
On freezeing and reactivating learnt clauses

Gilles Audemard, Jean-Marie Lagniez, Bertrand Mazure, Lakhdar Säıs

To cite this version:

Gilles Audemard, Jean-Marie Lagniez, Bertrand Mazure, Lakhdar Säıs. On freezeing and
reactivating learnt clauses. 14th International Conference on Theory and Applications of Satis-
fiability Testing (SAT’11), 2011, Ann Arbor, United States. Springer, 6695, pp.188-200, 2011,
Lecture Notes in Computer Science (LNCS). <hal-00865529>

HAL Id: hal-00865529

https://hal.archives-ouvertes.fr/hal-00865529

Submitted on 24 Sep 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-Artois

https://core.ac.uk/display/52876667?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00865529

On Freezing and Reactivating Learnt Clauses

Gilles Audemard, Jean-Marie Lagniez, Bertrand Mazure, and Lakhdar Saı̈s ⋆

Université Lille-Nord de France

CRIL - CNRS UMR 8188

Artois, F-62307 Lens

{audemard,lagniez,mazure,sais}@cril.fr

Abstract. In this paper, we propose a new dynamic management policy of the

learnt clause database in modern SAT solvers. It is based on a dynamic freezing

and activation principle of the learnt clauses. At a given search state, using a

relevant selection function, it activates the most promising learnt clauses while

freezing irrelevant ones. In this way, clauses learned at previous steps can be

frozen at the current step and might be activated again in future steps of the search

process. Our strategy tries to exploit pieces of information gathered from the past

to deduce the relevance of a given clause for the remaining search steps. This

policy contrasts with all the well-known deletion strategies, where a given learned

clause is definitely eliminated. Experiments on SAT instances taken from the last

competitions demonstrate the efficiency of our proposed technique.

1 Introduction

The SAT problem, i.e. the problem of checking whether a set of Boolean clauses is

satisfiable or not, is central to many domains of computer science and artificial intelli-

gence (theorem proving, planning, non-monotonic reasoning, VLSI correctness check-

ing or knowledge-base verification and validation). During the last two decades, SAT has

gained considerable audience with the advent of a new generation of SAT solvers that

are able to solve large instances encoding real-world applications. These solvers, called

CDCL (Conflict Driven, Clause Learning) [11, 5], are based on a nice combination of

(i) clause learning [9, 10, 15], (ii) VSIDS heuristics [11] and (iii) restart policies [6, 7],

enhanced with efficient data structures (eg. Watched literals). On the theoretical side,

K. Pipatsrisawat and A. Darwiche [13] proved that modern SAT solvers formalized as

a proof system are equivalent in strength to general resolution, if the search is restarted

at each conflict. This result shows that resolution-based clause learning is an important

component of modern SAT solvers, since it pushes forward DPLL-like procedures from

tree-like to general resolution, a more powerful proof system. On the practical side, as

the set of clauses that can be derived from conflicts is of exponential size in the worst

case, several strategies have been designed to cope with this combinatorial explosion

problem. To maintain a learnt clause database of polynomial size - and consequently

perform unit propagation with reasonable cost - all these strategies dynamically reduce

the learnt database by deleting clauses considered to be irrelevant to the next search

⋆ This work is (partially) supported by ANR UNLOC project: ANR 08-BLAN-0289-01.

steps. The most popular strategy considers a learnt clause as irrelevant if its activity or

its involvement in recent conflict analysis is marginal. In [2], a static measure called

literal block distance (LBD, corresponding to the number of different levels involved

in a given learnt clause) is used to quantify the quality of learnt clauses. Clauses with

smaller LBD are considered as more relevant. Theoretically, the first unique implica-

tion point (UIP) scheme is shown to be optimal among schemes that learn an asserting

clause in terms of LBD measure [1]. The main drawback of these cleaning strategies

is that they cannot avoid the elimination of relevant learnt clauses. Their irreversible

elimination makes it possible that the same clause will be derived reapeatedly.

