
Nopol: Automatic Repair of Conditional Statement

Bugs in Java Programs

Jifeng Xuan, Matias Martinez, Favio Demarco, Maxime Clément, Sebastian

Lamelas, Thomas Durieux, Daniel Le Berre, Martin Monperrus

To cite this version:

Jifeng Xuan, Matias Martinez, Favio Demarco, Maxime Clément, Sebastian Lamelas, et al..
Nopol: Automatic Repair of Conditional Statement Bugs in Java Programs. IEEE Transactions
on Software Engineering, Institute of Electrical and Electronics Engineers, 2016, 43, pp.34-55.
<10.1109/TSE.2016.2560811>. <hal-01285008v2>

HAL Id: hal-01285008

https://hal.archives-ouvertes.fr/hal-01285008v2

Submitted on 2 Jun 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by HAL-Artois

https://core.ac.uk/display/52875869?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-01285008v2

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, 2016 1

Nopol: Automatic Repair of Conditional
Statement Bugs in Java Programs

Jifeng Xuan, Member, IEEE, Matias Martinez, Favio DeMarco†, Maxime Clément†,
Sebastian Lamelas Marcote†, Thomas Durieux†, Daniel Le Berre,

and Martin Monperrus, Member, IEEE,

Abstract—We propose NOPOL, an approach to automatic repair of buggy conditional statements (i.e., if-then-else
statements). This approach takes a buggy program as well as a test suite as input and generates a patch with a conditional
expression as output. The test suite is required to contain passing test cases to model the expected behavior of the program and
at least one failing test case that reveals the bug to be repaired. The process of NOPOL consists of three major phases. First,
NOPOL employs angelic fix localization to identify expected values of a condition during the test execution. Second, runtime trace
collection is used to collect variables and their actual values, including primitive data types and objected-oriented features (e.g.,
nullness checks), to serve as building blocks for patch generation. Third, NOPOL encodes these collected data into an instance
of a Satisfiability Modulo Theory (SMT) problem; then a feasible solution to the SMT instance is translated back into a code
patch. We evaluate NOPOL on 22 real-world bugs (16 bugs with buggy IF conditions and 6 bugs with missing preconditions) on
two large open-source projects, namely Apache Commons Math and Apache Commons Lang. Empirical analysis on these bugs
shows that our approach can effectively fix bugs with buggy IF conditions and missing preconditions. We illustrate the capabilities
and limitations of NOPOL using case studies of real bug fixes.

Index Terms—Automatic repair, patch generation, SMT, fault localization

F

1 INTRODUCTION

AUTOMATIC software repair aims to automatically
fix bugs in programs. Different kinds of tech-

niques are proposed for automatic repair, including
patch generation [27], [41] and dynamic program state
recovery [42], [7].

A family of techniques has been developed around
the idea of “test-suite based repair” [27]. The goal
of test-suite based repair is to generate a patch that
makes failing test cases pass and keeps the other
test cases satisfied. Recent test-suite based repair ap-
proaches include the work by Le Goues et al. [27],
Nguyen et al. [38], Kim et al. [24].

• J. Xuan is with the State Key Lab of Software Engineering,
School of Computer, Wuhan University, Wuhan, China. E-mail:
jxuan@whu.edu.cn.

• M. Martinez is with the University of Lugano, Lugano, Switzerland.
He was with the University of Lille & INRIA, Lille, France, when this
work is done. E-mail: matias.sebastian.martinez@usi.ch.

• F. DeMarco and S. Lamelas Marcote are with the University of
Buenos Aires, Buenos Aires, Argentina. E-mail: faviod@gmail.com,
srlm@gmx.com.

• M. Clément and T. Durieux are with the University of Lille,
Lille, France. E-mail: maxime.clement@etudiant.univ-lille1.fr,
thomas.durieux@inria.fr.

• D. Le Berre is with the University of Artois & CNRS, Lens, France.
E-mail: leberre@cril.fr.

• M. Monperrus is with the University of Lille & INRIA, Lille, France.
E-mail: martin.monperrus@univ-lille1.fr.

† F. DeMarco, M. Clément, S. Lamelas Marcote, and T. Durieux have
contributed to this work during their internship at INRIA Lille – Nord
Europe.

In recent work [32], we have shown that IF condi-
tions are among the most error-prone program ele-
ments in Java programs. In our dataset, we observed
that 12.5% of one-change commits simply update an
IF condition. This motivates us to study the automatic
repair of conditional statements in real-world bugs.

In this paper, we present a novel automatic repair
system called NOPOL.1 This system fixes conditional
bugs in object-oriented programs and is evaluated on
real bugs from large-scale open-source programs. For
instance, NOPOL can synthesize a patch that updates a
buggy IF condition as shown in Fig. 1 or adds a guard
precondition as in Fig. 2. Both figures are excerpts of
real-world bugs taken from the bug tracking system
of Apache Commons Math.

NOPOL takes a buggy program as well as a test
suite as input and generates a conditional patch as
output. This test suite must contain at least one fail-
ing test case that embodies the bug to be repaired.
Then, NOPOL analyzes program statements that are
executed by failing test cases to identify the source
code locations where a patch may be needed.

For each statement, the process of generating the
patch consists of three major phases. First, we detect
whether there exists a fix location for a potential patch
in this statement with a new and scalable technique
called “angelic fix localization” (Section 3.2). For one
fix location, this technique reveals angelic values,

1. NOPOL is an abbreviation for “no polillas” in Spanish, which
literally means “no moth anymore”.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, 2016 2

− if (u * v == 0) {
+ if (u == 0 || v == 0) {

return (Math.abs(u) + Math.abs(v));
}

Fig. 1. Patch example of Bug CM5: a bug related
to a buggy IF condition. The original condition with
a comparison with == is replaced by a disjunction
between two comparisons.

+ if (specific != null) {
sb.append(": "); //sb is a string builder in Java

+ }

Fig. 2. Patch example of Bug PM2: a precondition is
added to avoid a null dereference.

which make all failing test cases pass.
Second, NOPOL collects runtime traces from test

suite execution through code instrumentation (Section
3.3). These traces contain snapshots of the program
state at all candidate fix locations. The collected trace
consists of both primitive data types (e.g., integers and
booleans) and object-oriented data (e.g., nullness or
object states obtained from method calls).

