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Abstract. This work concentrates on improving the robustness of con-
straint solvers by increasing the propagation strength of constraint mod-
els in a declarative and automatic manner. Our objective is to efficiently
identify and remove shavable values during search. A value is shavable if
as soon as it is assigned to its associated variable an inconsistency can
be detected, making it possible to refute it. We extend previous work
on shaving by using different techniques to decide if a given value is an
interesting candidate for the shaving process. More precisely, we exploit
the semantics of (global) constraints to suggest values, and reuse both
the successes and failures of shaving later in search to tune shaving fur-
ther. We illustrate our approach with two important global constraints,
namely alldifferent and sum, and present the results of an experimen-
tation obtained for three problem classes. The experimental results are
quite encouraging: we are able to significantly reduce the number of
search nodes (even by more than two orders of magnitude), and improve
the average execution time by one order of magnitude.

1 Introduction

Constraint Programming (CP) has become one of the dominant approaches to
model and solve real-world combinatorial problems [1]. However, while CP has
many success stories, it is believed that improving the usability of the technology
is a key factor in its future success [2]. This is largely due to the fact that using
constraints technology often requires considerable expertise in the use of its tools.
In this paper, we aim at improving CP usability by using constraints semantics
to augment propagation strength of the constraint model, without excessive
computational cost, through means of shaving.

A shavable value is a value which, if assigned to the variable it is associ-
ated with followed by constraint propagation, entails an inconsistency. Shaving
(introduced in the scheduling context [3, 4]) can be defined as the attempt of
identifying and removing some shavable values. Shaving, as presented in [5],
has two different flavors. The first one assumes that shaving always pays off no
matter how many values are tested. Moreover, any shaved value will cause the
re-execution of shaving for all variables which may then be susceptible to shav-
ing again. Shaving applied in such a manner makes the problem Singleton Arc
Consistent (SAC) [6].



In this work, we concentrate on a different flavor of shaving, which tries only
some values in the shaving process. By reducing the number of values being
evaluated, we hope to reduce the computational load without compromising too
much on the quality of pruning. In the ideal case, we would like to achieve SAC
by evaluating only values which are not SAC. The work presented in [5] points
out the need for good heuristics which choose the values used in shaving. Here,
we propose to use (global) constraints to suggest values to be used in the shaving
procedure. In this way, we can utilize the constraint semantics to achieve a higher
success ratio of shaving and an improved performance of search.

Our motivation is that any additional cost-effective propagation obtained
without explicit user involvement will improve the quality of CP based ap-
proaches especially when the user is not fully aware of the intricate relation-
ship between model and search. Although being different, this can be related (in
terms of objectives) to recent works about constraint acquisition [7, 8]. Indeed,
learning so-called implied constraints is just another means to improve the prop-
agation capabilities of a constraint solver, without any expertise requirement on
the users.

Interestingly, the work presented in [9] also proposes some form of constraint
guided shaving. It is mainly implemented for global cardinality constraint (GCC)
and as a result of successful shaving attempts, implied constraints in the shape of
Among are added to the model. GCC is a generalization of alldifferent. Therefore,
this approach is also concerned with alldifferent. In the context of alldifferent,
this technique concentrates on values which, if successfully shaved, create Hall
intervals which can lead to strengthening alldifferent propagation. This approach
evaluates multiple values, therefore it is more costly in terms of finding values
and shaving effort. Unfortunately, there is little experimental results to support
the claim that shaving done in such a manner actually provides efficiency gains.
In addition, in case of GCC while shaving, cheaper/weaker propagator of GCC
is employed to reduce the cost of shaving as all values for cardinality variables
are tried to be shaved.

We concentrate on proposing shaving in such a manner so tweaking the level
of consistency strength is not required to recover costs, as well as we propose a
complete framework where the effects of past multiple shaving attempts across
multiple constraints are combined to improve future shaving attempts.

The remainder of this paper is organized as follows. After some preliminaries
in Section 2, Section 3 presents the shaving framework. An illustration of how
constraints can be used to propose values for shaving is presented in Section 4.
Section 5 presents a detailed empirical evaluation. We conclude in Section 6.