The problem of determining what is a useful learnt clause in advance remains very

challenging and computationally hard. In this paper, we propose a new dynamic man-

agement policy of the learnt clause database in modern SAT solvers. It is based on a

dynamic freezing and activation principle of the learnt clauses. At a given search state,

it activates the most promising learnt clauses while freezing irrelevant ones. In this

way, previously learned clauses can be discarded for the current step, but may be acti-

vated again in future steps of the search process. Our policy tries to exploit pieces of

information gathered from the past to deduce the relevance of a given clause for the

remaining search steps. This policy contrasts with all well-known deletion strategies,

where a given learned clause is definitely eliminated. In this way, a clause can be use-

less at a given step and relevant at another step of the search process. The ideal is to

freeze a learnt clause when it is not used and just to reactivate it at the time when it

could play a role in the proof.

The next part of the paper is organized as follows: section 2 introduces necessary

background. In section 3, we introduce a new relevance measure of learnt clauses,

whereas in section 4, we present our dynamic freezing and activation strategy of learnt

clauses. Before concluding, we present in section 5, an experimental comparison of our

new dynamic learnt clauses management policy with the well known state-of-the-art

reduction policies as well as state of the art solvers.

2 Definitions, notations and technical background

In this section, after some preliminary definitions and notations, we introduce the most

salient computational features of modern SAT solvers.

A CNF formula Σ is a conjunction (interpreted as a set) of clauses, where a clause is

a disjunction (interpreted as a set) of literals. A literal is a positive (x) or negative (¬x)

Boolean variable. The two literals x and ¬x are called complementary. A unit clause

is a clause with only one literal (called unit literal). An empty clause, is interpreted as

false, while an empty CNF formula, is interpreted as true. A set of literals is complete

if it contains one literal for each variable occurring in Σ and fundamental if it does not

contain complementary literals. An interpretation I of a boolean formula Σ associates

a value I(x) to some of the variables x appearing in Σ. An interpretation can be repre-

sented by a fundamental set of literals, in the obvious way. A model of a formula Σ is

an interpretation I that satisfies the formula, i.e. that satisfies all clauses of the formula.

Finally, SAT is the problem of deciding whether a given CNF formula Σ admits a model

Algorithm 1: CDCL solver

Input: a CNF formula Σ

Output: SAT or UNSAT

∆ = ∅; /* learnt clause database */1

while (true) do2

if (!propagate()) then3

if ((c = analyzeConflict()) == ∅) then return UNSAT;4

∆ = ∆ ∪ {c};5

if (timeToRestart()) then backtrack to level 0;6

else7

backtrack to the assertion level of c;8

else9

if ((l = decide()) == null) then return SAT;10

assert l in a new decision level;11

if (timeToReduce()) then clean(∆);12

or not.

Let us now briefly describe the basic components of CDCL based SAT solvers [11,

5]. To be exhaustive, these solvers incorporate unit propagation (enhanced by efficient

and lazy data structures), variable activity based heuristic, literal polarity phase, clause

learning, restarts and a learnt clause database reduction policy.

These main components are depicted by the general scheme given in Algorithm 1.

At each step of the main loop, the algorithm performs unit propagation (line 3). In case

of conflict (lines 4-8), a new asserting clause is derived by conflict analysis (line 4). If

such a clause is empty, then the formula is answered unsatisfiable, otherwise it is added

to the learnt clause database (line 5). If it is not time to restart, the algorithm backjumps

to the assertion level of the learnt clause, i.e. the level where the learnt clause becomes

unit (line 8), otherwise it backjumps to the root of the search. When the formula is

closed under unit propagation without generating the empty clause, a new decision

literal - if it exists - is selected and asserted in a new decision level (line 11), otherwise

a model is found and the formula is answered to be satisfiable (line 10).

Finally, when it is time to reduce, the learnt clause database is cleaned (line 12).

This component, usually omitted in the description of CDCL solvers, is clearly crucial

to the solvers’ performance. Indeed, keeping too many learnt clauses will slow down

the unit propagation process, while deleting too many of them will break the overall

learning benefit. Consequently, identifying good learnt clauses - relevant to the proof

derivation - is clearly an important challenge. The first proposed quality measure fol-

lows the success of the activity based VSIDS heuristic. More precisely, a learnt clause

is considered relevant to the proof, if it is involved more often in recent conflicts, i.e.

usually used to derive asserting clauses. Clearly, this deletion strategy supposes that a

useful clause in the past could be useful in the future. More recently, a more accurate

measure called LBD is used to estimate the quality of a learnt clause leading to a better

cleaning strategy than the previous one [2]. This new measure is based on the number of

different decision levels appearing in a learnt clause and is computed when the clause is

learnt. Extensive experiments demonstrates that clauses with small LBD values are used

more often than those with higher LBD ones.

