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Abstract

This paper is concerned with a form of relaxation of
constraint networks. The focus is on situations where
additional constraints are intended to extend a non-
empty set of preexisting solutions. These constraints
require a specific treatment since merely inserting them
inside the network would lead to their preemption by
more restrictive ones. Several approaches to handle
these additional constraints are investigated from con-
ceptual and experimental points of view.

1 Introduction

CSPs (Constraints Satisfaction Problems) have
emerged as one of the most fertile research fields of
applied Artificial Intelligence (see for example as ma-
jor conferences, journals and handbook in the domain
[15, 4, 17, 19]). A CSP concerns a constraint network
that models a problem through a set of constraints link-
ing various variables, each variable exhibiting its own
instantiation domain. The CSP might consist in veri-
fying whether the set of constraints exhibits solutions
or not. In the positive case, it can consist in computing
one solution.

In this paper, the focus is on relaxing non-empty
sets of solutions of constraint networks when an addi-
tional, more permissive, constraint C must be taken
into account in such a way that C prevails over the
more restrictive pre-existing ones.

Assume for example that a complex constraint net-
work determines under which circumstances some spe-
cific retirement benefits can be claimed and delivers
as solutions all situations where the applicant is the
parent of at least 3 children. These solutions are not
necessarily explicit in the network but can result from
the interaction of several constraints. Now assume that

the legislation has changed and that a more permissive
rule is adopted allowing these benefits to be claimed
by parents of at least two children. If this new con-
straint is merely inserted as an additional one within
the initial network then it will be preempted by the
constraints requiring at least three children. Being the
parent of two children would still not allow the afore-
mentioned benefits. Indeed, since solving the network
will try to satisfy all constraints together, the addi-
tional solution translated by the new more permissive
rule will be subsumed in the process by the more re-
strictive ones: having at least two children is satisfied
whenever having at least three children is satisfied. Ac-
cordingly, we investigate several approaches to handle
in an adequate way additional constraints that, at the
same time, are more permissive and must prevail.

The paper is organized as follows. In the next sec-
tion, basic concepts about CSP are recalled. Section 3
briefly presents the MUC (Minimal Unsatisfiable Core)
and MSS (Maximal Satisfiable Sub-network) concepts,
which are central in this study. Relaxing a constraint
network is defined more formally in section 4. In sec-
tions 5 and 6, several approaches to address this is-
sue are investigated. In section 7, experimental results
are presented about the practical efficiency of the ap-
proaches whereas the application of the technique in
other circumstances is discussed in section 8. The con-
clusive section elaborates on promising perspectives for
further research.

2 Constraints networks

A constraint network P is a pair (X , V) where X a
finite set of m constraints over a finite set V of discrete
variables. Each variable V ∈ V has its own instantia-
tion domain, denoted dom(V ).

Each constraint C ∈ X involves a subset of variables
of V, called scope and noted var(C). A relation, de-



noted rel(C), contains the set of tuples that C allows
for the variables in var(C) and is called the support of
C. In a dual way, the relation for(C) exhibits the set
of tuples of values forbidden by C.

Example 1. Let the constraint (x < y − 1) with
dom(x) = {0, 1} and dom(y) = {1, 2, 3}, we have:
var(x < y− 1) = {x, y}, rel(x < y− 1) = {(x = 0, y =
2), (x = 0, y = 3), (x = 1, y = 3)} and for(x < y−1) =
{(x = 0, y = 1), (x = 1, y = 1), (x = 1, y = 2)}.

A solution to a constraint C is any partial assign-
ment that instantiates all the variables occurring in C
in such a way that C is satisfied. A solution to a con-
straint C is an element of rel(C).

A solution to P is an assignment of a value to each
variable such that all the constraints are satisfied. A
constraint network is said satisfiable iff it admits at
least one solution.

The Constraint Satisfaction Problem (CSP) is the
NP-hard task of determining whether a given con-
straint network is satisfiable or not. It can also consist
in computing one solution in the positive case.

Example 2. Let P = (X ,V) with V =
{i, j, k, l,m}, dom(i) = dom(j) = dom(k) = dom(l) =
dom(m) = {1, 2, 3} and C = {(j < k), (k < i), (k 6=
l), (j ≥ l), (m 6= l + 1), (m + i < 5)}. This constraint
network is satisfiable: {i = 3, j = 1, k = 2, l =
1, m = 1} is an assignment that satisfies all constraints
of X .

