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Abstract

We complete the different cases remaining in the estimation of the essential norm of a
weighted composition operator acting between the Hardy spaces Hp and Hq for 1 ≤ p, q ≤ ∞.
In particular we give some estimates for the cases 1 = p ≤ q ≤ ∞ and 1 ≤ q < p ≤ ∞.

1 Introduction

Let D = {z ∈ C | |z| < 1} denote the open unit disk in the complex plane. Given two
analytic functions u and ϕ defined on D such that ϕ(D) ⊂ D, one can define the weighted
composition operator uCϕ that maps any analytic function f defined on D into the function
uCϕ(f) = u.f ◦ ϕ. In [10], de Leeuw showed that the isometries in the Hardy space H1 are
weighted composition operators, while Forelli [8] obtained this result for the Hardy space Hp

when 1 < p < ∞, p 6= 2. Another example is the study of composition operators on the half-
plane. A composition operator in a Hardy space of the half-plane is bounded if and only if a
certain weighted composition operator is bounded on the Hardy space of the unit disk (see [13]
and [14]).

When u ≡ 1, we just have the composition operator Cϕ. The continuity of these oper-
ators on the Hardy space Hp is ensured by the Littlewood’s subordination principle, which
says that Cϕ(f) belongs to Hp whenever f ∈ Hp (see [4], Corollary 2.24). As a conse-
quence, the condition u ∈ H∞ suffices for the boundedness of uCϕ on Hp. Considering the
image of the constant functions, a necessary condition is that u belongs to Hp. Nevertheless a
weighted composition operator needs not to be continuous on Hp, and it is easy to find examples
where uCϕ(Hp) * Hp (see Lemma 2.1 of [3] for instance).

In this note we deal with weighted composition operators between Hp and Hq

for 1 ≤ p, q ≤ ∞. Boundedness and compactness are characterized in [3] for 1 ≤ p ≤ q < ∞
by means of Carleson measures, while essential norms of weighted composition operators are es-
timated in [5] for 1 < p ≤ q <∞ by means of an integral operator. For the case 1 ≤ q < p <∞,
boundedness and compactness of uCϕ are studied in [5], and Gorkin and MacCluer in [9] gave
an estimate of the essential norm of a composition operator acting between Hp and Hq.

The aim of this paper is to complete the different cases remaining in the estimation of the
essential norm of a weighted composition operator. In section 2 and 3, we give an estimate
of the essential norm of uCϕ acting between Hp and Hq when p = 1 and 1 ≤ q < ∞ and
when 1 ≤ p <∞ and q =∞. Sections 4 and 5 are devoted to the case where ∞ ≥ p > q ≥ 1.

Let D be the closure of the unit disk D and T = ∂D its boundary. We denote by dm = dt/2π
the normalised Haar measure on T. If A is a Borel subset of T, the notation m(A) as well as |A|
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will design the Haar measure of A. For 1 ≤ p < ∞, the Hardy space Hp(D) is the space of
analytic functions f : D→ C satisfying the following condition

‖f‖p = sup
0<r<1

(∫
T
|f(rζ)|p dm(ζ)

)1/p

<∞.

Endowed with this norm, Hp(D) is a Banach space. The space H∞(D) is consisting of every
bounded analytic function on D, and its norm is given by the supremum norm on D.
We recall that any function f ∈ Hp(D) can be extended on T to a function f∗ by the following
formula: f∗(eiθ) = limr↗1 f(reiθ). The limit exists almost everywhere by Fatou’s theorem,
and f∗ ∈ Lp(T). Moreover, f 7→ f∗ is an into isometry from Hp(D) to Lp(T) whose image,
denoted by Hp(T) is the closure (weak-star closure for p =∞) of the set of polynomials in Lp(T).
So we can identify Hp(D) and Hp(T), and we will use the notation Hp for both of these spaces.
More on Hardy spaces can be found in [11] for instance.

The essential norm of an operator T : X → X, denoted ‖T‖e, is given by

‖T‖e = inf{‖T −K‖ | K is compact on X}.

Observe that ‖T‖e ≤ ‖T‖, and ‖T‖e is the norm of T seen as an element of the Calkin alge-
bra B(X)/K(X) where K(X) is the space of all compact operators on X.

Notation: we will note a ≈ b whenever there exists two positive universal constants c and C
such that cb ≤ a ≤ Cb. In the sequel, u will be a non-zero analytic function on D and ϕ will be
a non-constant analytic function defined on D satisfying ϕ(D) ⊂ D.

2 uCϕ ∈ B(H1, Hq) for 1 ≤ q <∞
Let’s first start with a characterization of the boundedness of uCϕ acting between Hp and Hq

for 1 ≤ p ≤ q <∞:

Theorem 2.1 (see [5], Theorem 4). Let u be an analytic function on D and ϕ a analytic self-
map of D. Then the weighted composition operator uCϕ is bounded from Hp to Hq if and only
if

sup
a∈D

∫
T
|u(ζ)|q

(
1− |a|2

|1− āϕ(ζ)|2

)q/p
dm(ζ) <∞.

As a consequence uCϕ is a bounded operator as soon as uCϕ is uniformly bounded on the

set {k1/p
a | a ∈ D} where ka is the normalized kernel defined by ka(z) = (1−|a|2)/(1−āz)2, a ∈ D.

Note that k
1/p
a ∈ Hp and ‖k1/p

a ‖p = 1. These kernels play a crucial role in the estimation of the
essential norm of a weighted composition operator:

Theorem 2.2 (see [5], Theorem 5). Assume that the weighted composition operator uCϕ is
bounded from Hp to Hq with 1 < p ≤ q <∞. Then

‖uCϕ‖e ≈ lim sup
|a|→1−

(∫
T
|u(ζ)|q

(
1− |a|2

|1− āϕ(ζ)|2

)q/p
dm(ζ)

) 1
q

.