Third, given the runtime traces, the problem of syn-
thesizing a new conditional expression that matches
the angelic values is translated into a Satisfiability
Modulo Theory (SMT) problem (Section 3.4). Our
encoding extends the technique by Jha et al. [19] by
handling rich object-oriented data. We use our own
implementation of the encoding together with an off-
the-shelf SMT solver (Z3 [12]) to check whether there
exists a solution.

If such a solution exists, NOPOL translates it back
to source code, i.e., generates a patch. We re-run the
whole test suite to validate whether this patch is able
to make all test cases pass and indeed repairs the bug
under consideration.

To evaluate and analyze our repair approach
NOPOL, we collect a dataset of 22 bugs (16 bugs
with buggy IF conditions and 6 bugs with missing
preconditions) from real-world projects. Our result
shows that 17 out of 22 bugs can be fixed by NOPOL,
including four bugs with manually added test cases.
Four case studies are conducted to present the benefits
of generating patches via NOPOL and five bugs are
employed to explain the limitations.

The main contributions of this paper are as follows.
• The design of a repair approach for fixing con-

ditional statement bugs of the form of buggy IF
conditions and missing preconditions.

• Two algorithms of angelic fix localization for
identifying potential fix locations and expected
values.

• An extension of the SMT encoding in [19] for
handling nullness and certain method calls of

object-oriented programs.
• An evaluation on a dataset of 22 bugs in real-

world programs with an average of 25K exe-
cutable lines of code for each bug.

• A publicly-available system for supporting fur-
ther replication and research.

• An analysis of the repair results with respect to
fault localization.

This paper is an extension of our previous work
[14]. This extension adds an evaluation on a real-
world bug dataset, four detailed case studies, a discus-
sion of the limitations of our approach, and a detailed
analysis on patches.

The remainder of this paper is organized as follows.
Section 2 provides the background of test-suite based
repair. Section 3 presents our approach for repairing
bugs with buggy IF conditions and missing precondi-
tions. Section 4 details the evaluation on 22 real-world
bugs. Section 5 further analyzes the repair results.
Section 6 presents potential issues and Section 7 lists
the related work. Section 8 concludes.

2 BACKGROUND

We present the background on test-suite based repair
and the two kinds of bugs targeted in this paper.

2.1 Test-Suite Based Repair

Test-suite based repair consists in repairing programs
according to a test suite, which contains both passing
test cases as a specification of the expected behavior
of the program and at least one failing test case as
a specification of the bug to be repaired. Failing test
cases can either identify a regression bug or reveal a
new bug that has just been discovered. Then, a repair
algorithm searches for patches that make all the test
cases pass.

The core assumption of test-suite based repair is
that the test suite is good enough to thoroughly
model the program to repair [36]. This is a case
when the development process ensures a very strong
programming discipline. For example, most commits
of Apache projects (e.g., Apache Commons Lang)
contain a test case specifying the change. If a commit
is a bug fix, the commit contains a test case that
highlights the bug and fails before the fix.

Test-suite based repair, which has been popularized
by the work of GenProg by Le Goues et al. [27],
has become an actively explored research area [38],
[24], [44], [45], [29]. The approach presented in this
paper, NOPOL, is also an approach to test-suite based
repair. Other kinds of repair methods include repair
based on formal models [20] and dynamic repair of
the program state [42].

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, 2016 3

2.2 Buggy IF Condition Bugs
Conditional statements (e.g., if (condition){...}

else {...}), are widely-used in programming lan-
guages. Pan et al. [39] show that among seven studied
Java projects, up to 18.6% of bug fixes have changed
a buggy condition in IF statements. A buggy IF con-
dition is defined as a bug in the condition of an
if-then-else statement.

The bug in Fig. 1 is a real example of a buggy
IF condition in Apache Commons Math. This bug
is a code snippet of a method that calculates the
greatest common divisor between two integers. The
condition in that method is to check whether either
of two parameters u and v is equal to 0. In the
buggy version, the developer compares the product
of the two integers to zero. However, this may lead
to an arithmetic overflow. A safe way to proceed is to
compare each parameter to zero. This bug was fixed
by NOPOL (see Bug CM5 in Table 2).

2.3 Missing Precondition Bugs
Another class of common bugs related conditions is
the class of missing preconditions. A precondition
aims to check the state of certain variables before
the execution of a statement. Examples of common
preconditions include detecting a null pointer or an
invalid index in an array. In software repositories, we
can find commits that add preconditions (i.e., which
were previously missing).

The bug in Fig. 2 is a missing precondition with the
absence of null pointer detection. The buggy version
without the precondition throws an exception signal-
ing a null pointer at runtime. NOPOL fixed this bug
by adding the precondition (see Bug PM2 in Table 2).

3 OUR APPROACH

This section presents our approach to automatically
repairing buggy IF conditions and missing precondi-
tions. Our approach is implemented in a tool called
NOPOL that repairs Java code.

3.1 Overview
NOPOL is a repair approach, which is dedicated to
buggy IF conditions and missing preconditions. As
input, NOPOL requires a test suite which represents
the expected program functionality with at least one
failing test case that exposes the bug to be fixed. Given
a buggy program and its test suite, NOPOL returns
the final patch as output. Fig. 1 and Fig. 2 are two
examples of output patches for buggy IF conditions
and missing preconditions by NOPOL, respectively.

How to use NOPOL. From a user perspective, given
a buggy program with a test suite, including failing
test cases, the user would run NOPOL and obtain a
patch, if any. Before applying NOPOL to the buggy
program, the user does not need to know whether

Buggy program

Fault
localization

Buggy IF condition or missing precondition

Angelic fix
localization

Runtime trace
collection

Patch
synthesis

Patch
validation

Final patch

Statement ranking
1st Statement

2nd Statement

kth Statement

...

Yes

Next statement

One
statement

No angelic value

Found
Angelic
values

No

No patch

No statement left

Only failing test
cases needed

Fig. 3. Overview of the proposed automatic repair
approach, NOPOL.

the bug relates to conditions. Instead, the user runs
NOPOL for any buggy program. If NOPOL finds a
patch, then the user would manually inspect and
validate it before the integration in the code base. As
further discussion in Section 4.4, the user can also add
a pre-defined timeout, e.g., 90 seconds as suggested
in experiments or a longer timeout like five hours
instead of exhaustively exploring the search space.

