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émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-Artois

https://core.ac.uk/display/52876275?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00990096


THE BLUM-HANSON PROPERTY FOR CpKq SPACES

PASCAL LEFÈVRE AND ÉTIENNE MATHERON

Abstract. We show that if K is a compact metrizable space, then the Banach
space CpKq has the so-called Blum-Hanson property exactly when K has finitely
many accumulation points. We also show that the space `8pNq � CpβNq does not
have the Blum-Hanson property.

1. introduction

The following intriguing result is usually referred to as the Blum-Hanson theorem
(see [3] and [6]): if T is a linear operator on a Hilbert space H with }T } ¤ 1, and if
x P H is such that TnxÑ 0 weakly as nÑ8, then the sequence pTnxq is“strongly
mixing”, which means that every subsequence of pTnxq converges to 0 in the Cesáro
sense; in other words,

lim
KÑ8

����� 1
K

Ķ

i�1

Tnix

����� � 0

for any increasing sequence of integers pniq. (The terminology “strongly mixing”
comes from [2]).

Accordingly, a Banach space X is said to have the Blum-Hanson property if the
Blum-Hanson theorem holds true on X; that is, if T is linear operator on X such
that }T } ¤ 1, then every weakly null T - orbit is strongly mixing. For example,
it was shown rather recently in [8] that `ppNq has the Blum-Hanson property for
any p P r1,8q. On the other hand, it is known since [1] that CpT2q, the space of
all continuous real-valued functions on the torus T2, does not have this property.
Further results and references can be found in [7].

In this short note, we address the Blum-Hanson property for CpKq spaces. Our
main result is the following:

Theorem 1.1. Let K be a metrizable compact space. Then CpKq has the Blum-
Hanson property if and only if K has finitely many accumulation points.

This will be proved in the next Section. In Section 3, we obtain in much the same
way one nonmetrizable result, namely that the space `8pNq � CpβNq fails the Blum-
Hanson property. Our two results can be put together to get a single theorem on the
Blum-Hanson property for spaces of bounded continuous functions, which is done
in Section 4. We conclude the paper by stating explicitely the “general principle”
underlying our proofs.
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2 PASCAL LEFÈVRE AND ÉTIENNE MATHERON

2. Proof of Theorem 1.1

For the “if” part of the proof, we will make use of a result from [7] which is stated
as Lemma 2.1 below.

Let X be a Banach space. For any x P X and t P R�, set

rXpt, xq :� sup
"

lim sup
nÑ8

}x� tyn}

*
,

where the supremum is taken over all weakly null sequences pynq � X with }yn} ¤ 1.
Since rXpt, xq is 1-Lipschitz with respect to t, the quantity rXpt, xq � t is nonin-

creasing and hence it has a limit as t Ñ 8, possibly equal to �8. Actually, this
limit is nonnegative if X does not have the Schur property, i.e. there is at least one
weakly null sequence in X which is not norm null.

For the needs of the present paper only, we shall say that the Banach space X
has property (P) if, for every weakly null sequence pxkq � X, it holds that

(1) lim
kÑ8

lim
tÑ8

prXpt, xkq � tq � 0 .

The result we need is the following; for the proof, see the Remark just after Theorem
2.1 in [7].

Lemma 2.1. Property (P) implies the Blum-Hanson property.

An extreme example of a space with property (P) is X :� c0pNq. Indeed, if x P c0

and if pznq is a weakly null sequence in c0, then

lim sup
nÑ8

}x� zn}8 � maxp}x}8, lim sup }zn}8q .

It follows that

(�) rc0pt, xq � maxp}x}, tq ,

so that rc0pt, xq � t � 0 whenever t ¥ }x}, for any x P c0.

Let us also note the following useful stability property, whose proof is straight-
forward.

Remark 2.2. If X1, . . . , XN are Banach spaces with property (P), then the `8 direct
sum X1 ` � � � `XN also has (P).

We can now start the proof of theorem 1.1.