The aim of this section is to give the corresponding estimate for the case p = 1. We shall
prove that the previous theorem is still valid for p = 1:

Theorem 2.3. Suppose that the weighted composition operator uCϕ is bounded from H1 to Hq

for a certain 1 ≤ q <∞. Then we have

‖uCϕ‖e ≈ lim sup
|a|→1−

(∫
T
|u(ζ)|q

(
1− |a|2

|1− āϕ(ζ)|2

)q
dm(ζ)

) 1
q

.
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Let’s start with the upper estimate:

Proposition 2.4. Let uCϕ ∈ B(H1, Hq) with 1 ≤ q < ∞. Then there exists a positive con-
stant C such that

‖uCϕ‖e ≤ C lim sup
|a|→1−

(∫
T
|u(ζ)|q

(
1− |a|2

|1− āϕ(ζ)|2

)q
dm(ζ)

) 1
q

.

The main tool of the proof is the use of Carleson measures. Assume that µ is a finite positive
Borel measure on D and let 1 ≤ p, q < ∞. We say that µ is a (p, q)-Carleson measure if the
embedding Jµ : f ∈ Hp 7→ f ∈ Lq(µ) is well defined. In this case, the closed graph theorem
ensures that Jµ is continuous. In other words, µ is a (p, q)-Carleson measure if there exists a
constant C1 > 0 such that for every f ∈ Hp,∫

D
|f(z)|q dµ(z) ≤ C1‖f‖qp. (2.1)

Let I be an arc in T. By S(I) we denote the Carleson window given by

S(I) = {z ∈ D | 1− |I| ≤ |z| < 1, z/|z| ∈ I}.

Let’s denote by µD and µT the restrictions of µ to D and T respectively. The following result is
a version of a theorem of Duren (see [7], p.163) for measures on D:

Theorem 2.5 (see [1], Theorem 2.5). Let 1 ≤ p < q < ∞. A finite positive Borel measure µ
on D is a (p, q)-Carleson measure if and only if µT = 0 and there exists a constant C2 > 0 such
that

µD (S(I)) ≤ C2|I|q/p for any arc I ⊂ T. (2.2)

Notice that the best constants C1 and C2 in (2.1) and (2.2) are comparable, meaning that there
is a positive constant β independent of the measure µ such that (1/β)C2 ≤ C1 ≤ βC2.
The notion of Carleson measure was introduced by Carleson in [2] as a part of his work on
the corona problem. He gave a characterization of measures µ on D such that Hp embeds
continuously in Lp(µ).

Examples of such Carleson measures are provided by composition operators. Let ϕ : D→ D
be an analytic map and let 1 ≤ p, q < ∞. The boundedness of the composition operator Cϕ :
f 7→ f ◦ ϕ between Hp and Hq can be rephrased in terms of (p, q)-Carleson measures. Indeed,
denote by mϕ the pullback measure of m by ϕ, which is the image of the Haar measure m of T
under the map ϕ∗, defined by

mϕ(B) = m
(
ϕ∗
−1

(B)
)

for every Borel subset B of D. Then

‖Cϕ(f)‖qq =

∫
T
|f ◦ ϕ|q dm =

∫
D
|f |q dmϕ = ‖Jmϕ(f)‖qq

for all f ∈ Hp. Thus Cϕ maps Hp boundedly into Hq if and only if mϕ is a (p, q)-Carleson
measure.
In the sequel we will note the disk of radius r by rD = {z ∈ D | |z| < r} for 0 < r < 1. We will
need the following lemma concerning (p, q)-Carleson measures:

Lemma 2.6. Take 0 < r < 1 and let µ be a finite positive Borel measure on D. Note

N∗r := sup
|a|≥r

∫
D
|ka(w)|

q
p dµ(w).

If µ is a (p, q)-Carleson measure for 1 ≤ p ≤ q < ∞ then so is µr := µ|D\rD. Moreover one can

find an absolute constant M > 0 satisfying ‖µr‖ ≤MN∗r where ‖µr‖ := sup
I⊂T

µr
(
S(I)

)
|I|q/p

·
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We omit the proof of Lemma 2.6 here, which is a slight modification of the proof of Lemma 1
and Lemma 2 in [6] using Theorem 2.5.

In the proof of the upper estimate of Theorem 2.2 in [5], the authors use a decomposition
of the identity on Hp of the form I = KN + RN where KN is the partial sum operator defined
by KN (

∑∞
n=0 anz

n) =
∑N

n=0 anz
n, and they use the fact that (KN ) is a sequence of compact

operators that is uniformly bounded in B(Hp) and that RN converges pointwise to zero on Hp.
Nevertheless the sequence (KN ) is not uniformly bounded in B(H1). In fact, (KN ) is uniformly
bounded in B(Hp) if and only if the Riesz projection P : Lp → Hp is bounded [15, Theorem 2],
which occurs if and only if 1 < p < ∞. Therefore we need to use a different decomposition for
the case p = 1. Since KN is the convolution operator by the Dirichlet kernel on Hp, we shall
consider the Fejér kernel FN of order N. Let’s define KN : H1 → H1 to be the convolution
operator associated to FN that maps f ∈ H1 to KNf = FN ∗ f ∈ H1 and RN = I − KN .
Then ‖KN‖ ≤ 1, KN is compact and for every f ∈ H1, ‖f − KNf‖1 → 0 following Fejér’s
theorem. If f(z) =

∑
n≥0 f̂(n)zn ∈ H1, then

KNf(z) =

N−1∑
n=0

(
1− n

N

)
f̂(n)zn.

Lemma 2.7. Suppose uCϕ ∈ B(H1, Hq). Then

‖uCϕ‖e ≤ lim inf
N
‖uCϕRN‖.

Proof.