Another feature of CDCL solvers recently proposed in [12] concerns the literal po-

larity to be chosen when the next decision variable is selected thanks to the VSIDS

heuristic. Usually, a default polarity (e.g. false) is defined and used each time a decision

literal is assigned. Based on the observation that restarts and backjumping might lead

to repetitive solving of same subformulas, Pipatsrisawat and Darwiche [12] proposed

to dynamically save for each variable the last used polarity. This literal polarity based

heuristic, called progress saving, prevents the solver from solving the same satisfiable

subformulas several times. These memorized polarities can be represented as a com-

plete interpretation P . Each time a decision variable is chosen, its assignment polarity

is selected from P . Consequently, P gives us at least the polarities of the decision lit-

erals. And each time a literal is assigned by the solver, its associated polarity is set in

P .

In the next section, we exploit P (progress saving) to approximate the usefulness

that one can expect in the near future from a learnt clause, in other words to measure

the likelihood for a given clause to be part of the implication graph.

3 A new measure for identifying relevant learnt clauses

As mentioned above a CDCL-based SAT solver can be formulated as a resolution proof

system [13, 3]. In practice, the main problem behind resolution-based techniques arises

from their exponential space complexity. Consequently, the practical incarnation of

modern SAT solvers can be seen as a resolution-based procedure with a deletion strat-

egy. As a consequence, the completeness of modern SAT solvers is heavily connected

to both the chosen deletion and restart policies. For example, if we use a restart with

a static cutoff value and an aggressive deletion strategy, we cannot guarantee the com-

pleteness of the solver. For this reason one needs to be careful when designing a deletion

strategy. Consequently, defining what is a relevant clause before completing the proof

itself is of a great importance for the efficiency of the solver. However answering such

a question is computationally hard and it is related to finding a proof of minimal size.

In this section we define a simple measure to identify the relevance of a given

learnt clause and we experimentally show its effectiveness. Our measure is based on

the progress saving polarity [12] introduced in the previous section. This progress sav-

ing based quality measure, in short psm, is defined as follows: given a clause c and

a complete set of literals P representing the current set of saved literals polarities, we

define psmP(c) = |P ∩c|. This measure can be related to another one proposed in [11].

In this paper, a learnt clause was tagged useless, in the goal to delete it, if its number of

unassigned literals has reached a predefined threshold.

First let us note that the psm measure is highly dynamic. Since the set P of saved

literals polarities will evolve during search, the psm of a given clause will also evolve

consequently. For example, when a clause is learnt, its psm value is equal to zero and

becomes one after backjumping to the assertion level. It is also important to note that

when a given learnt clause is at the origin of unit propagation, its psm value is also

equal to one. These preliminary remarks suggest that clauses with small psm value are

the most relevant to the near future of the search. Let I be the current partial interpreta-

tion and P be the current complete interpretation representing the current saved literals

polarities, and c a learnt clause. As I ⊂ P , psmP(c) represents the number of literals

that are assigned to true by I or that would be assigned to true by P\I. Consequently, a

clause with a small psm value has a lot of chance to be unit propagated or to be falsified.

On the contrary, a clause with a big psm value has a lot of chance to be satisfied by more

than one literal and then to be irrelevant for the subsequent part of the search.

To analyze and to validate this assumption, experiments are conducted on some

SAT instances. Figure 1 shows, for a sample of instances, the average number of times

clauses with a given psm value are used during the unit propagation process. In this

experiment, we consider a time sequence tk with k > 0 (the search starts at t0) corre-

sponding to the successive steps of the search where the learnt database is classically re-

duced. Let Ptk and Ptk+1
be the progress saving literal polarities at the steps tk and tk+1

respectively. Let us consider the time window between tk and tk+1, when a given clause

c from the learnt database is used for unit propagation, we compute psm = psmPtk
(c)

and then α(psm) the number of times a clause with such psm value is used for prop-

agation is increased by one. The average number of times a clause with a given psm

value (x-axis) is used in unit propagation (y-axis), corresponds to α(psm) divided by

the total number of times a learnt database is reduced.