Fig. 3 shows the overview of NOPOL. NOPOL em-
ploys a fault localization technique to rank statements
according to their suspiciousness of containing bugs.
For each statement in the ranking, NOPOL considers
it as a buggy IF condition candidate if the statement
is an IF statement; or NOPOL considers it as a missing
precondition candidate if the statement is any other
non-branch or non-loop statement (e.g., an assign-
ment or a method call). NOPOL processes candidate
statements one by one with three major phases.

First, in the phase of angelic fix localization, NOPOL
arbitrarily tunes a conditional value (true or false)
of an IF statement to pass a failing test case. If such
a conditional value exists, the statement is identified
as a fix location and the arbitrary value is viewed
as the expected behavior of the patch. In NOPOL,
there are two kinds of fix locations, IF statements for
repairing buggy conditions and arbitrary statements
for repairing missing preconditions.

Second, in the phase of runtime trace collection,
NOPOL runs the whole test suite in order to collect
the execution context of each fix location. The con-
text includes both variables of primitive types (e.g.,
booleans or integers) and a subset of object-oriented
features (nullness and certain method calls); then such
runtime collection will be used in synthesizing the
patch in the next phase.

Third, in the phase of patch synthesis, the collected

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, 2016 4

trace is converted into a Satisfiability Modulo Theory
(SMT) formula. The satisfiability of SMT implies that
there exists a program expression that preserves the
program behavior and fixes the considered bug. That
is, the expression makes all test cases pass. If the
SMT formula is satisfiable, the solution to the SMT
is translated as a source code patch; if unsatisfiable,
NOPOL goes to the next statement in the statement
ranking, until all statements are processed.

After the above three phases, the whole test suite is
re-executed to validate that the patch is correct. This
validation could be skipped if the SMT encoding is
proven to be correct. Indeed, theoretically, if the SMT
solver says “satisfiable”, it means that a patch exists.
However, there could be an implementation bug in
the trace collection, in the SMT problem generation, in
the off-the-shelf SMT solver, or in the patch synthesis.
Consequently, we do make the final validation by re-
executing the test suite.

3.2 Angelic Fix Localization

In NOPOL, we propose to use value replacement [18]
to detect potential fix locations. Value replacement
[18] comes from fault localization research. It consists
in replacing at runtime one value by another one.
More generally, the idea is to artificially change the
program state for localizing faults. There are a couple
of papers that explore this idea. For instance, Zhang
et al. [55] use the term “predicate switching” and
Chandra et al. [9] use the term “angelic debugging”.

NOPOL replaces conditional values in IF statements.
We refer to conditional values that make test cases
pass as angelic values.

Definition (Angelic Value) An angelic value is an
arbitrarily-set value at a given location during test
execution, which enables a failing test case to pass.

To facilitate the description of our approach, we
follow existing work [17] to introduce the concept of
locations. A location is an integer value, which iden-
tifies the absolute position of a statement in source
code.

Definition (Angelic Tuple) An angelic tuple is a
triplet (loc, val, test), where the statement at a location
loc is evaluated to a value val to make a failing test
case test pass.

In this paper, we refer to the technique of modifying
the program state to find the values for angelic tuples
(loc, val, test) as angelic fix localization. If an angelic
tuple (loc, val, test) is found, there may exist a patch in
the location loc in source code. In the phase of angelic
fix localization, only failing test cases are needed, not
the whole test suite.

A single test case test may evaluate the statement at
the location loc several times. Consequently, according
to our definition, the value val is fixed across all
evaluations of a given statement for one test case.
This is the key point for having a tractable search

Input :
stmt, a candidate IF statement;
Tf , a set of failing test cases.
Output:
R, a set of angelic tuples.

1 R← ∅;
2 Initialize two sets Ttrue ← ∅ and Tfalse ← ∅;
3 Let cond be the condition in stmt and let loc be

the location of cond;

4 Force cond to true and execute test cases in Tf ;
5 foreach failing test case ti ∈ Tf do
6 if ti passes then
7 Ttrue ← Ttrue ∪ {ti};
8 end
9 end

10 Force cond to false and execute test cases in Tf ;
11 foreach failing test case ti ∈ Tf do
12 if ti passes then
13 Tfalse ← Tfalse ∪ {ti};
14 end
15 end

// All test cases in Tf are passed
16 if (Tf \ Ttrue) ∩ (Tf \ Tfalse) = ∅ then
17 foreach ti ∈ Ttrue do
18 R← R ∪ {(loc, true, ti)};
19 end
20 foreach ti ∈ Tfalse do
21 R← R ∪ {(loc, false, ti)};
22 end
23 end

Algorithm 1: Angelic Fix Localization Algorithm for
Buggy IF Conditions

space (will be discussed in Section 3.2.3). On the other
hand, one angelic value is specific to a test case: for
a given location loc, different failing test cases may
have different angelic values.

3.2.1 For Buggy IF Conditions

For buggy IF conditions, angelic fix localization works
as follows. For each IF condition that is evaluated
during test suite execution, an angel forces the IF
condition to be true or false in a failing test case. An
angelic tuple (loc, val, test), i.e., (IF condition location,
boolean value, failing test case), indicates that a fix
modifying this IF condition may exist (if the subse-
quent phase of patch synthesis succeeds, see Section
3.4).

Algorithm 1 is the pseudo-code of angelic fix local-
ization for buggy IF conditions. For a given IF state-
ment stmt and its condition cond, both true and false

are set to pass originally failing test cases at runtime.
Lines 4 to 9 and Lines 10 to 15 describe how to set
cond to be true and false, respectively. If all failing
test cases are passed, angelic tuples are collected, i.e.,

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, 2016 5

Input :
stmt, a candidate non-IF statement;
Tf , a set of failing test cases.
Output:
R, a set of angelic tuples.