‖uCϕ‖e = ‖uCϕKN + uCϕRN‖e
= ‖uCϕRN‖e since KN is compact

≤ ‖uCϕRN‖

and the result follows taking the lower limit. �

We will need the following lemma for an estimation of the remainder RN :

Lemma 2.8. Let ε > 0 and 0 < r < 1. Then ∃N0 = N0(r) ∈ N, ∀N ≥ N0,

|RNf(w)|q < ε‖f‖q1,

for every |w| < r and for every f in H1.

Proof. Let Kw(z) = 1/(1 − w̄z), w ∈ D, z ∈ D. Kw is a bounded analytic function on D.
It is easy to see that for every f ∈ H1,

〈RNf,Kw〉 = 〈f,RNKw〉

where |w| < r, N ≥ 1 and

〈f, g〉 =
1

2π

∫ 2π

0
f(eiθ)g(eiθ) dθ

for f ∈ H1 and g ∈ H∞. Then we have |RNf(w)| = | 〈RNf,Kw〉 | = | 〈f,RNKw〉 | ≤
‖f‖1‖RNKw‖∞. Take |w| < r and choose N0 ∈ N so that for every N ≥ N0 one has
rN ≤ ε1/q(1− r)/2 and 1/N

∑N−1
n=1 nr

n ≤ (1/2)ε1/q. Since

RNKw(z) = RN

( ∞∑
n=0

w̄nzn
)

=
N−1∑
n=0

n

N
w̄nzn +

∞∑
n=N

w̄nzn,

one has

‖RNKw‖∞ <
1

N

N−1∑
n=0

nrn +
∞∑
n=N

rn ≤ ε1/q.

Thus |RNf(w)|q ≤ ε‖f‖q1 for every f in H1. �
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Proof of Proposition 2.4. Denote by µ the measure which is absolutely continuous with
respect to m and whose density is |u|q, and let µϕ = µ ◦ϕ−1 be the pullback measure of µ by ϕ.
Fix 0 < r < 1. For every f ∈ H1, we have

‖(uCϕRN )f‖qq =

∫
T
|u(ζ)|q

∣∣((RNf) ◦ ϕ
)
(ζ)
∣∣q dm(ζ)

=

∫
T

∣∣((RNf) ◦ ϕ
)
(ζ)
∣∣q dµ(ζ)

=

∫
D
|RNf(w)|q dµϕ(w)

=

∫
D\rD

|RNf(w)|q dµϕ(w) +

∫
rD
|RNf(w)|q dµϕ(w)

= I1(N, r, f) + I2(N, r, f). (2.3)

Let us first show that lim
N

sup
‖f‖1=1

I2(N, r, f) = 0. For ε > 0, Lemma 2.8 gives us an inte-

ger N0(r) such that for every N ≥ N0(r),

I2(N, r, f) =

∫
rD
|RNf(w)|q dµϕ(w)

≤ ε‖f‖q1µϕ(rD)

≤ ε‖f‖q1µϕ(D)

≤ ε‖f‖q1‖u‖
q
q.

So, r being fixed, we have lim
N

sup
‖f‖1=1

I2(N, r, f) = 0.

Now we need an estimate of I1(N, r, f). The continuity of uCϕ : H1 → Hq ensures that µϕ
is a (1, q)-Carleson measure, and therefore µϕ,r := µϕ|D\rD

is also a (1, q)-Carleson measure by

using Lemma 2.6 for p = 1. We deduce the following inequalities:∫
D\rD

|RNf(w)|q dµϕ,r(w) ≤ β‖µϕ,r‖‖RNf‖q1

≤ 2qβMN∗r ‖f‖
q
1

using Lemma 2.6 and the fact that ‖RN‖ ≤ 1 + ‖KN‖ ≤ 2 for every N ∈ N. We take the
supremum over BH1 and take the lower limit as N tend to infinity in (2.3) to obtain

lim inf
N→∞

‖uCϕRN‖q ≤ 2qβMN∗r .

Now as r going to 1 we have:

lim
r→1

N∗r = lim sup
|a|→1−

∫
D
|ka(w)|q dµϕ(w)

= lim sup
|a|→1−

∫
T
|u(ζ)|q

(
1− |a|2

|1− āϕ(ζ)|2

)q
dm(ζ)

and we obtain the estimate announced using Lemma2.7. �

Now let’s turn to the lower estimate in Theorem 2.2. Let 1 ≤ q <∞. Consider FN the Fejér
kernel of order N, and define KN : Hq → Hq the convolution operator associated to FN and
RN = I −KN . Then (KN )N is a sequence of uniformly bounded compact operators in B(Hq),
and ‖RNf‖q → 0 for all f ∈ Hq.
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Lemma 2.9. There exists 0 < C ≤ 2 such that whenever uCϕ is a bounded operator from H1

to Hq, one has
1

C
lim sup

N
‖RNuCϕ‖ ≤ ‖uCϕ‖e.

Proof. Take K ∈ B(H1, Hq) a compact operator. Since (KN ) is uniformly bounded, one
can find C > 0 satisfying ‖RN‖ ≤ 1 + ‖KN‖ ≤ C for all N > 0, and we have:

‖uCϕ +K‖ ≥ 1

C
‖RN (uCϕ +K)‖

≥ 1

C
‖RNuCϕ‖ −

1

C
‖RNK‖.

Now use the fact that (RN ) goes pointwise to zero in Hq, and consequently (RN ) converges
strongly to zero over the compact set K(BH1) as N goes to infinity. It follows that ‖RNK‖−→

N
0,

and

‖uCϕ +K‖ ≥ 1

C
lim sup

N
‖RNuCϕ‖

for every compact operator K : H1 → Hq. �

Proposition 2.10. Let uCϕ ∈ B(H1, Hq) with 1 ≤ q <∞. Then

‖uCϕ‖e ≥
1

C
lim sup
|a|→1−

(∫
T
|u(ζ)|q

(
1− |a|2

|1− āϕ(ζ)|2

)q
dm(ζ)

) 1
q

.