As we can observe from Figure 1, learnt clauses with small psm value are used

more often in the unit propagation process than those with higher psm value. If we look

closer, we can see that the most used clauses are those with psm value around 10. Based

on extensive experiments, we observed that on the majority of instances the distribution

of psm values looks like those represented in the two upper curves of Figure 1.

This first experiment illustrates the relevance of clauses with small psm value. To

compare it with previous learnt clauses quality measure, we integrate our psm measure

to the learnt clauses reduction policy (clean(∆) - line 12) of MINISAT 2.2 which is the

latest version of the well known solver MINISAT [5]. Similarly to previous approaches,

each time a reduction is performed, the set of clauses is sorted according to the increas-

ing order of psm value. When two clauses admit the same psm value, the one with the

greatest activity (VSIDS) is preferred. Then the learnt database is reduced by half. Like

other strategies, we keep the binary clauses in the learnt database.

In the sequel, all our experiments are conducted on a Quad-core Intel XEON X5550

with 32Gb of memory, using the 292 application instances of the SAT 2009 competition.

The CPU time limit is set to 900 seconds.

For each solver, we indicate the number of solved instances (#Solved) with the

number of satisfiable (#SAT) and unsatisfiable instances (#UNSAT) in brackets. We also

give the average time in seconds (avg time) necessary to solve these instances.

Table 1 summarises the results obtained by MINISAT
d [5], MINISAT

d+ LBD [2] and

MINISAT
d+psm using the default time sequence (noted MINISAT

d) of MINISAT. As we

can see, MINISAT
d + psm obtains the best overall results and is the best on satisfiable

instances. This first experiment shows the efficiency of our new measure psm using the

default time reduction sequence of MINISAT.

Aprove07-25 q query 3 l48 lambda

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 10 20 30 40 50

nb
 ti

m
es

 u
se

d
in

 p
ro

pa
ga

tio
n

psm

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 10 20 30 40 50

nb
 ti

m
es

 u
se

d
in

 p
ro

pa
ga

tio
n

psm

goldb-heqc-frg1mul countbitsarray08 32

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 10 20 30 40 50

nb
 ti

m
es

 u
se

d
in

 p
ro

pa
ga

tio
n

psm

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 10 20 30 40 50

nb
 ti

m
es

 u
se

d
in

 p
ro

pa
ga

tio
n

psm

Fig. 1. Progress saving measure / relevance with respect to UP

To make a fair comparison between these three approaches, we also present in Table

2 the results obtained using an aggressive cleaning policy as presented in [2] (noted

MINISAT
a). In this experiment the learnt database ∆ is reduced using the following time

sequence, t0 = 4000 conflicts and tk = tk−1+300 conflicts for k > 0. Using aggressive

(more frequent) cleaning time sequence, the result obtained by the LBD measure are

better than those obtained by VSIDS like criterion and the psm measure.

As a summary, considering the classical reduction and deletion strategies, these

first experiments clearly show that our measure is competitive with the two other well-

known measures using both aggressive and less aggressive cleaning policy. This mea-

sure will be used in next section in order to design a dynamic managment policy of

learnt clauses.

Solver #Solved (#SAT- #UNSAT) avg time

MINISAT
d 174 (68 - 106) 142

MINISAT
d + psm 177 (73 - 104) 130

MINISAT
d + LBD 173 (71 - 102) 132

Table 1. Results with the MINISAT default time cleaning sequence.

Solver #Solved (#SAT- #UNSAT) avg time

MINISAT
a 162 (68 - 94) 136

MINISAT
a + psm 163 (70 - 93) 140

MINISAT
a + LBD 168 (72 - 96) 128

Table 2. Results with an aggressive time cleaning sequence.