1 R← ∅;
2 Initialize a test case set Tpre ← ∅;
3 Let loc be the location of a potential precondition

of stmt;

4 Force stmt to be skipped and execute Tf ;
5 foreach failing test case ti ∈ Tf do
6 if ti passes then
7 Tpre ← Tpre ∪ {ti};
8 end
9 end

// All test cases in Tf are passed
10 if Tpre = Tf then
11 foreach ti ∈ Tpre do
12 R← R ∪ {(loc, false, ti)};
13 end
14 end

Algorithm 2: Angelic Fix Localization Algorithm for
Missing Preconditions

Lines 17 to 22, for further patch synthesis; otherwise,
there exists no angelic value for the test case and the
location under consideration. The same idea of forcing
the execution can be used to identify angelic values
for loop conditions [30].

3.2.2 For Missing Preconditions

Angelic fix localization for missing preconditions is
slightly different from that for IF conditions. For each
non-branch and non-loop statement that is evaluated
during test suite execution, an angel forces to skip
it. If a failing test case now passes, it means that a
potential fix location has been found. The oracle for
repair is then “false”; that is, the added precondition
must be false, i.e., the statement should be skipped.
Then, an angelic tuple (loc, val, test) is (precondition
location, false, failing test case).

Algorithm 2 is the pseudo-code of this algorithm.
Given a non-IF statement stmt, we skip this statement
to check whether all failing test cases are passed, i.e.,
Lines 4 to 9. If yes, the location loc of the precondition
as well as its angelic value false is collected, i.e.,
Lines 11 to 13. If skipping the statement does not
pass all the failing test cases, no angelic values will
be returned. This technique also works for missing
preconditions for entire blocks since blocks are just
specific statements in Java. In our implementation, we
only consider adding missing preconditions for single
statements rather than blocks. Manual examination on
the dataset in Section 4.4 will show that our dataset
does not contain missing preconditions for blocks.

3.2.3 Characterization of the Search Space
We now characterize the search space of angelic val-
ues. If an IF condition is executed more than once in a
failing test case, there may exist a sequence of multiple
different angelic values resulting in a passing test case.
For example, a buggy IF condition that is executed
three times by one failing test case may require a
sequence of three different angelic values to pass the
test case.

Search space for buggy IF conditions. In general, if
one failing test case executes a buggy IF condition for
tc times, the search space of all sequences of angelic
values is 2tc . To avoid the problem of combinatorial
explosion, NOPOL assumes that, for a given failing
test case, the angelic value is the same during the
multiple executions on one statement. The search
space size becomes 2 for one failing test case instead of
2tc . Under this assumption, the search space is shown
as follows.

For buggy IF condition, the search space is 2 × nc
where nc is the number of executed IF statements by
a given failing test case.

Search space for missing preconditions. Similarly
to angelic fix localization for buggy IF conditions, if
a statement is executed several times by the same
failing test case, angelic fix localization directly adds
a precondition (with a false value) and completely
skips the statement for a given test case.

For missing precondition bugs, the search space size
is np, where np is the number of executed statements
by test cases. It is not 2 × np because we only add
a precondition and check whether the false value
passes the failing test case.

NOPOL does not decide a priority between updat-
ing existing conditions or adding new preconditions.
A user can try either strategy, or both. There is no ana-
lytical reason to prefer one or the other; our evaluation
does not give a definitive answer to this question.
In our experiment, we perform both strategies for
statements one by one (see Section 3.1).

If no angelic tuple is found for a given location,
there are two potential reasons. First, it is impossible
to fix the bug by changing the particular condition
(resp. adding a precondition before the statement).
Second, only a sequence of different angelic values,
rather than a single angelic value, would enable the
failing test case to pass. Hence, NOPOL is incomplete:
there might be a way to fix an IF condition by alter-
nating the way of finding angelic values, but we have
not considered it in this paper.

3.3 Runtime Trace Collection for Repair
Once an angelic tuple is found, NOPOL collects the
values that are accessible at this location during pro-
gram execution. Those values are used to synthesize
a correct patch (in Section 3.4). In our work, different
kinds of data are collected to generate a patch.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, 2016 6

3.3.1 Expected Outcome Data Collection
As mentioned in Section 3.2, an angelic value indicates
that this value enables a failing test case to pass.
To generate a patch, NOPOL collects the expected
outcomes of conditional values to pass the whole test
suite: angelic values for failing test cases as well as
actual execution values for the passing ones.

Let O be a set of expected outcomes in order to pass
all test cases. An expected outcome Oloc,m,n ∈ O refers
to the value at location loc during the m-th execution
in order to pass the n-th test case. NOPOL collects
Oloc,m,n for all executions of location loc.

For buggy IF conditions. Oloc,m,n is the expected
outcome of the condition expression at loc. For a
failing test case, the expected outcome is the angelic
value; for a passing test case, the expected outcome is
the runtime value eval(loc), i.e., the result of the eval-
uation during the actual execution of the IF condition
expression.

Oloc,m,n =

{
eval(loc), for passing test cases
angelic value for failing test cases

For missing preconditions. Oloc,m,n is the expected
value of the precondition at loc, i.e., true for passing
test cases and false for failing test cases. The latter
comes from angelic fix localization: if the precondi-
tion returns false for a failing test case, the buggy
statement is skipped and the test case passes.

Oloc,m,n =

{
true for passing test cases
false for failing test cases

Note that not all the bugs with missing precondi-
tions can be fixed with the above definition. Section
4.6.3 will present the limitation of this definition with
a real example.

3.3.2 Primitive Type Data Collection
At the location of an angelic tuple, NOPOL collects the
values of all local variables, method parameters, and
class fields that are typed with a basic primitive type
(booleans, integers, floats, and doubles).

Let Cloc,m,n be the set of collected values at location
loc during the m-th execution of the n-th test case. In
order to synthesize conditions that use literals (e.g.,
if (x > 0)), Cloc,m,n is enriched with constants for
further patch synthesis. First, NOPOL collects static
values that are present in the program.2 Second, we
add three standard values {0, -1, 1}, which are present
in many bug fixes in the wild (for instance for well-
known off-by-one errors). Based on these standard
values, other values can be formed via wiring build-
ing blocks (in Section 3.4.2). For example, a value 2 in

2. Besides collecting static fields in a class, we have also tried to
collect other class fields of the class under repair, but the resulting
patches are worse in readability than those without collecting class
fields. Hence, no class fields other than static fields are involved in
data collection.

a patch can be formed as 1 + 1, if 2 is not collected
during runtime trace collection.