2 Preliminaries

A Constraint Network (CN) P is a pair (X , C ) where X is a finite set of n

variables and C a finite set of e constraints. Each variable X ∈ X has an
associated domain, denoted dom(X), that contains the set of values allowed for
X . Each constraint C ∈ C involves an ordered subset of variables of X and has



an associated relation3, denoted rel(C), which is the set of tuples allowed for
this subset of variables. This subset of variables is the scope of C and is denoted
scp(C). The arity of a constraint is the number of variables in its scope. A binary
constraint has arity 2.

A solution to a CN is an assignment of a value to each variable such that
all the constraints are satisfied. A CN is said to be satisfiable iff it admits at
least one solution. The Constraint Satisfaction Problem (CSP) is the NP-hard
task of determining whether a given CN is satisfiable or not. A CSP instance
is defined by a CN which is solved either by finding a solution or by proving
unsatisfiability.

Usually, the domains of the variables of a given CN are reduced by removing
inconsistent values, i.e. values that cannot occur in any solution. In particu-
lar, it is possible to filter domains by considering some properties of constraint
networks. These properties are called domain-filtering consistencies [10, 11]. By
exploiting consistencies, the problem can be simplified (and even, sometimes
solved) while preserving solutions.

Given a consistency φ, a CN P is said to be φ-consistent iff the property φ

holds on P . Enforcing a domain-filtering consistency φ on a CN means taking
into account inconsistent values (removing them from domains) identified by φ

in order to make the CN φ-consistent. The new obtained CN, denoted by φ(P ),
is called the φ-closure4 of P . If there exists a variable with an empty domain in
φ(P ) then P is clearly unsatisfiable, denoted by φ(P ) = ⊥.

A pair (X, a) with X ∈ X and a ∈ dom(X) will be called a value (of P ).
The set of values of P that can be built from a constraint C is values(C) =
{(X, a) | X ∈ scp(C) ∧ a ∈ dom(X)}. P |X=a denotes the CN obtained from P

after removing all values but a from dom(X). Shaving can then be defined as
the attempt of identifying and removing some shavable values.

Definition 1. Let P be a CN, and φ be a consistency. A value (X, a) of P is
φ-shavable iff φ(P |X=a) = ⊥.

An attempt to shave value a from the domain of variable X is then performed
in the following manner. First, variable X is assigned the value a. Second, the
consistency φ is enforced. If in the process of reaching the consistency fix-point,
one domain becomes empty, then it clearly indicates that assigning a to X does
not lead to any solution. Therefore, it is possible to remove a from the domain
of X . On the other hand, if assigning a to X does not entail a domain wipe-
out, then the effects of constraint propagation (while enforcing φ) as well as
the assignment of a to X must be retracted. The shaving attempt has failed.
Sometimes, when the context is clear or unimportant, we will omit φ to simply
refer to shavable values.

The most studied and employed consistency is generalized arc consistency
(GAC), simply called arc consistency (AC) when constraints are binary. For a

3 The introduction of rel(C) does not prevent us from exploiting intensional represen-
tation of constraints.

4 We assume here that φ(P ) is unique. This is the case for usual consistencies [12].



formal definition, see e.g. [12]. Notice that a GAC-shavable value is a value that
is not singleton arc consistent (SAC).

Definition 2. Let P be a CN. A value (X, a) of P is singleton arc-consistent
(SAC) iff GAC(P |X=a) 6= ⊥.

Consider a CN composed of three variables X1, X2, X3 such that dom(X1) =
{1, 3}, dom(X2) = {1, 2}, and dom(X3) = {2, 5}, and two constraints C1 :
alldifferent(X1, X2, X3) and C2 : X3 = X1 + X2. The first constraint imposes
that all variables must be assigned different values, whereas the second one
imposes that X3 is equal to the sum of X1 and X2. If value (X1, 1) is tested for
shaving then alldifferent and sum constraints will together discover inconsistency
(when enforcing GAC) leading to the removal of 1 from dom(X1). This successful
shaving attempt will cause further domain reductions making dom(X2) = {2}
and dom(X3) = {5}. On the other hand, if value (X1, 3) had been tested for
shaving, no inconsistency would have been detected. In other words, (X1, 1) is
shavable, whereas (X1, 3) is not.