Proof. Since ka is a unit vector in H1,

‖RNuCϕ‖ = ‖uCϕ −KNuCϕ‖ ≥ ‖uCϕka‖q − ‖KNuCϕka‖q. (2.4)

First case: q > 1
(ka) converges to zero for the topology of uniform convergence on compact sets in D as |a| goes
to 1, so does uCϕ(ka). The topology of uniform convergence on compact sets in D and the
weak topology agree on Hq, therefore it follows that uCϕ(ka) goes to zero for the weak topology
in Hq as |a| goes to 1. Since KN is a compact operator, it is completely continuous and carries
weak-null sequences to norm-null sequences. So ‖KN

(
uCϕ(ka)

)
‖q → 0 when |a| → 1, and

‖RNuCϕ‖ ≥ lim sup
|a|→1−

‖uCϕ(ka)‖q.

Taking the upper limit when N →∞, we obtain the result using Lemma 2.9.
For the second case we will need the following computation lemma:

Lemma 2.11. Take a ∈ D and N ∈ N∗. Denote by αp(a) the p-th Fourier coefficient
of Cϕ

(
ka/(1− |a|2)

)
, so that for every z ∈ D we have

ka
(
ϕ(z)

)
= (1− |a|2)

∞∑
p=0

αp(a)zp.

Then there exists a constant M = M(N) > 0 depending on N such that |αp(a)| ≤ M for
every p ≤ N and every a ∈ D.

Proof of Lemma 2.11. Write ϕ(z) = a0 + ψ(z) with a0 = ϕ(0) ∈ D and ψ(0) = 0. If we
develop ka(z) as a Taylor series and replace z by ϕ(z) we obtain:

ka
(
ϕ(z)

)
= (1− |a|2)

∞∑
n=0

(n+ 1)(ā)nϕ(z)n.
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Then

αp(a) =

〈 ∞∑
n=0

(n+ 1)(ā)nϕ(z)n, zp

〉

=
∞∑
n=0

(n+ 1)(ā)n
n∑
j=0

(
n

j

)
an−j0

〈
ψ(z)j , zp

〉
.

where 〈f, g〉 =
∫
T fḡ dm. Note that

〈
ψ(z)j , zp

〉
= 0 if j > p since ψ(0) = 0, and consequently

αp(a) =

∞∑
n=0

(n+ 1)(ā)n
min(n,p)∑
j=0

(
n

j

)
an−j0

〈
ψ(z)j , zp

〉
=

p∑
j=0

∞∑
n=j

(n+ 1)(ā)n
(
n

j

)
an−j0

〈
ψ(z)j , zp

〉
=

p∑
j=0

〈
ψ(z)j , zp

〉 ∞∑
n=j

(n+ 1)(ā)n
(
n

j

)
an−j0 .

In the case where a0 6= 0 we obtain

αp(a) =

p∑
j=0

〈
ψ(z)j , zp

〉
a−j0

∞∑
n=j

(n+ 1)

(
n

j

)
(āa0)n

=

p∑
j=0

〈
ψ(z)j , zp

〉
a−j0

(j + 1)(āa0)j

(1− āa0)j+2

=

p∑
j=0

〈
ψ(z)j , zp

〉 (j + 1)(ā)j

(1− āa0)j+2

using the following equalities for x = āa0 ∈ D:

∞∑
n=j

(n+ 1)

(
n

j

)
xn =

 ∞∑
n=j

(
n

j

)
xn+1

′ = ( xj+1

(1− x)j+1

)′
=

(j + 1)xj

(1− x)j+2

Note that the last expression obtained for αp(a) is also valid for a0 = 0. Thus, for 0 ≤ p ≤ N
we have the following estimates:

|αp(a)| ≤
p∑
j=0

|
〈
ψ(z)j , zp

〉
| j + 1

(1− |a0|)j+2

≤
p∑
j=0

‖ψj‖∞
N + 1

(1− |a0|)N+2

≤ (N + 1)2

(1− |a0|)N+2
max

0≤j≤N
‖ψj‖∞

≤M,

where M is a constant independent from a. �

Second case: q = 1
In this case, it is no longer for the weak topology but for the weak-star topology of H1 that

7



uCϕ(ka) tends to zero when |a| → 1. Nevertheless, it is still true that ‖KNuCϕ(ka)‖1 → 0

as |a| → 1. Indeed if f(z) =
∑

n≥0 f̂(n)zn ∈ H1, then

KNf(z) =
N−1∑
n=0

(
1− n

N

)
f̂(n)zn.

We have the following development:

ka
(
ϕ(z)

)
= (1− |a|2)

∞∑
n=0

αn(a)zn.

Denote by un the n-th Fourier coefficient of u, so that

uCϕ(ka)(z) = (1− |a|2)
∞∑
n=0

( n∑
p=0

αp(a)un−p

)
zn, ∀z ∈ D.

It follows that

‖KNuCϕ(ka)‖1 ≤ (1− |a|2)

N−1∑
n=0

(
1− n

N

) ∣∣∣∣ n∑
p=0

αp(a)un−p

∣∣∣∣‖zn‖1.
Now using estimates from Lemma 2.11, one can find a constant M > 0 independent from a such
that |αp(a)| ≤M for every a ∈ D and 0 ≤ p ≤ N−1. Use the fact that ‖zn‖1 = 1 and |up| ≤ ‖u‖1
to deduce that there is a constant M ′ > 0 independent from a such that

‖KNuCϕ(ka)‖1 ≤M ′(1− |a|2)‖u‖1

for all a ∈ D. Thus KNuCϕ(ka) converges to zero in H1 when |a| → 1, and take the upper limit
in 2.4 when a tends to 1− to obtain

‖RNuCϕ‖ ≥ lim sup
|a|→1

‖uCϕ(ka)‖1, ∀N ≥ 0.