3.3.3 Object-Oriented Data Collection

NOPOL aims to support automatic repair for object-
oriented programs. In particular, we would like to
support nullness checks and some particular method
calls. For instance, NOPOL is able to synthesize the
following patch containing a method call.

+ if (obj.size() > 0) {
compute(obj);

+ }

To this end, in addition to collecting all values of
primitive types, NOPOL collects two kinds of object-
oriented features. First, NOPOL collects the nullness
of all variables of the current scope. Second, NOPOL
collects the output of “state query methods”, defined
as the methods that inspect the state of objects and are
side-effect free. A state query method is an argument-
less method with a primitive return type. For instance,
methods size() and isEmpty() of Collection are
state query methods. The concept of state query meth-
ods is derived from “argument-less boolean queries”
of “object states” by Pei et al. [41].

NOPOL is manually fed with a list of such methods.
The list is set with domain-specific knowledge. For
instance, in Java, it is easy for developers to identify
such side-effect free state query methods on core
library classes such as String, File and Collection.
For each object-oriented class T , those predefined
state query methods are denoted as sqm(T).

NOPOL collects the nullness of all visible variables
and the evaluation of state query methods for all ob-
jects in the scope (local variables, method parameters,
and fields) of a location where an angelic tuple exists.
Note that this incorporates inheritance; the data are
collected based on the polymorphism in Java. For
instance, when the value of obj.size() is collected,
it may be for one implementation of size() based
on array lists and for another implementation of
size() based on linked lists. This means that a patch
synthesized by NOPOL can contain polymorphic calls.

3.3.4 On the Size of Collected Data

Let us assume there are u primitives values and a set
O of w objects in the scope of an angelic tuple. In total,
NOPOL collects the following values:
• u primitive variables in the scope;
• w boolean values corresponding to the nullness

of each object;
•
∑
o∈O |sqm(class(o))| values corresponding to the

evaluation of the state query methods of all ob-
jects available in the scope, where class(o) de-
notes the class of the object o;

• constants, i.e., 0, -1, and 1 in our work.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, 2016 7

3.4 Patch Synthesis: Encoding Repair in SMT
The patch synthesis of buggy IF conditions and miss-
ing preconditions consists of synthesizing an expres-
sion exp such that

∀loc,m,n exp(Cloc,m,n) = Oloc,m,n (1)

As a synthesis technique, NOPOL, as SemFix [38],
uses a variation of oracle-guided component-based
program synthesis [19], which is based on SMT.

The solution of the SMT problem is then trans-
lated back to a boolean source code expression exp
representing the corrected IF condition or the added
precondition.

3.4.1 Building Blocks
We define a building block (called a component in [19])
as a type of expression that can appear in the boolean
expression to be synthesized. For instance, the logical
comparison operator “<” is a building block. As build-
ing block types, we consider comparison operators (<,
>, ≤, ≥, =, and 6=), arithmetic operators (+, −, and
×),3 and boolean operators (∧, ∨, and ¬). The same
type of building blocks can appear multiple times in
one expression.

Let bi be the ith building block (i = 1, 2, . . . , k). Then
bi is identified as a tuple of a set of input variables
Ii, an output variable ri, and an expression φi(Ii, ri)
encoding the operation of the building block. That
is bi = (φi(Ii, ri), Ii, ri) (bi = (φi, Ii, ri) for short).
For example, given a boolean output ri and an input
Ii = {Ii,1, Ii,2} consisting of two boolean values, a
building block could be bi = (φi, {Ii,1, Ii,2}, ri), where
φi is implemented with the operator ∧, i.e., Ii,1 ∧ Ii,2.

Let r be the final value of the synthesized patch.
Hence there exists one building block bi whose output
is bound to the return value ri = r.

Suppose we are given a set B of building blocks
and a list CO of pairs (Cloc,m,n, Oloc,m,n), i.e., pairs of
collected values and expected values at the location
loc during the m-th execution of the n-th test case.
Cloc,m,n includes values of different types: BOOL, INT,
or REAL.4 A patch is a sequence of building blocks
< b1, b2, ..., bk > with bi ∈ B, whose input values are
taken from either Cloc,m,n or other building blocks.

3.4.2 Wiring Building Blocks
The problem of patch synthesis is thus to wire the
input of building blocks < b1, b2, ..., bk > to the input
values I0 or the output values of other building
blocks. To synthesize a condition, we need to make
sure that the types of the variables are valid operands
(e.g., an arithmetic operator only manipulates inte-
gers).

3. Adding the division is possible but would require specific care
to avoid division by zero.

4. In the context of SMT, we use BOOL, INT, and REAL to denote
the types of booleans, integers, and doubles as well as floats in Java,
respectively.

Example. Let us assume that Cloc,m,n has three
values, an integer variable i0, a boolean constant
c1 ← False, and an integer constant c2 ← 3. Assume
we have two building blocks, BOOL ← f1(BOOL)
and BOOL ← f2(INT, INT). Then the goal of patch
synthesis is to find a well formed expression, such
as False, f1(False), f2(i0, 3), f2(3, 3), and f1(f2(3, 3));
meanwhile, one of these expressions is expected to
match the final output r.

3.4.3 Mapping Inputs and Outputs with Location Vari-
ables
Let I = ∪Ii and O = ∪{ri} be the sets of input and
output values of all building blocks bi ∈ B. Let I0 be
the input set {Cloc,m,n} and let r be the output in the
final patch. We define IO as IO = I ∪O∪ I0∪{r}. We
partition the elements of IO according to their types
in BOOL, INT, and REAL.

The SMT encoding relies on the creation of location
variables. A location variable lx ∈ L represents an
index of an element x ∈ IO. Note that the concept of
location variables in SMT encoding is different from
the concept of locations in Section 3.2. A location
variable lx indicates a relative position, i.e., an index,
of x in a patch while a location loc indicates an
absolute position of a statement in a source file. A
value variable vx ∈ V represents a value taken by
an elements x ∈ IO. Values of location variables are
actually integers (L ⊆ INT); value variables are of any
supported type, i.e., BOOL, INT, or REAL.