Enforcing SAC on a given CN involves removing any value that is not single-
ton arc-consistent, i.e. any shavable value. This is a systematic approach which
requires to consider each value in turn. Even if there exists some sophisticated
approaches [13–15] to enforce SAC, this may be very time consuming. Maintain-
ing such a consistency during search seems quite counter-productive. This is the
reason why some limited forms of SAC have been devised such as bound SAC
and existential SAC [16]. In this paper, contrary to previous works, we exploit
the semantics of constraints to guide the shaving process.

3 Framework for Constraint-guided Shaving

In this section, we introduce the principles of constraint-guided shaving, before
introducing a general algorithm and discussing some extensions.

3.1 Principles

Backtracking search is commonly employed for solving CSP instances. It corre-
sponds to a depth-first search in order to instantiate variables and a backtracking
mechanism when dead-ends occur.

With binary branching, at each step of the search, a pair (X, a) is selected
where X is an unassigned variable and a a value in dom(X), and two cases are
considered: the assignment X = a and the refutation X 6= a. Classically, we
start by assigning variables before refuting values. We then explore a binary
tree where left children correspond to variable assignments and right children to
value refutations.

The motivations for the choice of binary branching (an alternative is d-way
branching) are numerous. First, binary branching is commonly used in industry
solvers. Second, there is a number of research work (e.g. [17]) which advocates the
use of a binary branching scheme. Roughly speaking, binary branching is more



general as it does not prohibit switching to a different variable after exploring
only one variable-value pair.

With shaving, at each node, we not only enforce a given consistency φ as
usual to prune some portions of the search space5, but also make some attempts
to discover shavable values. This work incorporates a number of simple principles
or techniques to increase the success ratio of shaving as well as the impact of
shaved values on further pruning. The worst case scenario for shaving is trying
many different values and not being able to shave them. This incurs only cost
and does not give any benefit to the search. Besides, shaving in order to be
efficient must at least shave some values from variable domains. However, please
keep in mind that reducing the domains of the variables through shaving does
not necessarily improve the overall search efficiency. The shaved values could
have been removed with much smaller effort deeper in a search tree (even if it
may be repeated several times).

In order to control the shaving overhead and to increase the effects of shaved
values, we propose to exploit the semantics of constraints. More precisely, each
constraint is asked to select one value to be used in shaving. Each constraint
should aim at proposing one value which, if shaved, has the highest impact
on the immediate pruning strength of the constraint. Moreover, we hope that
increasing the pruning capabilities of the guiding constraints will in turn increase
the propagation of the other constraints.

Another principle that we adopt, to limit shaving overhead, is the restriction
of constraint advice for shaving only in search nodes which correspond to left
children. The argument for this restriction is quite simple: the equality constraint
(a variable assignment) added to reach the left child is usually much tighter than
the negation of this constraint (a value refutation) added to reach the right child.
Therefore, the difference between the root and the left child will most likely be
larger than the difference between the root and the right one. We speculate that
the left child has more chances to create new shaving capabilities than the child
on the right.

Finally, the last technique to improve the success ratio of shaving is the use
of a set (called recentlyUnshaved in the algorithm below) which records all
values for which shaving attempts have recently failed. If a constraint proposes
the value (X, a) which belongs to this set then (X, a) is skipped, but it is also
removed from the set. Therefore, if the value is proposed again later in the search
then it may be tried again.

3.2 Algorithm

The pseudo-code for binary search with shaving is depicted in Algorithm 1. This
is an algorithm with two embedded recursive calls. In this paper, we use the terms
search node, decision, wrong decision, and backtrack as defined in [19]. This algo-
rithm takes four parameters: P , leftChild, recentlyShaved, recentlyUnshaved

5 For example, MAC [18] is the backtracking search algorithm that maintains (gener-
alized) arc consistency at each step of search. So, we have φ = (G)AC.