We conclude with Lemma 2.9 and observe that C = sup ‖RN‖ ≤ 2 since ‖RN‖ ≤ 1 +‖KN‖ ≤ 2.
�

3 uCϕ ∈ B(Hp, H∞) for 1 ≤ p <∞
Let u be a bounded analytic function. Characterizations of boundedness and compactness of
uCϕ as a linear map between Hp and H∞ have been studied in [3] for p ≥ 1. Indeed,

uCϕ ∈ B(Hp, H∞) if and only if sup
z∈D

|u(z)|p

1− |ϕ(z)|2
<∞

and

uCϕ is compact if and only if ‖ϕ‖∞ < 1 or lim
|ϕ(z)|→1

|u(z)|p

1− |ϕ(z)|2
= 0.

In the case where ‖ϕ‖∞ = 1 we will note

Mϕ(u) = lim sup
|ϕ(z)|→1

|u(z)|

(1− |ϕ(z)|2)
1
p

·

As regarding Theorem 1.7 in [12], it seems reasonable to think that the essential norm of uCϕ
is equivalent to the quantity Mϕ(u). We first have a majorization:
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Proposition 3.1. Suppose that uCϕ is a bounded operator from Hp to H∞ and that ‖ϕ‖∞ = 1.
Then

‖uCϕ‖e ≤ 2Mϕ(u).

Proof. Let ε be a real positive number, and pick r < 1 satisfying

sup
|ϕ(z)|≥r

|u(z)|

(1− |ϕ(z)|2)
1
p

≤Mϕ(u) + ε.

We approximate uCϕ by uCϕKN where KN : Hp → Hp is the convolution operator by the
Fejér kernel of order N, where N is chosen so that |RNf(w)| < ε‖f‖1 for every f ∈ H1 and
every |w| < r (Lemma 2.8 for q = 1). We want to show that ‖uCϕ − uCϕKN‖ = ‖uCϕRN‖ ≤
max(2Mϕ(u) + 2ε, ε‖u‖∞), which will prove our assertion. If f is a unit vector in Hp, then

‖uCϕRN (f)‖∞ = max

(
sup
|ϕ(z)|≥r

|u(z)(RNf) ◦ ϕ(z)|, sup
|ϕ(z)|<r

|u(z)(RNf) ◦ ϕ(z)|

)
.

We want to estimate the first term. If ω ∈ D, we note δω the linear functional on Hp defined by
δω(f) = f(ω). Then δω ∈ (Hp)∗ and

sup
|ϕ(z)|≥r

|u(z)(RNf) ◦ ϕ(z)| ≤ sup
|ϕ(z)|≥r

|u(z)|‖δϕ(z)‖(Hp)∗‖RNf‖p

≤ 2 sup
|ϕ(z)|≥r

|u(z)|

(1− |ϕ(z)|2)
1
p

≤ 2 (Mϕ(u) + ε) ,

where we use the fact that ‖RNf‖p ≤ 2 and ‖δw‖(Hp)∗ = 1/(1− |w|2)1/p for every w ∈ D.
For the second term, since |ϕ(z)| < r we have

|u(z)RNf (ϕ(z))| ≤ ‖u‖∞|RNf (ϕ(z)) | ≤ ε‖u‖∞‖f‖1 ≤ ε‖u‖∞
which ends the proof. �

On the other hand, we have the lower estimate:

Proposition 3.2. Suppose that uCϕ is a bounded operator from Hp to H∞ and that ‖ϕ‖∞ = 1.
Then

1

2
Mϕ(u) ≤ ‖uCϕ‖e.

Proof. Assume that uCϕ is not compact, implying Mϕ(u) > 0. Let (zn) be a sequence in D
satisfying

lim
n
|ϕ(zn)| = 1 and lim

n

|u(zn)|

(1− |ϕ(zn)|2)
1
p

= Mϕ(u).

Consider the sequence (fn) defined by

fn(z) = kϕ(zn)(z)
1/p =

(
1− |ϕ(zn)|2

) 1
p(

1− ϕ(zn)z
) 2

p

·

Each fn is a unit vector of Hp. Let K : Hp → H∞ be a compact operator.

First case: p > 1
Since the sequence (fn) converges to zero for the weak topology of Hp and K is completely
continuous, the sequence (Kfn) converges to zero for the norm topology in H∞. Use that
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‖uCϕ +K‖ ≥ ‖uCϕ(fn)‖∞ − ‖Kfn‖∞ and take the upper limit when n tends to infinity to
obtain

‖uCϕ +K‖ ≥ lim sup
n
‖uCϕ(fn)‖∞

≥ lim sup
n
|u(zn)| |fn (ϕ(zn))|

≥ lim sup
n

|u(zn)|

(1− |ϕ(zn)|2)
1
p

≥Mϕ(u).

Second case: p = 1
Let ε > 0. Since the sequence (fn) is no longer weakly convergent to zero in H1, we cannot
assert that (Kfn)n goes to zero in H∞. Nevertheless, passing to subsequences, one can assume
that (Kfnk

)k converges in H∞, and hence is a Cauchy sequence. So we can find an integer N > 0
such that for every k and m greater than N we have ‖Kfnk

−Kfnm‖ < ε. We deduce that

‖uCϕ +K‖ ≥
∥∥∥∥(uCϕ +K)

(
fnk
− fnm

2

)∥∥∥∥
∞

≥ 1

2
‖uCϕ(fnk

− fnm)‖∞ −
ε

2

≥ 1

2
|u(znk

)| |fnk
(ϕ(znk

))− fnm (ϕ(znk
))| − ε

2

≥ |u(znk
)|

2 (1− |ϕ(znk
)|2)
−
|u(znk

)|
(
1− |ϕ(znm)|2

)
2
∣∣∣1− ϕ(znm)ϕ(znk

)
∣∣∣2 −

ε

2

Now take the upper limit as m goes to infinity (k being fixed) and remind that limm |ϕ(znm)| = 1
and |ϕ(znk

)| < 1 to obtain

‖uCϕ +K‖ ≥ |u(znk
)|

2 (1− |ϕ(znk
)|2)
− ε

2

for every k ≥ N. It remains to make k tend to infinity to have

‖uCϕ +K‖ ≥ 1

2
Mϕ(u)− ε

2
.