Informally, a location variable lx serves as an index
of x ∈ IO in a code fraction while a value variable
vx indicates its value during test execution. Section
3.4.4 will further illustrate how to index the code via
location variables. Location variables are invariants
for the execution of all test cases: they represent the
patch structure. Value variables are used internally by
the SMT solver to ensure that the semantics of the
program is preserved.

3.4.4 Domain Constraints
Let us first define the domain constraints over the
location variables. Given the input set I0 and the
building block set B, let p be the number of possible
inputs and p = |I0|+ |B|. The location variables of the
elements of I0 and r are fixed:

φFIXED(I0, r) = (∧|I0|i=1 lI0,i = i)
∧
lr = p

Given building blocks bi ∈ B, the location variable
lri for the output ri (ri ∈ O) of bi belongs to a range
of [|I0|+ 1, p]:

φOUTPUT (O) =

|O|∧
i=1

(|I0|+ 1 ≤ lri ≤ p)

Handling types. Only the location variables corre-
sponding to the values of the same type are allowed.
Suppose that type(x) returns the set of elements with

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, 2016 8

the same type of x among BOOL, INT, and REAL.
Then we can restrict the values taken by the location
variables of the input values of building blocks using
the following formula:

φINPUT (I) =
∧
x∈I

∨
y∈type(x),x 6=y

(lx = ly)

Recall the example in Section 3.4.2, we have the
input I0 = {i0, c1, c2}, the output r, and two building
blocks f1 and f2. We assume that each building block
is involved in the patch for at most once for simplify-
ing the example; in our implementation, a building
block can be used once or more in a synthesized
patch. Then we have the location variables as follows.
The location variables of i0, c1, and c2 are 1, 2, and
3; the locations variables of building blocks are 4
and 5, respectively. Based on the types, candidate
values of location variables of If1,1, If2,1, and If2,2
are calculated.

li0 = 1 input variable, integer
lc1 = 2 boolean constant, False
lc2 = 3 integer constant, 3
lrf1 ∈ [4, 5] output of f1, boolean
lrf2 ∈ [4, 5] output of f2, boolean
lr = 5 expected output value, boolean
lIf1,1

∈ {lc1 , lrf1 , lrf2 } the parameter of f1, boolean
lIf2,1

∈ {li0 , lc2} the first parameter of f2, integer
lIf2,2

∈ {li0 , lc2} the second parameter of f2, integer

The following additional constraints are used to
control the values of location variables. First, we
ensure that each output of a building block is mapped
to one distinct input (wires are one-to-one).

φCONS(L,O) =
∧

x,y∈O,x6=y

lx 6= ly

Second, we need to order the building blocks in
such a way that its arguments have already been
defined.

φACY C(B,L, I,O) =
∧

(φi,Ii,ri)∈B

∧
x∈Ii

lx < lri

Then, we combine all constraints together.

φWFF (B,L, I,O, I0, r) = φFIXED(I0, r) ∧ φOUTPUT (O)

∧φINPUT (I) ∧ φCONS(L,O) ∧ φACY C(B,L, I,O)

An assignment of L variables respecting the predi-
cate φWFF (B,L, I,O, I0, r) corresponds to a syntacti-
cally correct patch.

Value variables corresponding to the input and the
output of a building block are related according to
the functional definition of a predicate pbi. Given
a building block bi = {φi, Ii, ri}, let value(Ii) be a
function that returns the value for the input Ii. For
a value variable vri , let pbi(value(Ii), vri) = true iff

φi(Ii) = ri. Given VIO = {vx|x ∈ I ∪O}, we define the
following constraint.

φLIB(B, VIO) =
∧

(φi,Ii,ri)∈B,vri∈VIO

pbi

(
value(Ii), vri

)
The location variables and the value variables are

connected together using the following rule which
states that elements at the same position should have
the same value. Note that we need to limit the appli-
cation of that rule to values of the same type because
in our case, input or output values can be of different
types. Such a limitation to the elements of the same
type is valid since the domain of the location variables
are managed using constraints φINPUT (I).

φCONN (L, VIO) =∧
S∈{BOOL,INT,REAL}

∧
x,y∈S

lx = ly ⇒ vx = vy

Let the notation α[v ← x] mean that the variable v
in the constraint α has been set to the value x. For
a given location loc, the patch for a given input I0
and a given output r is preserved using the following
existentially quantified constraint.

φFUNC(B,L,Cloc,m,n, Oloc,m,n) =

∃VIO
(
φLIB(B, VIO)

∧
φCONN (L, VIO)[value(I0)← Cloc,m,n, vr ← Oloc,m,n]

)
Finally, finding a patch which satisfies all expected

input-output pairs (Cloc,m,n, Oloc,m,n) requires to sat-
isfy the following constraint.

φPATCH(B, I,O,CO, I0, r) =

∃L
(∧

(Cloc,m,n,Oloc,m,n)∈CO

φFUNC(B,L,Cloc,m,n, Oloc,m,n)

∧
φWFF (B,L, I,O, I0, r)

)
3.4.5 Complexity Levels of Synthesized Expressions
Ideally, we could feed SMT with many instances of all
kinds of building blocks (see Section 3.4.1). Only the
required building blocks would be wired to the final
result. This is an inefficient strategy in practice: some
building blocks require expensive computations, e.g.,
a building block for multiplication (which is a hard
problem in SMT).

To overcome this issue, we use the same technique
of complexity levels as SemFix [38]. We first try to
synthesize an expression with only one instance of
easy building blocks (<, ≤, 6=, and =)5. Then, we add
new building blocks (e.g., building blocks of logical
operators and arithmetic operators, successively) and
eventually we increase the number of instances of
building blocks. We refer to those successive SMT
satisfaction trials as the “SMT level”.

5. > and ≥ are obtained by symmetry, e.g., a ≥ b as b ≤ a.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, 2016 9

Input :
L, an assignment of location variables, i.e., an
SMT solution;
r, a final and expected output variable of patch;
Output:
patch, a source code patch.