Algorithm 1: φ-ShavingSearch

Input:
P - the constraint network (X , C ),
leftChild - the Boolean specifying if P corresponds to a left child

Input/Output:
recentlyShaved - the set of values that were recently shaved,
recentlyUnshaved - the set of values that recently failed to be shaved

Output :
true/false to specify if a solution to P was found

P ← φ(P )1

if P = ⊥ then2

return false3

if ∀X ∈ X , |dom(X)| = 1 then4

return true5

locallyShaved← ∅6

if leftChild = true then7

foreach constraint C in C do8

(X, a)← C.getV alueForShavingAttempt()9

if (X, a) ∈ recentlyUnshaved then10

recentlyUnshaved← recentlyUnshaved \ {(X, a)}11

else12

if φ(P |X=a) = ⊥ then13

P ← φ(P |X 6=a)14

if P = ⊥ then15

recentlyShaved← recentlyShaved ∪ locallyShaved16

return false17

else18

locallyShaved← locallyShaved ∪ {(X, a)}19

else20

recentlyUnshaved← recentlyUnshaved ∪ {(X, a)}21

else22

foreach (X, a) ∈ recentlyShaved do23

if φ(P |X=a) = ⊥ then24

P ← φ(P |X 6=a)25

if P = ⊥ then26

return false27

else28

recentlyShaved← recentlyShaved \ {(X, a)}29

recentlyUnshaved← recentlyUnshaved ∪ {(X, a)}30

(X, a)← selectV ariableV alue()31

if φ-ShavingSearch(P |X=a, true, locallyShaved, recentlyUnshaved) then32

return true33

if φ-ShavingSearch(P |X 6=a, false, locallyShaved, recentlyUnshaved) then34

return true35

recentlyShaved← recentlyShaved ∪ locallyShaved36

return false37



that denote respectively the given constraint network, a Boolean value speci-
fying if the current search node is a left child (i.e. reached after assigning a
variable), the set of values which were recently successfully shaved, and the set
of values which were recently attempted to be shaved without any success. The
two first parameters are handled in the input mode whereas the parameters
recentlyShaved and recentlyUnshaved are handled in the input/output mode.
This algorithm returns true if there is a solution to the given constraint network.

Initially, the consistency φ is enforced (see line 1). If a failure is detected (see
line 2), false is returned since no solution can be found. Otherwise, if all domains
of variables are singleton (see line 4), it means that a solution has been found.
Notice that we suppose here that φ is a consistency that is at least as strong
as backward checking, i.e. (at least) allows to detect any unsatisfied constraint
involving variables which have all a singleton domain. This is quite a reasonable
assumption.

If P corresponds to a constraint network reached on a left child (see lines 7
to 21), then we ask each constraint to propose one value for shaving attempt
(line 9), and take it into account except if we recently failed to shave it (lines
10 and 11). If adding constraint X = a and propagating (using consistency φ)
makes the problem inconsistent, then we can shave value a from the domain of
X and propagate this deletion. If this shaving makes the problem inconsistent
(lines 14 and 15), then the recentlyShaved set is updated and search is forced
to backtrack. If shaving value (X, a) does not entail inconsistency then we can
continue search and update the locallyShaved set (line 19). Finally, if the shaving
attempt was unsuccessful then the recentlyUnshaved set is updated (line 21).

If P corresponds to a constraint network reached on a right child (see lines
22 to 30), we simply check for shaving all values in recentlyShaved. Indeed, if
shaving guided by constraints is always performed after variable assignments,
one can note that the results of these shaving attempts may influence shaving
done in the remaining parts of the search (e.g. siblings). This is the reason why
we use the recentlyShaved set to perform shaving in right children. Each value
(X, a) from this set is then attempted to be shaved. If (X, a) is shavable and
removing it causes inconsistency then the search is forced to backtrack. On the
other hand, if the shaving attempt was unsuccessful, then both recentlyShaved

and recentlyUnshaved are updated (lines 29 and 30).