Let P ′ = (X ∪{(i < j)},V). This constraint network
has no solution; it is unsatisfiable.

3 MUC and MSS

Although the focus is on satisfiable constraint net-
works, the following concept related to unsatisfiability
will be central in this paper.

Any unsatisfiable constraint network P = (X ,V) in-
volves at least one MUC (Minimal Unsatisfiable Core),
also called core. A MUC is a subset of constraints of
X that, at the same time, is unsatisfiable and that is
such that each proper subset is satisfiable. A MUC
is thus a smallest subset of constraints that cannot be
accommodated together.

Example 3. P ′ defined in the previous example admits
only one MUC, namely {(j < k), (k < i), (i < j)}.

In a dual way, a Maximal Satisfiable Sub-network
(MSS) of P = (X ,V) is defined as any satisfiable P ′ =
(X ′,V) such that ∀C ∈ X \ X ′, the constraint network
(X ′ ∪ {C},V) is unsatisfiable.

Example 4. In the Example 2, P is a maximal satis-
fiable sub-network of P ′.

Checking whether a constraint belongs to a MUC or
not is in ΣP

2 [5]. In the worst case, the number of MUCs
can be exponential in the number m of constraints (it

is in O(C
m/2
m )). Since MUCs can intersect, the concept

of cover of MUCs has been introduced to alleviate the
possible high number of MUCs, at least to some extent
[7]. Despite those bad worst-case complexity results, in
many real-life situations, the number of MUCs can re-
main of a manageable size and both MUCs and MSSes
can be computed in realistic time (see for example ap-
proaches in [7] and [8]).

One specific well-studied problem about MSS is
called WCSP (as Weighted CSP) which consists in de-
livering one MSS of a constraint network following a
priority scale between constraints. Each constraint is
given a numerical value and constraints with the higher
values are preferred candidates for belonging to the re-
sulting MSS. More on MUC and MSS can be found in
[3, 9, 13, 11, 18, 12, 10, 7, 8].

4 Relaxing satisfiable networks

From now on, we assume that the constraint network
P = (X ,V) is satisfiable and that a constraint C over
variables from V is the additional more permissive one
that must prevail.

First, let us define what more permissive and prevail
mean in this study. Remember that, on the one hand,
a solution to a constraint C is any partial assignment
that instantiates all the variables occurring in C in such
a way that C is satisfied. On the other hand, a solution
to P is any assignment of all the variables of V that
satisfies all constraints in X .

Definition 1. A constraint C is more permissive than
a constraint network P iff
1. there exists at least one solution to C that cannot be
extended into an a solution to P, and
2. any solution to P restricted to the scope of C is a
solution to C.

Definition 2. A constraint C prevails in P iff all so-
lutions to C can be extended into solutions to P.

Thus, relaxing P by a more permissive constraint C
must lead to a new network P ′ such that any solution
to C has been extended into a solution to P ′.

Definition 3. A constraint network P ′ = (X ′,V) is a
relaxed network of P = (X ,V) by C iff any solution to
C can be extended into a solution to P ′.



Note that forcing all solutions of C to be adopted
might lead to the existence of additional solutions re-
lated to variables outside the scope of C through a
domino effect within P. Hence, P ′ can exhibit new so-
lutions about variables not occurring in C in addition
to those provided by P. For a similar reason, we can-
not require in the general case that any solution of P
is a solution of P ′.

5 MUC-based solutions

Several constraints in P can prevent solutions to C
from prevailing in P. A first approach provides the
user will a full-fledged explanation of the reasons for
this, under the form of the minimal sets of constraints
that cause the problem. It is based on MUC-finding
algorithms and the main idea is intuitively as follows.

Whenever a single element of rel(C) is introduced
as a new constraint in P and when this leads to an
unsatisfiable network P ′, this means that P does not
authorize rel(C). Accordingly, we compute and ex-
hibit MUCs in P ′. A least one constraint per MUC
is expelled (or relaxed) from P. This is iterated until
the network P ′ becomes satisfiable. The whole process
is then iterated for all elements of rel(C). Thereafter,
the constraint C is just safely added since we are sure
that all its solutions can be now accommodated. When
we know which elements of rel(C) cannot be extended
into solutions to P, it is sufficient for the procedure to
consider these elements, only.