�

Combining Proposition 3.1 and Proposition 3.2 we obtain the following estimate:

Theorem 3.3. Suppose that uCϕ is a bounded operator from Hp to H∞ and that ‖ϕ‖∞ = 1.
Then ‖uCϕ‖e ≈Mϕ(u). More precisely, we have the following inequalities:

1

2
Mϕ(u) ≤ ‖uCϕ‖e ≤ 2Mϕ(u).

Note that if p > 1 one can replace the constant 1/2 by 1.

4 uCϕ ∈ B(H∞, Hq) for ∞ > q ≥ 1

In this setting, boundedness of the weighted composition operator uCϕ is equivalent to saying
that u belongs to Hq, and uCϕ is compact if and only if u = 0 or |Eϕ| = 0 where Eϕ = {ζ ∈ T |
ϕ∗(ζ) ∈ T} is the extremal set of ϕ (see [3]). We give here some estimates of the essential norm
of uCϕ that appear in [9] for the special case of composition operators:
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Theorem 4.1. Let u ∈ Hq. Then ‖uCϕ‖e ≈
(∫

Eϕ
|u(ζ)|q dm(ζ)

) 1
q
. More precisely,

1

2

(∫
Eϕ

|u(ζ)|q dm(ζ)

) 1
q

≤ ‖uCϕ‖e ≤ 2

(∫
Eϕ

|u(ζ)|q dm(ζ)

) 1
q

.

We start with the upper estimate:

Proposition 4.2. Let u ∈ Hq. Then

‖uCϕ‖e ≤ 2

(∫
Eϕ

|u(ζ)|q dm(ζ)

) 1
q

.

Proof. Take 0 < r < 1. Since ‖rϕ‖∞ ≤ r < 1, the set Erϕ is empty and therefore the
operator uCrϕ is compact. Thus ‖uCϕ‖e ≤ ‖uCϕ − uCrϕ‖. But

‖uCϕ − uCrϕ‖q = sup
‖f‖∞≤1

∫
T
|u(ζ)|q

∣∣f(ϕ(ζ)
)
− f

(
rϕ(ζ)

)∣∣q dm(ζ). (4.1)

For ε > 0, note Eε = {ζ ∈ T | |ϕ∗(ζ)| < 1 − ε}. We assume that uCϕ is not compact,
hence Eε 6= ∅. We will use the pseudohyperbolic distance ρ defined for z and w in the unit disk
by ρ(z, w) = |z−w|/|1− w̄z|. The Pick-Schwarz’s theorem ensures that ρ

(
f(z), f(w)

)
≤ ρ(z, w)

for every function f ∈ BH∞ . As a consequence the inequality |f(z)− f(w)| ≤ 2ρ(z, w) holds for
every w and z in D.
If ζ is an element of Eε then

ρ
(
ϕ(ζ), rϕ(ζ)

)
=

(1− r)|ϕ(ζ)|
1− r|ϕ(ζ)|2

≤ 1− r
1− r(1− ε)2

.

One can choose 0 < r < 1 satisfying supEε
ρ
(
ϕ(ζ), rϕ(ζ)

)
< ε/2, and therefore∣∣f(ϕ(ζ)

)
− f

(
rϕ(ζ)

)∣∣ ≤ 2 sup
Eε

ρ
(
ϕ(ζ), rϕ(ζ)

)
≤ ε

for all ζ ∈ Eε and for every function f in the closed unit ball of H∞. It follows from these
estimates and (4.1) that

‖uCϕ − uCrϕ‖q ≤ sup
‖f‖∞≤1

(∫
Eε

|u(ζ)|qεq dm(ζ) +

∫
T\Eε

2q|u(ζ)|q dm(ζ)

)
≤ εq‖u‖qq + 2q

∫
T\Eε

|u(ζ)|q dm(ζ).

Make ε tend to zero to deduce the upper estimate. �

Let’s turn to the lower estimate:

Proposition 4.3. Suppose that u ∈ Hq. Then

‖uCϕ‖e ≥
1

2

(∫
Eϕ

|u(ζ)|q dm(ζ)

) 1
q

.

Proof. Take a compact operator K ∈ B(H∞, Hq). Since the sequence (zn)n∈N is bounded
in H∞, there exists an increasing sequence of integers (nk)k≥0 such that (K(znk))k≥0 con-
verges in Hq. For any ε > 0 one can find N ∈ N such that for every k,m ≥ N we
have ‖Kznk −Kznm‖q < ε. If 0 < r < 1, we note gr(z) = g(rz) for a function g defined on D.
Take k ≥ N. Then there exists 0 < r < 1 such that

‖ (uϕnk)r ‖q ≥ ‖uϕ
nk‖q − ε.
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For all m ≥ N we have

‖uCϕ +K‖ ≥
∥∥∥∥(uCϕ +K)

(
znk − znm

2

)∥∥∥∥
q

≥ 1

2
‖u (ϕnk − ϕnm)‖q −

ε

2

≥ 1

2
‖(uϕnk)r − (uϕnm)r‖q −

ε

2

≥ 1

2

(
‖(uϕnk)r‖q − ‖(uϕ

nm)r‖q
)
− ε

2

≥ 1

2

(
‖uϕnk‖q − ‖(uϕ

nm)r‖q
)
− ε.

Let us make m tend to infinity, keeping in mind that 0 < r < 1 and ‖ϕr‖∞ < 1:

‖ (uϕnm)r ‖q ≤ ‖u‖q‖(ϕr)
nm‖∞ ≤ ‖u‖q‖ϕr‖nm

∞ −→m 0.