Here, we speculate that both children are similar enough to actually make it
useful to use shavable values from left child when entering the child on the right.
Moreover, if a value was successfully shaved in both children then this value is
added to the set of shavable values of the root node (effectively, by not executing
line 29 in the right child and executing line 36 upon exiting the parent of the
right child). Therefore, the values which were successfully shaved deep in the left
subtree will be tried in the right subtree. We restrict shaving speculation to only
right children, as upon entering the left child the shavable list does not contain a
value which could be used for speculation. The left child does not have a sibling
which was executed earlier and all values which were successfully shaved by the
parent node of the left child are still shaved.



To finish the description of the algorithm, we have to consider the recursive
calls. Lines 31 to 35 allows to select a variable and a value for branching (using
variable and value ordering heuristics) and to proceed to the left and right chil-
dren. Before backtracking from the current node (line 37) the set recentlyShaved

is updated (line 36) by adding to it all values which were successfully shaved in
this search node.

3.3 Extensions

Guiding constraints Even if the algorithm is presented in such a way that any
constraint participates to shaving, it may be more realistic to consider that only
a subset of the constraints of the network are solicited for shaving attempts.
For example, we may only consider (global) constraints whose semantics renders
easy or natural such an exploitation. We discuss this aspect in the next section.

Quick Shaving It is rather easy to further incorporate the quick shaving tech-
nique proposed in [5]. In order to simplify the presentation of this incorpora-
tion to Algorithm 1, we use a global Boolean variable leftChildWrongDecision

which is set to true only when the left child was a wrong decision. To achieve
this, we only need to insert the following instructions between lines 2 and 3:

if leftChild = true then
LeftChildWrongDecision← true

When the left child led to a dead end immediately then the search proceeds
to the following instructions (inserted between lines 33 and 34) which implement
Quick shaving:

if leftChildWrongDecision then
locallyShaved← locallyShaved ∪ {(X, a)}
recentlyUnshaved← recentlyUnshaved \ {(X, a)}
leftChildWrongDecision← false

In short, Quick shaving adds a value which led to a wrong decision to the
recentlyShaved set just before the search exits the parent node of the wrong
decision.

4 Constraint Guidance

We now discuss about constraint guidance for shaving. We concentrate on global
constraints such as sum and alldifferent since they are commonly used in many
problem classes.



We first need to introduce pruning events (see for example [20]) which can
be specifically treated to speed up constraint propagation. The bound event oc-
curs if the minimal or maximal value from the variable domain is removed. The
ground event occurs if all but one value are removed from the domain. If the
domain of a variable shrinks in another way then it qualifies as event any. It is
often the case that the design of the constraint propagation algorithms makes it
impossible to infer any additional domain pruning in case of occurrence of the
event any. Therefore, we adapted our suggestion mechanisms within constraints
to prefer/suggest values which cause a bound or ground event if a value is suc-
cessfully shaved. This preference increases the chance of additional inferences
based on just shaved values.

4.1 Alldifferent

Our example uses the permutation constraint to demonstrate how the internal
data structures maintained by this global constraint can be used to propose val-
ues for shaving. A permutation constraint is applicable when the numbers of
variables and values are equal and we wish to ensure that each variable takes a
different value. Therefore, the permutation constraint can be regarded as a spe-
cial case of the alldifferent constraint [21]. A filtering algorithm for permutation
can be readily derived from the filtering algorithm for alldifferent. The alldif-
ferent constraint maintains an internal data structure called the value graph to
achieve generalized arc consistency (GAC) [21]. The value graph is a bipartite
graph in which the edges link variables to values in their current domain. An
example of the value graph is presented in Figure 1. This value graph can be
efficiently reused to identify values that can be assigned to a small number of
variables. In our example, thanks to the value graph an important observation
can be made. We can observe that all variables can be assigned at least three
different values, however value 1 can be assigned to only two variables. Based on
this knowledge, we can choose variable X1 and value 1 or variable X2 and value
1 for shaving, hoping that the chances of successful shave will increase.

1

2

3

4

X2

X1

X3

X4

Fig. 1. An example of a value graph.