Proof of Theorem 1.1. Let us denote by K 1 the set of all accumulation points of
K. We may assume that K 1 � H, since otherwise K is finite and hence CpKq is
finite-dimensional.

(a) Assume first that K 1 is finite say K 1 � ta1, . . . , aNu, and let us show that
X :� CpKq has the Blum-Hanson property.

One may write K � K1Y� � �YKN , where the Ki are pairwise disjoint compact sets
and K 1

i � taiu. Then CpKq is isometric to the `8 direct sum CpK1q ` � � � ` CpKN q,
and each CpKiq is isometric to the space c of all convergent sequences of real numbers.
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Therefore (by Lemma 2.1 and Remark 2.2) it is enough to show that the space c has
property (P).

We view c as the space CpNY t8uq, so that c0 is identified with the subspace of
all f P CpN Y t8uq such that fp8q � 0. We have to show that if pfkq is a weakly
null sequence in c, then lim

kÑ8
lim
tÑ8

prcpt, fkq � tq � 0 .

Observe first that since fkp8q Ñ 0 as k Ñ 8, one can find a (weakly null)
sequence p rfkq � c such that rfk P c0 for all k and } rfk � fk}8 Ñ 0: just set rfk :�
fk � fkp8q1.

Let pgnq be a weakly null sequence in c with }gn}8 ¤ 1. As above, choose a
(weakly null) sequence prgnq � c such that }rgn � gn}8 Ñ 0 and rgn P c0 for all n.
Since }gn}8 ¤ 1, we may also asume that }rgn}8 ¤ 1 for all n. Then, since fk and
the rgn are living in c0, we get from p�q above that for any t P R� and for each k P N:

lim sup
nÑ8

} rfk � trgn}8 ¤ rc0pt,
rfkq � maxp} rfk}8, tq .

By the triangle inequality, it follows that

lim sup
nÑ8

}fk � tgn}8 ¤ } rfk � fk}8 �maxp} rfk}8, tq
for each k P N and all t ¥ 0. This being true for any weakly null sequence pgnq with
}gn}8 ¤ 1, we conclude that

lim
tÑ8

prcpfk, tq � tq ¤ } rfk � fk}8

for each k P N, and hence that lim
kÑ8

lim
tÑ8

prcpt, fkq � tq � 0 .

(b) Now assume that K 1 is infinite. Since K is metrizable, it follows that K
contains a compact set S of the following form:

S �
8¤
k�1

�
tsi,k; i P Nu Y ts8,ku

�
Y ts8,8u ,

where all the points involved are distinct and
 si,k Ñ s8,k as iÑ8 for each fixed k ¥ 1;
 s8,k Ñ s8,8 as k Ñ8;
 the sets Sk :� tsi,k; i P Nu Y ts8,ku “accumulate to ts8,8u”, i.e. they are

eventually contained in any neighbourhood of s8,8.
Thus, we have S1 � ts8,k; k ¥ 1u Y ts8,8u and S2 � ts8,8u.
The key point is now to construct a special continuous map θ : S Ñ S and to

consider the associated composition operator Cθ acting on CpSq. This is the same
strategy as in [1], in our setting.

Fact 1. One can construct a continuous map θ : S Ñ S such that, denoting by θn

the iterates of θ, the following properties hold true.
(i) θnpsq Ñ s8,8 pointwise on S as nÑ8;
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(ii) there exists an open neighbourhood V of s8,8 in S such that

sup
sPS

#tn P N; θnpsq R V u � 8 .

Proof. We define the map θ as follows:$''''''&
''''''%

θps8,8q � s8,8
θpsi,kq � si,k�1 if k ¥ 2
θps8,kq � s8,k�1 if k ¥ 2
θpsi,1q � si�1,i�1 if i ¥ 2
θps8,1q � s8,8
θps1,1q � s8,8

It is clear that θ is continuous at each point s8,k, k ¥ 2. Moreover, since
si�1,i�1 Ñ s8,8 as i Ñ 8, the map θ is also continuous at s8,1 and at s8,8.
Since all other points of S are isolated, it follows that θ is continuous on S.