1 Find a location variable lx = lr;
2 patch = traverse(lx);

3 Function traverse(lx)
4 if x ∈ O then // Output of a building block
5 Find the expression φx(Ix, x) and

Ix = (Ix,1, Ix,2, ...);
6 return code(φx(traverse(Ix,1), traverse(Ix,2), ...));
7 else if x ∈ I then // Input of a building block
8 Find y for ly = lx; // ly ∈ O ∪ I0
9 return traverse(ly);

10 else // x ∈ I0, from collected runtime trace
11 return code(x);
12 end
13 end

Algorithm 3: Translation Algorithm from an SMT
Solution to a Source Code Patch.

3.4.6 Patch Pretty-Printing

NOPOL translates a solution to a patch in source code
if there is a feasible solution to the SMT problem. Since
NOPOL repairs bugs with buggy IF conditions and
missing preconditions, the patch after translation is a
conditional expression, which returns a boolean value.

The translation is obtained with a backward traver-
sal starting at the final output location lr, as explained
in Algorithm 3. A function traverse returns the traver-
sal result according to the location variables while a
function code converts a variable into source code.
For example, for a variable a, code(a) is translated
to a; if φ denotes the conjunction of boolean values,
code(φ(traverse(a), traverse(b))) is translated to a∧ b.
As shown in Algorithm 3, patch translation from a
SMT solution to a patch is a deterministic algorithm,
which generates an identical patch for a given SMT
solution. Once a patch is translated from the SMT
solution, NOPOL returns this patch to developers as
the final patch.

Here is a possible solution to the SMT instance for
our running example (in Section 3.4.2): li0 = 1, lc1 = 2,
lc2 = 3, lr = 5, lrf1 = 4, lrf2 = 5, lIf1,1

= 2, lIf2,1
= 1,

lIf2,2
= 1.

In our example, the output is bound to lr = 5 that
is the output of f2. Then f2 takes the integer input
value i0 in li0 as a parameter. The final patch is thus
the expression f2(i0, i0) which returns a boolean. This
patch could be the repair of a bug, i.e., a fixed IF
condition or an added precondition. In this example,
f1 is never used.

3.5 Fault Localization
NOPOL uses an existing fault localization technique
to speed up finding an angelic value, if one exists. In
fault localization, statements are ranked according to
their suspiciousness. The suspiciousness of a statement
measures its likelihood of containing a fault.

In NOPOL, a spectrum-based ranking metric, Ochiai
[4], is used as the fault localization technique. Existing
empirical studies [47], [52] show that Ochiai is more
effective on localizing the root cause of faults in
object-oriented programs than other fault localization
techniques. In Section 5.2, we will compare the effec-
tiveness among different fault localization techniques.

Given a program and a test suite, the suspiciousness
susp(s) of a statement s is defined as follows.

susp(s) =
failed(s)√

total_failed ∗ (failed(s) + passed(s))

where total_failed denotes the number of all the fail-
ing test cases and failed(s) and passed(s) respectively
denote the number of failing test cases and the num-
ber of passing test cases, which cover the statement
s. Note that 0 ≤ susp(s) ≤ 1 where susp(s) = 1
indicates the highest probability of localizing the bug
and susp(s) = 0 indicates there is no likelihood
between this statement and the bug.

We rank all the statements based on their suspi-
ciousness in descending order. For all the statements
with the suspiciousness over zero, we detect whether
this statement is an IF statement or not. As previously
mentioned in Section 3.1, for an IF condition, NOPOL
tries to synthesize a new condition while for a non-IF
statement, NOPOL tries to add a precondition.

4 AUTOMATIC REPAIR OF REAL-WORLD IF
BUGS

We now evaluate our repair approach, NOPOL, on
a dataset of 22 real-world bugs. First, we describe
our evaluation methodology in Section 4.1; second,
we introduce the setup of our dataset in Section 4.2
and the implementation details in Section 4.3; third,
we present the general description of the synthesized
patches in Section 4.4; fourth, four bugs are employed
as case studies in Section 4.5 and five bugs are used
to illustrate the limitations in Section 4.6.

4.1 Evaluation Methodology
Our evaluation methodology is based on the follow-
ing principles.

P1. We evaluate our tool, NOPOL, on real-world
buggy programs (Section 4.4).

P2. For bugs that NOPOL can fix, we examine the
automatically generated patches, and compare them
with human-produced patches (Section 4.5).

P3. For bugs that NOPOL cannot correctly fix, we
check the details of these bugs and highlight the

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, 2016 10

reasons behind the unrepairability (Section 4.6). When
the root cause is an incorrect test case (i.e., an incom-
plete specification), we modify the test case and re-run
NOPOL.

P4. We deliberately do not compute a percentage
of repaired bugs because this is a potentially unsound
measure. According to our previous investigation [36],
this measure is sound if and only if 1) the dataset
is only composed of bugs of the same kind and
2) the distribution of complexity within the dataset
reflects the distribution of all in-the-field bugs within
this defect class. In our opinion, the second point is
impossible to achieve.

We have not quantitatively compared our approach
against existing repair approaches on the same dataset
because 1) either existing approaches are inapplicable
on this dataset (e.g., GenProg [27] and SemFix [38] are
designed for C programs); 2) or these approaches are
not publicly available (e.g., PAR [24] and mutation-
based repair [13]).

4.2 Dataset of Real-World Bugs

NOPOL focuses on repairing conditional bugs, i.e.,
bugs in IF conditions and preconditions. Hence, we
build a dataset of 22 real-world bugs of buggy IF
conditions and missing preconditions. Since our pro-
totype implementation of NOPOL repairs Java code,
these 22 bugs are selected from two open-source Java
projects, Apache Commons Math6 and Apache Com-
mons Lang7 (Math and Lang for short, respectively).