Thus ‖uCϕ +K‖ ≥ (1/2)‖uϕnk‖q − ε for all k ≥ N. We conclude noticing that

‖uϕnk‖q =

(∫
T
|u(ζ)ϕ(ζ)nk |q dm(ζ)

) 1
q

−→
k

(∫
Eϕ

|u(ζ)|q dm(ζ)

) 1
q

.

�

5 uCϕ ∈ B(Hp, Hq) for ∞ > p > q ≥ 1

In [9], the authors give an estimate of the essential norm of a composition operator between Hp

and Hq for 1 < q < p < ∞. The proof makes use of the Riesz projection from Lq onto Hq,
which is a bounded operator for 1 < q <∞. Since it is not bounded from L1 to H1 (H1 is not
even complemented in L1) there is no mean to use a similar argument. So we need a different
approach to get some estimates for q = 1. A solution is to make use of Carleson measures.
First, we give a characterization of the boundedness of uCϕ in terms of a Carleson measure.
In the case where p > q, Carleson measures on D are characterized in [1]. Denote by Γ(ζ) the
Stolz domain generated by ζ ∈ T, i.e. the interior of the convex hull of the set {ζ} ∪ (αD),
where 0 < α < 1 is arbitrary but fixed.

Theorem 5.1 ( [1], Theorem 2.2). Let µ be a measure on D, 1 ≤ q < p <∞ and s = p/(p− q).

Then µ is a (p, q)-Carleson measure on D if and only if ζ 7→
∫

Γ(ζ)

dµ(z)

1− |z|2
belongs to Ls(T)

and µT = Fdm for a function F ∈ Ls(T).

This leads to a characterization of the continuity of a weighted composition operator be-
tween Hp and Hq:

Corollary 5.2. uCϕ : Hp → Hq is bounded if and only if G : ζ ∈ T 7→ G(ζ) =
∫

Γ(ζ)
dµϕ(z)
1−|z|2

belongs to Ls(T) for s = p/(p−q) and µϕ|T = Fdm for a certain F ∈ Ls(T), where dµ = |u|qdm
and µϕ = µ ◦ ϕ−1 is the pullback measure of µ by ϕ.

Proof. uCϕ is a bounded operator if and only if there exists c > 0 such that for
any f ∈ Hp,

∫
T |u(ζ)|q |f ◦ ϕ(ζ)|q dm(ζ) ≤ c‖f‖qp, which is equivalent (via a change of variables)

to
∫
D |f(z)|q dµϕ(z) ≤ c‖f‖qp for every f ∈ Hp. This exactly means that µϕ is a (p, q)-Carleson

measure. This is equivalent by Theorem 5.1 to the condition announced. �
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If f ∈ Hp, the Hardy-Littlewood maximal non tangential function Mf is defined by Mf(ζ) =
supz∈Γ(ζ) |f(z)| for ζ ∈ T. For 1 < p <∞, M is a bounded operator from Hp to Lp and we will
denote its norm by ‖M‖p. The following lemma is the analogue version of Lemma 2.6 for the
case p > q.

Lemma 5.3. Let µ be a positive Borel measure on D. Assume that µ is a (p, q)-Carleson measure
for 1 ≤ q < p∞. Let 0 < r < 1 and µr := µ|D\rD. Then µr is a (p, q)-Carleson measure, and

there exists a positive constant C such that for every f ∈ Hp,∫
D
|f(z)|q dµr(z) ≤ (‖F‖s + C‖M‖qp‖Gr‖s)‖f‖qp

where dµT = Fdm and Gr(ζ) =
∫

Γ(ζ)
dµr(z)
1−|z|2 . In addition, ‖Gr‖s → 0 as r → 1.

Proof. Being a (p, q)-Carleson measure only depends on the ratio p/q (see [1], Lemme 2.1),
so we have to show that µr is a (p/q, 1)-Carleson measure.
It is clear that Gr ≤ G ∈ Ls(T). Moreover dµr|T = dµT = Fdm ∈ Ls(T). Corollary 5.2 ensures

the fact that µr is a (p, q)-Carleson measure.
Let f be in Hp. Then∫

T
|f(ζ)|q dµr(ζ) =

∫
T
|f(ζ)|q dµ(ζ) =

∫
T
|f(ζ)|q F (ζ) dm(ζ)

≤
(∫

T
|f(ζ)|p dm(ζ)

) q
p

‖F‖s

≤ ‖f‖qp‖F‖s (5.1)

using Hölder’s inequality with conjugate exponents p/q and s.
For z 6= 0, z ∈ D, note Ĩ(z) = {ζ ∈ T | z ∈ Γ(ζ)}. In other words ζ ∈ Ĩ(z) ⇔ z ∈ Γ(ζ).

Then m
(
Ĩ(z)

)
≈ 1− |z| and

∫
D
|f(z)|q dµr(z) ≈

∫
D
|f(z)|q

(∫
Ĩ(z)

dm(ζ)

)
dµr(z)

1− |z|2

=

∫
T

∫
Γ(ζ)
|f(z)|q dµr(z)

1− |z|2
dm(ζ)

≤
∫
T
Mf(ζ)q

∫
Γ(ζ)

dµr(z)

1− |z|2
dm(ζ)

where Mf(ζ) = supz∈Γ(ζ) |f(z)| is the Hardy-Littlewood maximal non tangential function. We
apply Hölder’s inequality to obtain∫

D
|f(z)|q dµr(z) ≤ C‖Mf‖qp‖Gr‖s ≤ C‖M‖qp‖Gr‖s‖f‖qp. (5.2)

where C is a positive constant. Combining (5.1) and (5.2) it follows that∫
D
|f(z)|q dµr(z) ≤ (‖F‖s + C‖M‖qp‖Gr‖s)‖f‖qp.