An examination of the orbits of θ reveals that for any s P S, we have θnpsq �
s8,8 for all but finitely many n P N. Indeed, if s � s8,k for some k P N, then
Orbps, θq � ts8,k, s8,k�1, . . . , s8,1, s8,8u, whereas if s � si,k for some pi, kq P N�N,
then Orbps, θq � tsi,k, si,k�1, . . . , si,1, si�1,i�1, . . . , si�1,1, si�2,i�2 . . . , s1,2, s1,1, s8,8u.
So property (i) is satisfied.

Set V :� SzS1, where S1 � tsi,1; i P Nu Y ts8,1u. This is an open (actually
clopen) neighbourhood of s8,8 in S. For any N P N, the orbit of sN :� sN,1
contains exactly N points of SzV � S1, namely sN,1, sN�1,1, . . . , s1,1. So property
(ii) is satisfied as well. �

From Fact 1, it is straightforward to deduce

Fact 2. The space CpSq does not have the Blum-Hanson property.

Proof. Let θ : S Ñ S be given by Fact 1, and let Cθ : CpSq Ñ CpSq be the composi-
tion operator associated with θ:

Cθu � u � θ for all u P CpSq.
By property (i) above, we see that Cnθ uÑ ups8,8q1 weakly as nÑ 8, for every

u P CpSq.
Let us choose a function f P CpSq such that fps8,8q � 0 and f � 1 on F :� SzV ,

where V satisfies (ii). Then Cnθ f Ñ 0 weakly. On the other hand, since f � 1 on F
it follows from (ii) that one can find points s P S such that #tn P N; Cnθ fpsq � 1u
is arbitrarily large. So we have

1
#I

�����
¸
nPI

Cnθ f

�����
8

¥ 1

for finite sets I � N with arbitrarily large cardinality. From this, it is a simple
matter to deduce that the sequence pCnθ fq is not strongly mixing, which concludes
the proof of Fact 2. �

It is now easy to conclude the proof of Theorem 1.1, by using the following trivial
observation.
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Fact 3. Let X be a Banach space, and let Z be a closed subspace of X. Assume
that Z is 1 - complemented in X, i.e. there is a linear projection π : X Ñ Z such
that }π} � 1. If Z fails the Blum-Hanson property, then so does X.

Proof. If T : Z Ñ Z and z P Z witness that Z fails the Blum-Hanson property, thenrT :� T � π : X Ñ Z � X and z witness that so does X. �

It is well known that since K is metrizable, there is an isometric linear extension
operator J : CpSq Ñ CpKq: this is a classical result due to Dugundji [4]. So the space
CpSq is isometric to a 1 - complemented subspace of CpKq, namely Z :� J rCpSqs.
By Fact 3, this concludes the proof of Theorem 1.1.

�

Remark 1. The above proof shows that the space CpSq fails the Blum-Hanson prop-
erty in a very special way. Namely, there exists a composition operator Cθ on CpSq
all whose orbits are weakly convergent and such that some weakly null orbit is not
strongly mixing. As shown in [1], the same is true for the space CpT2q. On the other
hand, it is observed in [7] that this is not so in the space Cpr0, 1sq, for the following
reason: if θ : r0, 1s Ñ r0, 1s is a continuous map and if the iterates θn converge
pointwise to some continuous map α : r0, 1s Ñ r0, 1s, then the convergence is in fact
uniform.

Remark 2. Our proof gives in fact the following more precise result: if K has finitely
accumulation points, then CpKq has property (P); and otherwise, one can find an
operator T on CpKq with }T } ¤ 1 such that all T - orbits are weakly convergent and
some wealy null orbit is not strongly mixing.