Accordingly, any detected MUC provides a mini-
mal set of constraints preventing an additional solution
given by C from prevailing in P. Algorithm relaxMUC
describes the skeleton of an iterative approach finding
out and “breaking” in an automatic way MUCs itera-
tively, until no MUC remains. Note that the depicted
algorithm does not return the set of detected MUCs
but expels one constraint per MUC and simply deliv-
ers the final resulting relaxed constraint network. Note
that since MUCs can intersect, a cover of MUCs can
be delivered and amended as an alternative approach.

6 MSS-based solutions

When not all MUCs must be exhibited to the user.
the dual concept of Maximal Satisfiable Sub-networks
(MSS) can also be used. Note that MUCs and MSSes
can be easily computed one from the other, or be
computed separely using their own specific algorithmic
paradigms [2].

Definition 4. A constraint network P ′ = (X ′∪{C}) is
a MSS-relaxed network of P = (X ,V) by C iff X ′ ⊂ X

Function relax-MUC((X , V), C): (X ′,V)

input : P = (X ,V): a constraint network,
C: the new constraint

output: (X ′,V): a relaxed constraint network of
P by C

X ′ ← X ;1

foreach t ∈ rel(C) do2

Ct ← {t} with dom(Ct) = dom(C) ;3

while (X ′ ∪ {Ct},V) is unsat do4

(X ′′,V ′′)← MUC((X ′ ∪ {Ct}},V));5

select one constraint C ′ in X ′′ s.t. C ′ 6= Ct;6

X ′ ← X ′ \ {C ′} ;7

end8

end9

X ′ ← X ′ ∪ {C};10

return (X ′,V);11

and (X ′ ∪ {t},V) is satisfiable for every t in rel(C).

Definition 5. A MSS-relaxed constraint network P ′ =
(X ′∪{C}) of P by C is maximal iff there does not exist
any other MSS-relaxed network P” = (X”∪{C}) of P
by C such that X ′ ⊂ X”.

Proposition 1. Every MSS-relaxed network of P by
C is a relaxed network of P by C.

Proposition 2. Not all MSS-relaxed networks are
maximal in the general case.

Indeed, a MSS-relaxed network can depend both on
the order according to which the solutions of rel(X) are
considered and on the actual selection of constraints
that are dropped. For example, dropping a constraint
that belongs to the intersection of several MUCs (each
of them related to a different solution of rel(X)) con-
ducts larger MSS-related networks to be generated.

The relax-MSS algorithm describes such a function
computing one MSS-relaxed network of P by C. Note
that the computation of one MSS can be performed
though WCSP.

7 Relax in other circumstances, too

Interestingly, we can apply this relaxation technique
when the new constraint C is not more permissive. In
this case, the technique simply leads to add C into P.

Also, it can be applied to unsatisfiable networks as
well. In this case, it does not only restore consistency
but also enforces C as a more permissive constraint.
Note that in such a case the computed MUCs do not
necessarily contain the enforced constraint made of one



Function relax-MSS((X ,V), C): (X ′,V)

input : P = (X ,V): a constraint network,
C: the new constraint

output: (X ′,V): a relaxed constraint network of
P by C

X ′ ← X ;1

foreach t ∈ rel(C) do2

Ct ← {t} with dom(Ct) = dom(C) ;3

X ′ ← MSS((X ′ ∪ {Ct},V)) ;4

X ′ ← X ′ \ {Ct} ;5

end6

X ′ ← X ′ ∪ {C};7

return (X ′,V);8

value of rel(C). Similarly, constraints not included in
a MSS need not belong to a MUC containing this ad-
ditional constraint.

Also note that WCSP, which can be used to com-
pute MSSes, can take into account an a priori prefer-
ence ordering between constraints through numerical
coefficients. Accordingly, it allows to respect a prefer-
ence among constraints in order to designate the ones
to be dropped.

8 Experimental results

All experimental results presented in this section
have been obtained on a Quad-core Intel XEON X5550
with 32Gb of memory. The CPU time was limited to
7200 seconds. We have implemented our algorithms on
top of the CSP-solving platform Abscon http://www.

cril.univ-artois.fr/~lecoutre/software.html

We have run our algorithms on more than 600 in-
stances taken from the satisfiable benchmarks of the
last CSP competitions http://cpai.ucc.ie/08/ et
http://cpai.ucc.ie/09/. In the Tables we present
results for 53 instances from the 204 ones that were
not time-out for neither of our approaches (the full
tables are available from https://www.dropbox.com/

sh/q579823oyfr0g9z/66RxbrNYCC). We generated
the additional constraints in the following random way
so that they were necessarily more permissive ones.
One constraint of the instance was selected in an ran-
dom fashion; its allowed and forbidden tuples com-
puted. Then, a random number of forbidden tuples
changed of status and became allowed. The same data
have been submitted to both relax-MUC and relax-
MSS.