It remains to show that Gr tends to zero in Ls(T) when r tends to 1. We will make use of
Lebesgue’s dominated convergence theorem. Clearly we have 0 ≤ Gr ≤ G ∈ Ls(T), so we need
to show that Gr(ζ) → 0 as r → 1 for m−almost every ζ ∈ T. Let A = {ζ ∈ T | G(ζ) <∞}.
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It is a set of full measure (m(A) = 1) since G ∈ Ls(T). Write Gr(ζ) =
∫

Γ(ζ) fr(z) dµ(z)

with fr(z) = 1ID\rD(z)(1− |z|2)−1, z ∈ Γ(ζ). For every ζ ∈ A one has

|fr(z)| ≤
1

1− |z|2
∈ L1 (Γ(ζ), µ) since ζ ∈ A,

fr(z)−→
r→1

0 for all z ∈ Γ(ζ) ⊂ D.

Lebesgue’s dominated convergence theorem in L1 (Γ(ζ), µ) ensures that Gr(ζ) = ‖fr‖L1(Γ(ζ),µ)

tends to zero as r tends to 1 for m−almost every ζ ∈ T, which ends the proof. �

Theorem 5.4. Let uCϕ be a bounded operator from Hp to Hq, with ∞ > p > q ≥ 1. Then

‖uCϕ‖e ≤ 2‖Cϕ‖1/qp/q

(∫
Eϕ

|u(ζ)|
pq
p−q dm(ζ)

) p−q
pq

,

where ‖Cϕ‖p/q denotes the norm of Cϕ acting on Hp/q.

Proof. We follow the same lines as in the proof of the upper estimate in Proposition 2.4: we
have the decomposition I = KN +RN in B(Hp), where KN is the convolution operator by the
Fejér kernel, and

‖uCϕ‖e ≤ lim inf
N
‖uCϕRN‖.

We also have, for every 0 < r < 1,

‖(uCϕRN )f‖qq =

∫
D\rD

|RNf(w)|q dµϕ(w) +

∫
rD
|RNf(w)|q dµϕ(w)

= I1(N, r, f) + I2(N, r, f).

As in the p ≤ q case, we show that

lim
N

sup
‖f‖p≤1

I2(N, r, f) = 0.

The measure µϕ being a (p, q)-Carleson measure, we use Lemma 5.3 to have the following
inequality

I1(N, r, f) ≤ (‖F‖s + C‖M‖qp‖Gr‖s)‖RNf‖qp
for every f ∈ Hp. As a consequence

‖uCϕ‖e ≤ lim inf
N

(
sup
‖f‖p≤1

I1(N, r, f)

) 1
q

≤ 2(‖F‖s + C‖M‖qp‖Gr‖s)
1
q

using the fact that supN ‖RN‖ ≤ 2. Now we make r tend to 1, keeping in mind that ‖Gr‖s → 0.
We obtain

‖uCϕ‖e ≤ 2‖F‖1/qs .

It remains to see that we can choose F in such a way that

‖F‖s ≤ ‖Cϕ‖p/q

(∫
Eϕ

|u(ζ)|
pq
p−q dm(ζ)

)1/s

.

Indeed, if f ∈ C(T) ∩Hp/q, we apply Hölder’s inequality with conjugates exponents p/q and s
to have∣∣∣∣∫

T
f dµϕ,T

∣∣∣∣ =

∣∣∣∣∣
∫
Eϕ

|u|qf ◦ ϕ dm

∣∣∣∣∣ ≤
∫
Eϕ

|u|q|f ◦ ϕ| dm ≤ ‖Cϕ(f)‖p/q

(∫
Eϕ

|u|sq dm

)1/s

,
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meaning that µϕ,T ∈
(
Hp/q

)∗
, which is isometrically isomorphic to Ls(T)/Hs

0 , where Hs
0 is the

subspace of Hs consisting of functions vanishing at zero. If we denote by N(µϕ,T) the norm

of µϕ,T viewed as an element of
(
Hp/q

)∗
, then one can choose F ∈ Ls(T) satisfying ‖F‖s =

N(µϕ,T) ≤ ‖Cϕ‖p/q
(∫

Eϕ
|u|pq/(p−q) dm

)1/s
and µϕ,T = F dm (see for instance [11], p. 194).

Finally we have

‖uCϕ‖e ≤ 2‖Cϕ‖1/qp/q

(∫
Eϕ

|u(ζ)|
pq
p−q dm(ζ)

) p−q
pq

.

�

Although we haven’t be able to give a corresponding lower bound of this form for the essential
norm of uCϕ, we have the following result:

Proposition 5.5. Let 1 ≤ q < p <∞, and assume that uCϕ ∈ B(Hp, Hq). Then

‖uCϕ‖e ≥

(∫
Eϕ

|u(ζ)|q dm(ζ)

) 1
q

.

Proof. Take a compact operator K from Hp to Hq. Since it is completely continuous, and
the sequence (zn) converges weakly to zero in Hp, (K(zn))n converges to zero in Hq. Hence

‖uCϕ +K‖ ≥ ‖(uCϕ +K)zn‖q ≥ ‖uCϕ(zn)‖q − ‖K(zn)‖q

for every n ≥ 0. Taking the limit as n tends to infinity, we have

‖uCϕ‖e ≥

(∫
Eϕ

|u(ζ)|q dm(ζ)

) 1
q

.

�

References

[1] O. Blasco and H. Jarchow. A note on Carleson measures for Hardy spaces. Acta Sci.
Math. (Szeged) 71 (2005), 371-389.

[2] L. Carleson Interpolations by bounded analytic functions and the corona problem. Ann.
of Math. (2) 76 (1962), 547-559.

[3] M. D. Contreras and A. G. Hernández-D́ıaz Weighted Composition Operators be-
tween Different Hardy Spaces. Integr. eq. oper. theory 46 (2003), 165-188.

[4] C. C. Cowen and B. D. MacCluer. Composition operators on spaces of analytic
functions. CRC Press, Boca Raton, 1995.
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