3. One nonmetrizable example

We have been unable to show without the metrizability assumption on K that
CpKq fails the Blum-Hanson property if K has infinitely many accumulation points.
Note that metrizability was used twice in the proof of Theorem 1.1: to ensure that
if K 1 is infinite then K contains the special compact set S; and for the existence of
an isometric (linear) extension operator J : CpSq Ñ CpKq.

It is known that the linear extension theorem may fail in the nonmetrizable case
(see e.g. [9, Remark 2.3]). It may also happen that a compact set K has infinitely
many accumulation points and yet does not contain any compact set like S. For
example, this holds for K � βN (the Stone-Čech compactification of N) because
there are no nontrivial convergent sequences in βN. However, in this (very) special
case it is possible to adapt the proof of Theorem 1.1 to obtain the following result.

Proposition 3.1. The space `8pNq � CpβNq does not have the Blum-Hanson prop-
erty.

Proof. It will be more convenient to view `8 as `8pN� Nq � CpβpN� Nqq.
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Let θ : N � N Ñ N � N be essentially the same map as in the proof of Theorem
1.1 but ignoring the limit points:$&

%
θpi, kq � pi, k � 1q if k ¥ 2
θpi, 1q � pi� 1, i� 1q if i ¥ 2
θp1, 1q � p1, 1q

We denote by Cθ the asociated composition operator acting on `8 � `8pN�Nq, i.e

Cθfpi, kq � fpθpi, kqq for every pi, kq P N� N .

Set f :� 1F P `8pN � Nq, where F � tpi, 1q; i ¥ 1uztp1, 1qu � tpi, 1q; i ¥ 2u.
Exactly as in the proof of Theorem 1.1, one checks that the sequence pCnθ fq is not
strongly mixing in `8pN � Nq. So it is enough to show that, on the other hand,
Cnθ f Ñ 0 weakly in `8pN� Nq.

Viewing `8pN� Nq as CpβpN� Nqq, we have to show that Cnθ fpUq Ñ 0 for every
ultrafilter U on N� N. Let us fix such an ultrafilter U .

Since Cnθ f � Cnθ 1F � 1θ�npF q when considered as an element of `8pN � Nq, we
have for any n P N:

Cnθ fpUq �
"

1 if θ�npF q P U
0 if θ�npF q R U

So we need to prove that if n is large enough, then θ�npF q R U .
Observe first that if we set S1 :� N�t1u, then θ�npS1qXS1 is finite for every n P N.

This is readily checked from the definition of θ. Indeed, for each s � pi, 1q P S1, the
first n P N such that θnpsq P S1 is at least equal (in fact, exactly equal) to i; so for
each fixed n there are at most n points s P S1 such that θnpsq P S1.

Since F � S1 and θ is finite -to- one, it follows that θ�npF q X θ�n
1

pF q is finite
whenever n � n1.

Now, assume without loss of generality that θ�npF q P U for more than one n P N.
Then, by what we have just observed, U contain a finite set. Hence, U is a principal
ultrafilter, defined by some point s0 P N�N. On the other hand, we know from the
definition of the map θ that θnps0q � p1, 1q for all but finitely many n P N. Since
p1, 1q R F , it follows that θ�npF q R U for all but finitely many n.

�

From Proposition 3.1, we immediately deduce

Corollary 3.2. The space L8 � L8p0, 1q does not have the Blum-Hanson property.
Likewise, if His an infinite-dimensional Hilbert space, then the space BpHq of all
bounded operators on H does not have the Blum-Hanson property.

Proof. This is clear since these two spaces contain a 1 - complemented isometric copy
of `8. �

4. Further remarks

For any topological space E, let us denote by CbpEq the space of all real-valued,
bounded continuous functions on E. Putting together Theorem 1.1 and Proposition
3.1, we obtain the following result.
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Theorem 4.1. If T is a metrizable topological space, then CbpT q has the Blum-
Hanson property exactly when T is compact and has finitely many accumulation
points.

