following facts :

a) we can check via the adjunction formula, that the divisors ϕ∗(Λ) and Λ have
arithmetic genus g : = 1

2 (-1+ γ(1)) and 0, respectively, and that ϕ∗
(∣∣Λ

∣∣) is equal to
∣∣ϕ∗(Λ)

∣∣τ⊥

, the sub-space of τ⊥-invariant elements of
∣∣ϕ∗(Λ)

∣∣;

b) the d - 1 divisors

F⊥

j := C⊥

o +

3∑

k=1

(Z⊥

(k)+2s⊥k )+jD
⊥

o +(d -2 - j)D⊥

1 , j = 0, ..., d -2,

as well as

G⊥ := Z⊥+(d -1)D⊥

o ,

are τ⊥-invariant, belong to
∣∣ϕ∗(Λ)

∣∣ and have p⊥o := C⊥

o ∩ s⊥o as their unique com-
mon point;

c) the curve F⊥

o is smooth at p⊥o , while any other F⊥

j has multiplicity 1 < 2j+1 < 2d

at p⊥o . In particular, they span a (d - 2)-dimensional subspace of
∣∣ϕ∗(Λ)

∣∣, having a

generic element smooth and transverse to s⊥o at p⊥o ;

d) the curve G⊥ has multiplicity 2d at p⊥o , and no common irreducible component
with any F⊥

j (∀j = 0, . . . , d - 2), implying that 〈G⊥, F⊥

j , j = 0, .., d - 2 〉, the (d - 1)-

dimensional subspace they span in
∣∣ϕ∗(Λ)

∣∣, is component-free;

e) any irreducible curve Γ⊥ ∈ 〈G⊥, F⊥

j , j = 0, .., d - 2 〉 projects onto a smooth irre-

ducible curve (isomorphic to P1). In particular Γ⊥ must be smooth outside ∪3
i=0r

⊥

i .

f) the curves G⊥ and F⊥
o have no common point on any r⊥i (i = 0, .., 3), implying

that Γ⊥, the generic element of 〈G⊥, F⊥

j , j = 0, .., d - 2 〉, is smooth at any point of

∪3
i=0r

⊥

i and satisfies the announced properties, i.e.:
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(1) Γ⊥ is τ⊥-invariant, smooth and satisfies the irreducibility criterion 5.5.;

(2) p⊥o is the unique base point of the linear system and Γ⊥ ∩ C⊥

o = {p⊥o };

(3) its image ϕ(Γ⊥) ⊂ S̃ is irreducible, linearly equivalent to Λ(n, d, 1, γ) and
of arithmetic genus 1

4

(
(2d -1)(2n-2)+ 3 - γ(2)

)
= 0; hence, isomorphic to P1. �

Proof of Corollary 5.22..
The degree-2 projection ϕ : Γ⊥ −→ ϕ(Γ⊥) is ramified at p⊥o and ϕ(Γ⊥) is

isomorphic to P1. Moreover, Γ⊥ is a smooth irreducible curve linearly equivalent
to ϕ∗

(
Λ(n, d, 1, γ)

)
, of arithmetic genus g := 1

2 (γ
(1) - 1).

In other words, the natural projection (Γ⊥, p⊥o ) ⊂ (S⊥, p⊥o )
π
S⊥

−→ (X, q) is a
smooth degree-n minimal-hyperelliptic d-osculating cover of type γ, and genus g,
such that (2n-2)(2d -1)+ 3 = γ(2) and 2g+1 = γ(1). �
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