4 Freeze and reactivate: a dynamic management policy

In section 3, we defined a new measure based on progress saving [12] for identifying

relevant learnt clauses. In this section, we describe our dynamic management policy

of the learnt clause database. Our proposed framework is based on two important key

points. First, the progress saving based measure is highly dynamic and evolves during

search. Consequently, a clause might be considered irrelevant (high psm value) at a

given step of the search and could become relevant (small psm value) in the future steps

of the search. Secondly, determining if a given learnt clause will be involved again in

the resolution proof is a computationally hard task. All the well-known management

policies are not safe from regularly eliminating relevant learnt clauses. For both rea-

sons, our proposed approach introduces an additional and new concept of frozen learnt

clauses. A learnt clause considered as irrelevant at a given step can be frozen and re-

activated when it is considered as useful again. More precisely, freezing (respectively

activating) a clause means that the clause is disconnected (respectively attached) to the

learnt database, and then it is not used during the search (respectively used).

This kind of management strategy cannot be defined using the other known mea-

sures such as activity and LBD-based ones. Indeed, the LBD value of a given clause is

definitely set at the time of its generation and does not change during search, while the

activity (VSIDS-based) measure is dynamic but can only be used to update the activity

of learnt clauses currently in the database.

Let us now formally describe our new learnt clause management policy. First, as

the psm value of a given clause is highly dynamic, we introduce a notion of deviation

between two successive sets of progress saving polarities. Let Vtk be the set of variables

assigned by the solver between two consecutive time sequences (as defined in previous

section) tk−1 and tk. The deviation dtk is defined as follows: dtk =
h(Ptk

,Ptk−1
)

|Vtk
| , where

h is the usual hamming distance.

This deviation defined as a normalized hamming distance, gives us an outline of the

evolution of progress saving polarities between two successive cleanings of the learnt

database. A deviation tending to zero indicates that the solver explores around the same

part of the search space whereas a value close to one indicates that the solver explores

different part of the search space.

A F

D

psm
P
(c) > |c| × dm

n
ot
used(k)

LBD(c) ≤ 3

n
ot
ac
ti
va
te
d(
k)

psm
P
(c) ≤ |c| × dm

Fig. 2. State diagram of a learnt clause.

To obtain a more precise view of the search behavior, we introduce another notion

of minimal deviation dmtk = min{dti |0 ≤ i ≤ k} at time step tk.

Using this minimal deviation, we can now refine our psm measure. Indeed, let c

be a clause to be evaluated at time step tk, if psmPtk
(c) > dmtk × |c| then the clause

c is likely to be satisfied in a near future, otherwise it is likely to be involved in the

propagation process.

Our approach depicted in Figure 2 is represented as a state diagram. At each clean-

ing tk, learnt clauses can move from a state to another one following some conditions.

First, a learnt clause c can be in one of the three following states:

1. Active state A: c is active and watched.

2. Frozen state F : c is frozen i.e. c is not watched

3. Dead state D: c is deleted.

Let us describe these different transitions:

– Each time a clause is learnt it enters the state A.

– A clause c ∈ A with a short LBD (lbd(c) ≤ 3 in the figure) remains in the state A
until the end of the search process.

– A clause c ∈ A such that
psm

Ptk
(c)

|c| > dmtk enters the frozen state F .

– A clause c ∈ F such that
psm

Sni
(c)

|c| ≤ dmni
enters the active state A.

– A clause c ∈ F not activated after k time steps is deleted. Similarly, a clause

c ∈ A remaining active more than k steps without participating to the search is

also deleted. In both cases, it enters the state D after k = 7 time steps in our

experiments.

One of the main advantages of our approach comes from the fact that we can per-

form frequent cleaning of the learnt clause database without taking care of removing

relevant clauses. So we choose a very aggressive policy. We set t0 = 500 conflicts, and

tk = tk−1 + 100 conflicts.

Aprove07-25 q query 3 l48 lambda

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 0 50 100 150 200 250 300 350 400

A -> F
F -> A
Active

Frozen
Dead

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 0 20 40 60 80 100 120 140

A -> F
F -> A
Active

Frozen
Dead

goldb-heqc-frg1mul countbitsarray08 32

 0

 50000

 100000

 150000

 200000

 250000

 300000

 0 50 100 150 200 250 300

A -> F
F -> A
Active

Frozen
Dead

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 0 50 100 150 200 250 300 350 400 450 500

A -> F
F -> A
Active

Frozen
Dead

Fig. 3. Evolution of the number of clauses in different states and number of state transfers

We conducted some experiments to analyse the transfer of the clauses from the

state A to the state F and vice versa. Figure 3 shows, for the same sample of in-

stances as in the Figure 1, the number of deleted clauses, the number of transitions

to the frozen state, the number of transitions to the active state, the number of active

(or watched) learnt clauses and finally the number of frozen clauses. These data are

represented by the y-axis, whereas the x-axis represents the cleaning operated at the

time step tk. For clarity reasons, all curves have been smoothed. For all instances, the

number of frozen clauses (Frozen) and the number of active clauses (Active) are rela-

tively similar. The curve representing the number of clauses becoming active (F → A)

is dominated by those representing the number of clauses becoming frozen (A → F).