Proof. By Theorem 1.1, it is enough to show that if CbpT q has the Blum-Hanson
property, then T is compact. Now, if T is not compact, it contains a countably
infinite closed discrete set S (thanks to the metrizability assumption). By Dugundji’s
extension theorem, CbpT q then contains a 1 - complemented isometric copy of CbpSq.
Since CbpSq is isometric to `8pNq, it follows from Proposition 3.1 that CbpT q does
not have the Blum-Hanson property. �

To conclude this paper, and since this may be useful elsewhere, we isolate the
following kind of criterion for detecting the failure of the Blum-Hanson property in
CbpT q for a not necessarily metrizable topological space T .

Lemma 4.2. Let T be a Hausdorff topological space. Assume that there exists
a subset S of T which is normal as a topological space, such that the following
properties hold true.

(1) One can find a continuous map θ : S Ñ S and a point a P S such that

(i) θnpsq Ñ a pointwise on S as nÑ8;
(ii) there exists an open neighbourhood V of a such that

sup
sPS

#tn P N; θnpsq R V u � 8 ;

(iii) there exists a further open neighbourhood W of a with W � V such that,
for any infinite set N � N, one can find n1, . . . , np P N such that the
set θ�n1pSzW q X � � � X θ�nppSzW q is finite.

(2) There is a linear isometric extension operator J : CbpSq Ñ CbpT q.
Then, one can conclude that the space CbpT q fails the Blum-Hanson property.

Proof. By (2), it is enough to show that CbpSq does not have the Blum-Hanson
property. This will of course be done by considering the composition operator Cθ :
CbpSq Ñ CbpSq.

Since W � V by (iii) and S is normal, one can choose a function f P CbpSq such
that f � 0 on W and f � 1 on F :� SzV . By condition (ii) in (1), the sequence
pCnθ fq is not strongly mixing; so we just need to check that Cnθ f Ñ 0 weakly in
CbpSq.

Being Hausdorff and normal, the space S is completely regular; so the space CbpSq
is canonically isometric with CpβSq, where βS is the Stone-Čech compactification
of S. The latter can be described as the space of all z-ultrafilters on S, i.e maximal
filters of zero sets for functions in CbpSq, or, equivalently (since S is normal) maximal
filters of closed subsets of S; see [5]. Therefore, what we have to do is to show that

lim
nÑ8

�
lim
U
fpθnpsqq

�
� 0 for any z-ultrafilter U on S .
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If U is a “principal” z-ultrafilter defined by some s0 P S, i.e. U is convergent
with limit s0, then limU fpθ

npsqq � fpθnps0qq for all n, so the result is clear since
fpθnps0qq Ñ fpaq � 0 as nÑ8 by (i).

Now, let us assume that U is not principal. Then U does not contain any finite
set. Indeed, if a maximal filter of closed sets contains a finite union of closed sets
F1 Y � � � Y FN , then it has to contain one of the Fi by maximality; so, if U were to
contain a finite set, then it would contain a singleton and hence would be principal
in a trivial way. By (iii), it follows that θ�npSzW q R U for all but finitely many
n P N; and since U is a maximal filter of closed sets, this implies that θ�npW q P U
for all but finitely many n. Since f � 0 on W , it follows that limU fpθ

npsqq � 0 for
all but finitely many n, which concludes the proof.

�

Remark 1. This lemma would be much neater if condition (iii) above could be dis-
pensed with; but we don’t know how to prove the lemma without it. The proof of
Theorem 1.1 shows that when S is compact, (i) and (ii) alone are enough for CpSq to
fail the Blum-Hanson property. At the other extreme, the proof of Proposition 3.1
shows that when S is discrete (and infinite), one can find a map θ : S Ñ S satisfying
(i), (ii) and a property stronger than (iii).

Remark 2. When S is compact, condition (iii) actually follows from (i). Indeed, let
W be any open neighbourhood of a, and assume that (iii) fails for W and some
infinite set N � N. Then, by compactness we have

�
nPN θ�npSzW q � H. But if

s P
�
nPN θ�npSzW q then θnpsq does not tend to a as nÑ8, which contradicts (i).
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