The suggestion mechanism of the alldifferent constraint considers all vari-
ables within a constraint scope which have a domain consisting of two elements,



as well as all values which are in the domain of only two variables. For any entity
ε (either a variable or a value) such that |dom(ε)| = 2, it computes the following
metric m, where m = min(|dom(el1)|, |dom(el2)|), where dom(ε) = {el1, el2}.
We abuse a notation here by using dom(a) to specify the set of variables which
can be assigned to value a. The variable or value which has the highest value
for metric m is chosen to participate in the proposed variable-value pair for
shaving. For example as presented in Figure 1, 1 is the entity with the highest
value for metric m (trivially satisfied as there is only one variable/value with the
domain equal 2). Therefore value 1 is retained. dom(1) contains two variables
{X1, X2}. The variable X2 with larger domain is chosen for shaving. Therefore,
for the given example, the value (X2, 1) is proposed for shaving. If there are
multiple candidates among variables and values then the constraint chooses a
value which produces a ground or bound event when successfully shaved. If there
is no variable/value with domain consisting of two elements then alldifferent will
not propose any value for shaving. In the process of selection, the preferred value
is the one which, if shaved, greatly enhances the immediate propagation of the
proposing constraint.

4.2 Sum

The implementation of the sum constraint in most constraint systems is rather
simple. First, a propagator based on bound events is used as it provides decent
propagation at low cost. It takes lower and upper bounds for all variables and
checks for each bound value if there exists an assignment to other variables
which satisfies the constraint. If such an assignment does not exist then the
bound is tightened. This is the approach implemented in the solver used in the
experiments.

The guiding function within the sum constraint analyzes the domains of the
variables in its scope and comes up with a value within a domain of a variable
which, if removed, causes the maximum amount of pruning in the other variables.
The likely candidates are the domains like {1, 10..20} (resp. {1..10, 20}), where
there is a large gap between the smallest (resp. the largest) element in the domain
and the one which follows (resp. precedes). In this example, removing element 1
(20) from the domain will significantly tighten the bounds of a variable, probably
causing some domain reductions in other variables.

Sum constraint computes for every variable X within constraint scope the
following metrics, dmin and dmax. Given dom(X) = {v1, v2, ..., vl−1, vl} then
dmin = v2 − v1 and dmax = vl − vl−1. The variable Xi, for which we have
m = max(dmin(Xi), dmax(Xi)) maximized and greater than 1, is chosen for
shaving. If dmin(xi) is greater than dmax(xi) then the value (Xi, v1) is proposed
for shaving, otherwise it is value (Xi, vl).

5 Experimental Results

In order to demonstrate the practical interest of the approach introduced in
this paper, we have conducted an experimentation using different shaving ap-



proaches. We have used four metrics to compare the different approaches. They
respectively correspond to the number of search nodes (# Nodes), the number of
values tested for shaving (# Tests), the success shaving ratio which corresponds
to the percentage of values which were shaved, and the execution time (CPU)
given in seconds. For all metrics, except for the shaving ratio, we computed both
average and median values (denoted by Avg and Med).

All experiments were performed on laptop with Intel Core Duo 2.0 GHz
processor and 1GB of RAM running Linux Kubuntu 6.10. We have used in
experiments the Java-based JaCoP solver version 2.3, which is available for free
for non-commercial purposes [22]. We have considered three problem classes,
namely Quasigroup Completion Problems (QCP), Nontransitive Dice Problems
(NTD), and Magic Squares Problems (MSP). The different approaches are:

– NoShaving: JaCoP alone,
– QShaving: JaCoP embedding the quick shaving technique,
– GShaving: JaCoP embedding our constraint-guided shaving technique,
– GQShaving: JaCoP embedding both the quick shaving and the constraint-

guided shaving techniques.

We will show that in all problem classes, we can obtain a reduction in the
number of search nodes. This reduction in all problem classes translates to a
time reduction. We will show that different shaving approaches complement
each other.