However, the two curves evolve similarly and they are closer on some instances (e.g.

q query 3 l48 lambda) than on others (e.g. Aprove07 − 25) . Finally, we can also

observe that, at each cleaning time step, some clauses are definitively deleted (Dead).

5 Empirical evaluation

This section is divided in two parts. In the first, we compare our dynamic manage-

ment policy (psmdym) against the classical reduction approach with different quality

measures (LBD, VSIDS like, psm). In the second experiment, we compare it with three

state-of-the-art solvers: GLUCOSE which embeds LBD measure, a dynamic restart policy

and some other features [2], LINGELING which also embeds more powerful reasoning

like blocked clause elimination [8], and finally, CRYPTOMINISAT which adds many

other features (e.g. vivification, reasoning on xor clauses. . .). Descriptions of these

solvers are available on the SATRACE 2010 website http://baldur.iti.uka.

de/sat-race-2010. Except for LINGELING and CRYPTOMINISAT which embed

preprocessing inside, the other solvers use SatElite for preprocessing [4].

In the first experiment, we use the same solver and the only difference is in the

learnt clause management policy. In the second experiment, our aim is to compare our

learnt clause management approach integrated in MINISAT 2.2 (MINISAT-psmdyn) with

the state-of-the-art SAT solvers. Source code and extensive experiments can be found at

http://www.cril.fr/˜lagniez/ressource.html.

5.1 Comparison with different quality measures

We compare our dynamic policy, called MINISAT-psmdyn with the classic MINISAT,

and MINISAT with learnt database reduction based on psm (MINISAT-psm) and on LBD

(MINISAT-LBD) (like in section 3). Figure 4 summarizes the results. It contains three

scatter plots corresponding to the comparison of MINISAT-psmdyn with the 3 others

solvers. In such a plot, each dot corresponds to a given instance, the x-axis corresponds

to the cpu time needed by the MINISAT, LBD or psm to solve the instance, whereas the-

y axis corresponds to the cpu time needed by psmdyn to solve it. So, dots below the

diagonal correspond to instances solved faster by MINISAT-psmdyn (SAT and UNSAT

instances are differentiated). Figure 4 also contains a cactus plot related to the compar-

ison of the 4 solvers.

It is quite clear that our freezing strategy outperforms the other strategies. It solves

189 instances (76 SAT and 113 UNSAT), which is significantly better than the other

solvers (see Table 1). Furthermore, as we can see on the scatter plots, MINISAT-psmdyn

solves instances faster than the others solvers.

5.2 Comparison with state of the art solvers

Figure 5 summarizes the comparison with state of the art solvers. It is structured as fig-

ure 4. Let us detail the number of solved instances by each solver: LINGELING solves

187 instances (77 SAT, 110 UNSAT), GLUCOSE 189 (70 SAT and 119 UNSAT) and CRYP-

TOMINISAT 194 (74 SAT, 120 UNSAT). These results and the plots of Figure 5 show that

our dynamic management policy is really competitive with state-of-the-art solvers (re-

member, it solves 189 instances (76 SAT and 113 UNSAT)). It does not even embed

sophisticated components such as dynamic restart, etc.

MINISAT vs psmdyn LBD vs psmdyn

 1

 10

 100

 1000

 1 10 100 1000

SAT
UNSAT

 1

 10

 100

 1000

 1 10 100 1000

SAT
UNSAT

psm vs psmdyn cactus plot

 1

 10

 100

 1000

 1 10 100 1000

SAT
UNSAT

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 60 80 100 120 140 160 180 200

minisat
minisat-LBD
minisat-psm

minisat-psm-dyn

Fig. 4. Comparison with different learnt clauses quality measures.