The columns from Tables 1 and 2 provide the fol-
lowing information.

• name: instance name

• #V: number of variables of the instance

• #C: number of constraints of the instance

• |rel(C)|: size of the support of the additional con-
straint

• #ns: number of tuples of rel(C) to be relaxed,
i.e., the number of tuples of rel(C) that are for-
bidden by other constraints of the instance (this
information is not an input of the algorithms)

• |var(C)|: size of scope of the additional constraint

• #rc: number of expelled constraints

• #rcavg: average number of constraints per tuple
to be relaxed

• T1: average CPU time to relax one tuple

• T2: total CPU time to relax all tuples

• T3: total CPU time for the method

The Tables illustrate the practical feasibility of the
approaches for complete methods computing MUCs
and MSSes. Let us stress on some lessons from these
experimentations.

Relax-MSS allows to compute a minimal number of
constraints to be expelled so that the instance is re-
laxed with respect to the additional constraint C. Con-
sequently, the number of constraints expelled by this
method is always lower or equal to the number of con-
straints expelled by relax-MUC. However, relax-MUC
provides results that exhibit a number of constraints
that is often close to this minimal number (although
exceptions exist: see for example instance e64-b).

On the other hand, this minimization is computa-
tionally costly: in this respect, it is not a surprise to
see that relax-MUC is generally more time efficient (al-
though exceptions exist: see for example instance e64-b
again). Relax-MUC allowed 72 additional instances to
be relaxed. Technically, this is due to the fact that
computing a MSS delays branches-pruning decisions in
the search trees (the descent is not stopped when a
constraint is falsified but only when a specific number
of constraints are falsified). In this respect, one pos-
sible improvement w.r.t. the MSS-computation would
consist in running a local search procedure to find out
one “good” first boundary.

The average computing time for relax-MUC is 780
secs when only the successfully relaxed instances are
taken into account whereas it is 691 secs for relax-MSS
when only the solved instances by this method were

http://www.cril.univ-artois.fr/~lecoutre/software.html
http://www.cril.univ-artois.fr/~lecoutre/software.html
http://cpai.ucc.ie/08/
http://cpai.ucc.ie/09/
https://www.dropbox.com/sh/q579823oyfr0g9z/66RxbrNYCC
https://www.dropbox.com/sh/q579823oyfr0g9z/66RxbrNYCC


considered. This apparently better result in favor of
relax-MSS is due to the fact this method mainly solved
the simple instances and did not solve a large number
of instances where a large number of constraints need
be expelled.

Conclusion

Some past research efforts in the CSP research com-
munity have already concerned the problem of con-
straint relaxation in the framework of unsatisfiable con-
straint networks[14, 6, 1, 16]. Quite surprisingly, to the
best of our knowledge, this issue has not been investi-
gated so far in the context of satisfiable networks that
must accommodate an additional constraint whose so-
lutions must not be lost. This study is a first contri-
bution to fill this gap. We believe that more research
efforts should be devoted about the dynamics of net-
works. In particular, the problem investigated in this
paper is even more crucial and ubiquitous when several
networks need to be merged.

Several paths for further extensions of this study can
be envisioned. First, instead of expelling constraints,
we may want to amend constraints that forbid addi-
tional solutions to C from being extendable into solu-
tions to P. Also, instead of considering computation-
ally costly complete techniques computing MUCs and
MSSes we might want to build and experiment approx-
imate methods that attempt to provide, for example,
a superset of a MUC that would normally not be sig-
nificantly larger than the MUC itself.

This study also sheds light on the necessity to dis-
tinguish between several forms of constraints in the fol-
lowing sense. Usually, all constraints are restrictive in
the sense that each of them can restrict the space of
possible solutions provided by other constraints. As
illustrated in this paper, we can also need to repre-
sent permissive constraints instead of restrictive ones.
Permissive constraints appear as hard constraints that
must be satisfied in all circumstances. Moreover, a per-
missive constraint translates solutions that cannot be
lost due to other (restrictive) constraints. Considering
permissive constraints in the traditional algorithms for
solving CSPs opens new exciting and very substantial
perspectives.