5.1 Nontransitive Dice Problems

NTD(d,s) represents a problem involving dices. Here, d denotes the number of
dice and s denotes the number of faces on each die. All faces are assumed to be
different, so there is no possibility of a draw when two dice are rolled. In short,
the solution to this problem assigns to each face of each die a unique value.
Moreover, we are looking for an assignment of dice faces, such that for each
die we can pick up another die and reach the maximum probability of winning
with the first chosen die. The optimal solution for NTD(3,6) with the winning
probability 21/36 is presented in Figure 2. The arrows represent the winning
relation (e.g. the die on the left is winning over the die in the middle). The
optimization (maximization of the minimal winning probability) is achieved by
restarts with stepwise increase of the maximal probability. As soon as for a given
probability no solution exists, the previous solution is proved to be optimal. By
arranging experiments in such a way, we ensure that each search solves the same
series of sub-problems and each search finds and proves the optimal solution.

The model of this problem is not trivial since it contains dual viewpoints,
symmetry breaking constraints, and global constraints such as sum and alld-
ifferent. In the process of experimentation with different search heuristics, we
found the best one for JaCoP alone. This heuristic orders the face variables by
taking them one by one from each die. The face variables taken from each die are
ordered in the fashion which maximizes constraint propagation. In addition, this



Table 1. Experimental results for Nontransitive Dice Problem.

# Nodes # Tests Shaving CPU [s]
Approach #Solved Avg Med Avg Med Ratio Avg Med

NoShaving 22 9, 935, 361 92, 915 0 0 − 667 8.57

GShaving 26 1, 191, 156 7, 650 54, 302 440 49 104 3.50

QShaving 26 583, 125 5, 932 105, 578 1, 117 43 70 3.02

GQShaving 26 217, 398 4, 381 51, 706 1, 072 43 32 3.11

1 9 2 14

15

16

6 7 8

11

12

13

3 4 5 10

17

18

Fig. 2. NTD(3, 6) and one of the optimal solutions

heuristic uses middle value ordering which starts with values from the middle of
the domain.

Table 1 presents results for 26 problem instances, namely NTD(3, {4, 5, 6, 7,
8, 9, 10}), NTD(4, {4, 5, 6, 7, 8, 9, 10}), NTD(5, {4, 5, 6, 7, 8}), NTD(6, {4, 5,
6, 7}), and NTD(7, {4, 5, 6}). JaCoP alone (NoShaving) was not able to solve 4
problems with a generous backtrack limit of 10 millions backtracks. Both shaving
techniques run alone (QShaving and GShaving) already obtain substantial time
gains when solving the same problem set. However, it is when both shaving
techniques are combined that a 20 times reduction of average execution time is
obtained. These experimental results clearly show that we are able to improve
the pruning strength of the constraint model by using shaving techniques.

5.2 Quasigroup Completion Problems

A quasigroup is a set Q with a binary operation ⋆ : Q×Q → Q, such that for all a

and b in Q there exist unique elements in Q such that a⋆x = b and y⋆a = b. The
cardinality of the set, n = |Q|, is called the order of the quasigroup. A quasigroup
can be viewed as an n × n multiplication table defining a Latin square, which
must be filled with unique integers on each row and column. The Quasigroup
Completion Problem (qcp) is the problem of completing a partially filled Latin
square. We will concentrate on one of many possible constraint models which uses
alldifferent global constraint to ensure uniqueness of elements across columns
and rows. In our work, we use a generalized arc consistency (GAC) version of
the alldifferent constraint. One of the best variable orderings, given the fact that
the model consists only of global constraints, is based on the minimal domain
size. We have used as value ordering heuristic the one which chooses the minimal



value from the current domain. The QCP problems were generated using Carla
Gomes generator. We have generated 3000 problems for QCP of order 25 at
difficulty phase transition for sat balanced QCP. The generator can produce
unsat instances for this type of QCP problems therefore we retained only the
sat instances which gave the total number of instances equal to 1214.