6 Conclusion

In this paper, we introduced a new measure for identifying relevant learnt clauses. The

main advantage of this measure is that it is dynamic (unlike the LBD measure) and it

can be computed even if clauses do not participate in the search process (unlike the

VSIDS like measure). Thanks to this property, a new learnt clause database manage-

ment framework has been proposed. It exploits a novel dynamic policy that activates

the most promising learnt clauses while freezing irrelevant ones. This is in contrast

with all the well-known deletion strategies, where a given learned clause is definitely

eliminated. Experiments on SAT instances taken from the last competitions demonstrate

the effectiveness of our approach.

As future work, we plan to exploit the evolution of the set of progress saving literal

polarities in order to decide if cleaning has to be performed. Considering the connection

GLUCOSE vs psmdyn LINGELING vs psmdyn

 1

 10

 100

 1000

 1 10 100 1000

SAT
UNSAT

 1

 10

 100

 1000

 1 10 100 1000

SAT
UNSAT

CRYPTOMINISAT vs psmdyn cactus plot

 1

 10

 100

 1000

 1 10 100 1000

SAT
UNSAT

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 60 80 100 120 140 160 180 200

glucose
lingeling

cryptominisat
minisat-psm-dyn

Fig. 5. Comparison with state of the art solvers: GLUCOSE, LINGELING and CRYPTOMINISAT.

between restarts and clause learning [14], we plan to exploit this connection to improve

our proposed leant database management approach.

Aknowledgements We would like to thank the anonymous reviewers for insightful

comments

References

1. Gilles Audemard, Lucas Bordeaux, Youssef Hamadi, Saı̈d Jabbour, and Lakhdar Saı̈s. A

Generalized Framework for Conflitcs Analysis. Technical Report MSR-TR-2008-34, Mi-

crosoft Research, 2008.

2. Gilles Audemard and Laurent Simon. Predicting learnt clauses quality in modern SAT

solvers. In proceedings of IJAI, pages 399–404, 2009.

3. Paul Beame, Henry Kautz, and Ashish Sabharwal. Towards understanding and harnessing

the potential of clause learning. Journal of Artificial Intelligence Research, 22:319–351,

2004.

4. N. Eén and A. Biere. Effective preprocessing in SAT through variable and clause elimination.

In proceedings of SAT, pages 61–75, 2005.

5. Niklas Een and Niklas Sörensson. An extensible SAT-solver. In proceedings of SAT, pages

502–518, 2003.

6. Carla Gomes, Bart Selman, and Henry Kautz. Boosting combinatorial search through ran-

domization. In proceedings of AAAI, pages 431–437, 1998.

7. Jimbo Huang. The effect of restarts on the efficiency of clause learning. In proceedings of

IJCAI, pages 2318–2323, 2007.

8. Matti Järvisalo, Armin Biere, and Marijn Heule. Blocked clause elimination. In proceedings

of TACAS, pages 129–144, 2010.

9. Roberto J. Bayardo Jr. and Robert Schrag. Using csp look-back techniques to solve real-

world sat instances. In proceedings of AAAI, pages 203–208, 1997.

10. J. Marques-Silva and K. Sakallah. GRASP - A New Search Algorithm for Satisfiability. In

proceedings of ICCAD, pages 220–227, 1996.

11. Matthew Moskewicz, Connor Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik. Chaff:

Engineering an efficient SAT solver. In proceedings of DAC, pages 530–535, 2001.

12. Knot Pipatsrisawat and Adnan Darwiche. A lightweight component caching scheme for

satisfiability solvers. In proceedings of SAT, pages 294–299, 2007.

13. Knot Pipatsrisawat and Adnan Darwiche. On the power of clause-learning sat solvers with

restarts. In proceedings of CP, pages 654–668, 2009.

14. Knot Pipatsrisawat and Adnan Darwiche. Width-based restart policies for clause-learning

satisfiability solvers. In proceedings of SAT, pages 341–355, 2009.

15. Lintao Zhang, Connor Madigan, Matthew Moskewicz, and Sharad Malik. Efficient conflict

driven learning in boolean satisfiability solver. In proceedings of ICCAD, pages 279–285,

2001.