We believe that these are promising paths for further
research.
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Instance New constraint MUC Time in seconds
name #V #X |rel(C)| #ns |var(C)| #rc #rcavg T1 T2 T3

9symml 651 1648 22 2 6 – – – – –
C17 15 20 4 1 3 1 1.00 .58 .585 2
aim-100-1-6-4 200 260 8 2 4 2 11.00 3.86 7.720 14
aim-100-2-0-3 200 300 8 2 4 2 54.50 35.06 70.124 77
aim-100-3-4-4 200 440 8 2 4 10 184.20 244.22 2442.238 2451
aim-200-1-6-4 400 520 4 2 3 2 60.50 57.02 114.042 144
aim-200-2-0-4 400 600 8 2 4 2 33.00 52.07 104.153 219
aim-50-1-6-4 100 130 4 2 3 2 52.50 29.50 59.013 62
aim-50-2-0-4 100 150 8 2 4 2 11.00 3.73 7.475 11
aim-50-3-4-1 100 220 8 3 4 6 73.00 33.15 198.917 204
aim-50-6-0-4 100 350 8 3 4 14 57.78 24.14 338.075 345
b1 24 45 8 1 4 1 1.00 .69 .694 4
blast-floppy1-4 237 196 8 2 4 67 1.00 .93 62.671 123
blast-floppy1-6 719 592 1 1 4 – – – – –
c8 239 523 4 1 3 1 1.00 1.68 1.684 5
cc 133 219 2 0 3 0 0.00 0.00 0 1
cm42a 99 185 8 1 4 1 1.00 .99 .997 5
cmb 304 670 4 1 3 1 1.00 2.57 2.571 7
e64-b 607 1022 22 1 8 807 1.00 1.87 1510.178 1696
elf-rf6 67 131 4 4 3 70 2.07 .79 55.999 72
enigma 100 42 5 1 11 2 1.00 1.99 3.995 19
fpga-10-9 135 118 22 1 11 1 18.00 49.47 49.477 77
g-100x100 10000 10000 22 1 6 1 1.00 20.49 20.494 123
graceful–K3-P2 15 60 48 5 3 25 41.04 6.98 174.590 197
graceful–K4-P2 24 164 169 4 3 41 131.36 86.92 3563.927 3670
haystacks-05 25 54 18 2 3 2 21.00 6.66 13.321 21
ii-32e2 534 3013 4 1 3 1 1.00 7.01 7.010 241
lseu 89 28 22 1 8 1 1.00 1.15 1.151 14
mod008 319 6 22 0 197 0 0.00 0.00 0 48
mps-p0282 282 221 4 1 3 1 1.00 3.62 3.622 15
os-taillard-5-100-9 25 100 1531 4 3 8 44.87 374.56 2996.515 5546
os-taillard-5-105-9 25 100 1678 3 3 3 2.66 6.77 20.335 3135
os-taillard-5-95-9 25 100 1391 9 3 16 31.06 141.30 2260.807 4245
p0033 33 15 8 1 4 1 1.00 .70 .705 4
p0201 195 133 14 3 10 – – – – –
p0282 282 221 4 1 3 1 1.00 3.28 3.286 15
par-8-1-c 128 318 8 4 4 8 74.87 30.96 247.751 254
par-8-5-c 150 373 8 4 4 7 74.71 32.76 229.353 235
pk1 86 60 4 1 3 1 1.00 1.24 1.247 4
primes-15-20-3-5 100 20 450 2 5 3 1.00 3.59 10.797 595
primes-15-40-3-1 100 40 417 1 5 7 2.00 1.50 10.526 342
primes-15-60-2-1 100 60 331 2 4 5 1.00 .74 3.705 156
primes-15-80-2-1 100 80 295 2 3 8 1.87 .95 7.619 147
radar-10-10-4.5-0.95-100 435 500 4 1 3 1 1.00 1.36 1.364 4
radar-10-20-4.5-0.95-100 934 1062 4 1 3 – – – – –
radar-8-30-3-0-14 180 64 41 4 13 6 1.00 272.82 1636.930 2106
ruler-34-8-a3 36 434 365 7 3 195 24.77 6.30 1228.791 1509
sao2-b 372 765 22 1 10 – – – – –
scen2 200 1235 483 1 3 1 1.00 2.77 2.772 398
scen6-w1-f2 200 319 345 4 3 5 7.00 2.77 13.853 194
scen7-w1-f5 400 660 270 4 3 9 6.33 2.81 25.331 206
stein27 27 118 13 5 28 52 1.00 .55 29.049 46
stein45 45 331 8 1 4 1 1.00 1.00 1.005 5