Table 2. Experimental results for QCP of order 25

# Nodes # Tests Shaving CPU [s]
Approach #Solved Avg Med Avg Med Ratio Avg Med

NoShaving 1, 103 437, 321 123, 070 0 0 − 264.59 74.44

QShaving 1189 212, 372 47, 236 88, 931 19, 238 32 167.90 38.33

GShaving 1, 214 12, 972 3, 113 92, 737 22, 280 18 92.86 24.20

GQShaving 1, 214 12, 681 3, 051 94, 006 22, 520 18 61.49 17.23

Table 2 presents experimental results for this problem class. JaCoP alone
(NoShaving) had a 10 times increased search node limit yet it still could not
solve 9% of the problems for which more than 1000 seconds on average were
not sufficient to solve them. We were initially running experiments without any
node limit. Unfortunately, we were not able to get results for some instances
even within days therefore we had to revert to a node limit and present approx-
imate results (i.e. results given for NoShaving and QShaving must be consid-
ered as lower bounds of real values). QShaving was given the same node limit
as NoShaving. All remaining shaving approaches were given only one tenth of
search nodes limit given to the heuristic without shaving.

The guided shaving (GShaving, GQShaving) compares favorably against No-
Shaving and QShaving. First, it solves all the problems in a significant smaller
numbers of search nodes even if we count shaving attempts as search nodes.
Assuming that unsolved instances are solved at the node limit we can still see
significant reduction in median time. We run QShaving with a node limit equal
to NoShaving method, because if given the same node limit as other shaving
approaches it would not be able to solve 25% of the problems. QShaving takes
on average more than 16 times more nodes and 80% more time when compared
to GShaving results. Moreover, QShaving still despite 10-fold increase of node
limit can not solve 2% of problems making it also less robust than GShaving. It is
interesting to see that guided shaving significantly improves the quality of quick
shaving since all problems are solved. On the other hand, quick shaving changes
the distribution of shaving attempts (there are more of them in the lower parts
of the search tree) as well as makes shaving attempts more compatible with
constraint consistency mechanisms (reuse of previous work is more likely, the
consistency function of alldifferent is highly incremental), resulting in further
reduction of time even if all other metrics are similar.



5.3 MagicSquares Problems

An order n magic square is a n×n matrix containing the numbers 1 to n2, with
each row, column and the main diagonals summing up to the same number.
The constraint model of this problem consists of one alldifferent constraint and
2n + 2 sum constraints. Therefore, the guiding for this problem class is mostly
performed by sum constraints.

Table 3. Experimental results for MagicSquares Problems

# Nodes # Tests Shaving CPU [s]
Approach #Solved Avg Med Avg Med Ratio Avg Med

NoShaving 6 321, 112 9, 052 0 0 − 43.43 3.06

QShaving 6 56, 751 8, 182 8, 496 920 40 10.12 3.09

GShaving 6 18, 443 5, 047 8, 936 2, 258 56 6.55 3.70

GQShaving 6 14, 338 4, 765 9, 903 2, 667 53 5.69 2.83

Table 3 presents experimental results for this problem class. We have used the
variable ordering heuristic that selects the smallest domain first and the value
ordering heuristic which starts with the values from the middle of the domain.
The difficulty of the problems increases very fast. Therefore, only instances with
small n (n starting at 4) were solved. For this problem class, we can observe a
reduction in terms of the average number of search nodes as well as the aver-
age execution time. Clearly, guided shaving allows again to improve the search
robustness: it is about one order of magnitude faster than the classical search
algorithm (NoShaving) and two times faster than quick shaving (QShaving).

6 Conclusions

We have presented a shaving framework, which uses advice from (global) con-
straints. The underlying principle of constraint-guided shaving is to ask each
constraint suggesting one value which is more likely to be shaved as well as cause
more propagation when shaved. We have discussed how it can be implemented
for two important global constraints, namely alldifferent and sum. Interestingly
enough, we have also shown that the past successes and failures can be exploited
to improve shaving performance.

Constraints provide reliable guidance which always allows pruning some por-
tions of the search space while, most of the time, giving significant reduction
of execution time (one order of magnitude). Indeed, the practical results that
we have obtained on different series of problems show that using constraints for
guiding shaving increases dramatically the robustness and the efficiency of the
search algorithm, not only in terms of search nodes but also in terms of cpu time.
We have also shown that our approach is complementary to Quick shaving.
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