Table 1. Results for relax-MUC



Instance New constraint MSS Time in seconds
name #V #X |rel(C)| #ns |var(C)| #rc #rcavg T1 T2 T3

9symml 651 1648 22 2 6 3 1.50 16.52 33.050 63
C17 15 20 4 1 3 1 1.00 .14 .141 2
aim-100-1-6-4 200 260 8 2 4 2 1.00 26.23 52.473 57
aim-100-2-0-3 200 300 8 2 4 2 1.00 112.30 224.605 232
aim-100-3-4-4 200 440 8 2 4 – – – – –
aim-200-1-6-4 400 520 4 2 3 – – – – –
aim-200-2-0-4 400 600 8 2 4 – – – – –
aim-50-1-6-4 100 130 4 2 3 2 1.00 .56 1.124 3
aim-50-2-0-4 100 150 8 2 4 2 1.00 1.06 2.121 6
aim-50-3-4-1 100 220 8 2 4 2 1.00 40.62 81.240 85
aim-50-6-0-4 100 350 8 3 4 – – – – –
b1 24 45 8 1 4 1 1.00 .16 .162 3
blast-floppy1-4 237 196 8 4 4 4 1.00 1.39 5.586 38
blast-floppy1-6 719 592 1 1 4 1 1.00 1704.67 1704.67 1809
c8 239 523 4 1 3 1 1.00 1.74 1.749 5
cc 133 219 2 0 3 – – – – –
cm42a 99 185 8 1 4 1 1.00 .64 .644 4
cmb 304 670 4 1 3 1 1.00 1.43 1.433 6
e64-b 607 1022 22 1 8 1 1.00 9.11 9.119 41
elf-rf6 67 131 4 4 3 – – – – –
enigma 100 42 5 1 11 1 1.00 23.94 23.941 38
fpga-10-9 135 118 22 1 11 – – – – –
g-100x100 10000 10000 22 1 6 1 1.00 92.72 92.723 186
graceful–K3-P2 15 60 48 4 3 4 1.00 .21 .876 17
graceful–K4-P2 24 164 169 4 3 – – – – –
haystacks-05 25 54 18 2 3 2 1.00 1.14 2.297 9
ii-32e2 534 3013 4 1 3 1 1.00 562.45 562.453 793
lseu 89 28 22 1 8 1 1.00 .59 .593 13
mod008 319 6 22 0 197 – – – – –
mps-p0282 282 221 4 1 3 – – – – –
os-taillard-5-100-9 25 100 1531 5 3 6 1.20 28.51 142.590 4161
os-taillard-5-105-9 25 100 1678 3 3 3 1.00 1.75 5.265 4614
os-taillard-5-95-9 25 100 1391 9 3 – – – – –
p0033 33 15 8 1 4 1 1.00 .23 .23 3
p0201 195 133 14 3 10 4 1.33 5.17 15.519 25
p0282 282 221 4 1 3 – – – – –
par-8-1-c 128 318 8 4 4 – – – – –
par-8-5-c 150 373 8 5 4 5 1.00 5.45 27.264 32
pk1 86 60 4 1 3 1 1.00 .63 .634 3
primes-15-20-3-5 100 20 450 2 5 – – – – –
primes-15-40-3-1 100 40 417 1 5 – – – – –
primes-15-60-2-1 100 60 331 2 4 5 2.50 43.52 87.055 240
primes-15-80-2-1 100 80 295 1 3 3 3.00 14.12 14.122 155
radar-10-10-4.5-0.95-100 435 500 4 1 3 1 1.00 27.89 27.897 30
radar-10-20-4.5-0.95-100 934 1062 4 1 3 1 1.00 2082.93 2082.935 2088
radar-8-30-3-0-14 180 64 41 4 13 – – – – –
ruler-34-8-a3 36 434 365 7 3 – – – – –
sao2-b 372 765 22 1 10 1 1.00 3.54 3.543 34
scen2 200 1235 483 1 3 – – – – –
scen6-w1-f2 200 319 345 6 3 7 1.16 5.99 35.984 210
scen7-w1-f5 400 660 270 4 3 – – – – –
stein27 27 118 13 5 28 52 10.40 .17 .873 9
stein45 45 331 8 1 4 1 1.00 1022.56 1022.563 1026

Table 2. Results for relax-MSS
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