Both Math and Lang manage source code using
Apache Subversion8 (SVN for short) and manage bug
reports using Jira.9 Jira stores the links between bugs
and related source code commits. In addition, these
projects use the FishEye browser to inspect source
code and commits.10

In our work, we employ the following four steps to
collect bugs for the evaluation. First, we automatically
extract small commits that modify or add an IF con-
dition using Abstract Syntax Tree (AST) analysis [15].
We define a small commit as a commit that modifies
at most 5 files, each of which introduces at most 10
AST changes (as computed by the analytical method,
GumTree [15]). In Math, this step results in 161 com-
mits that update IF conditions and 104 commits that
add preconditions; in Lang, the commits are 165 and
91, respectively. The lists of commits are available
at the NOPOL project [1]. Second, for each extracted
commit, we collect its related code revision, i.e., the
source program corresponding to this commit. We
manually check changes between the code revision
and its previous one; we only accept changes that

6. Apache Commons Math, http://commons.apache.org/math/.
7. Apache Commons Lang, http://commons.apache.org/lang/.
8. Apache Subversion, http://subversion.apache.org/.
9. Jira for Apache, http://issues.apache.org/jira/.
10. FishEye for Apache, http://fisheye6.atlassian.com/.

contain an IF condition or a missing precondition
and do not affect other statements. Those commits
could also contain other changes that relate to neither
a bug nor a patch, such as a variable renaming or
the addition of a logging statement. In this case,
changes of the patch are separated from irrelevant
changes. Third, we extract the test suite at the time
of the patch commit, including failing test cases.11

Fourth, we manually configure programs and test
suites to examine whether bugs can be reproduced.
Note that the reproducibility rate is very low due to
the complexity of the projects Math and Lang.

Table 1 summarizes the 22 bugs in two categories,
i.e., bug types of buggy IF conditions and missing
preconditions. We index these bugs according to their
types and projects. A bug index (Column 3) is named
based on the following rule. Letters C and P indicate
bugs with buggy IF conditions and missing precondi-
tions, respectively; M and L are bugs from Math and
Lang, respectively. For instance, CM1 refers to a bug
with a buggy IF condition in the project Math. We also
record the number of executable Lines of Code (LoC,
i.e., the number of lines that exclude empty lines and
comment lines) for each source program (Column 6).
Moreover, we show the number of classes, the number
of methods in the buggy program, and the number of
unit test cases (Columns 7-9). For each method that
contains the buggy code, we describe the functionality
of this method and record its Cyclomatic Complexity
(Columns 10 and 11). The Cyclomatic Complexity [34]
is the number of linearly independent paths through
the source code of a method. This complexity indi-
cates the testability of a method and the difficulty of
understanding code by developers.

As shown in Table 1, the dataset contains 16 bugs
with buggy IF conditions and 6 bugs with missing
preconditions. Among these bugs, 12 bugs are from
Math and 10 bugs are from Lang. In average, a buggy
program consists of 25.48K executable lines of code.
The average complexity is 8.6; that is, a buggy method
consists of 8.6 independent paths in average. Note
that the method complexity of Bug PM1 is 1 since
its buggy method contains only one throw statement
(which misses a precondition); the method complexity
of Bug CM9 is 38 and its buggy method contains 30
IF statements.

4.3 Implementation Details

Our approach, NOPOL, is implemented with Java 1.7
on top of Spoon 3.1.0.12 Spoon [40] is a library for
transforming and analyzing Java source code. It is
used for angelic fix localization, instrumentation, and
final patch synthesis in our work. Fault localization

11. In considered commits, bug fixes are always committed to-
gether with originally failing test cases (which are passed after
fixing the bugs). This is a rule in Apache development process [3].

12. Spoon 3.1.0, http://spoon.gforge.inria.fr/.

http://commons.apache.org/math/
http://commons.apache.org/lang/
http://subversion.apache.org/
http://issues.apache.org/jira/
http://fisheye6.atlassian.com/
http://spoon.gforge.inria.fr/

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, 2016 11

TABLE 1
The Evaluation Dataset of NOPOL. It contains 22 bugs related to buggy IF conditions and missing preconditions.

Bug
type Project Bug description Executable

LoC #Classes #Methods #Unit
tests

Buggy method
Index Commit ID† Bug ID‡ Description Complexity

Bu
gg

y
IF

co
nd

it
io

n

Math CM1 141003 - 4611 153 947 363 Returns a specified percentile from an array of real numbers 7
CM2 141217 - 5539 212 1390 543 Returns an exact representation of the Binomial Coefficient 8
CM3 141473 - 6633 191 1504 654 Returns the natural logarithm of the factorial for a given value 3
CM4 159727 - 7442 206 1640 704 Computes the a polynomial spline function 5
CM5 735178 Math-238 25034 468 3684 1502 Gets the greatest common divisor of two numbers 12
CM6 791766 Math-280 37918 632 5123 1982 Finds two real values for a given univariate function 11
CM7 831510 Math-309 38841 650 5275 2105 Returns a random value from an Exponential distribution 3
CM8 1368253 Math-836 64709 975 7374 3982 Converts a double value into a fraction 11
CM9 1413916 Math-904 70317 1037 7978 4263 Computes a power function of two real numbers 38

CM10 1453271 Math-939 79701 1158 9074 4827 Checks whether a matrix has sufficient data to calculate covariance 3
Lang CL1 137231 - 10367 156 2132 781 Replaces a string with another one inside 4

CL2 137371 - 11035 169 2240 793 Removes a line break at the end of a string 4
CL3 137552 - 12852 173 2579 994 Gets a sub-string from the middle of a string from a given index 5
CL4 230921 - 15818 215 3516 1437 Finds the first matched string from the given index 10
CL5 825420 Lang-535 17376 86 3744 1678 Extracts the package name from a string 6
CL6 1075673 Lang-428 18884 211 3918 1934 Checks whether the char sequence only contains unicode letters 4

M
is

si
ng

pr
ec

on
di

ti
on

Math PM1 620221 Math-191 16575 396 2803 1168 Checks the status for calculating the sum of logarithms 1
PM2 1035009 - 44347 745 5536 2236 Builds a message string from patterns and arguments 3

Lang PL1 504351 Lang-315 17286 233 4056 1710 Stops a process of timing 3
PL2 643953 Lang-421 17780 240 4285 1829 Erases a string with the Java style from the character stream 19
PL3 655246 Lang-419 18533 257 4443 1899 Abbreviates a given string 9
PL4 1142389 Lang-710 18974 218 3887 1877 Counts and translates the code point from an XML numeric entity 19

Average 25480.6 399.1 3960.4 1784.6 8.6
Median 17585.0 225.5 3818.5 1694.0 5.5

† A commit ID is an identifier that indicates the commit of the patch, in both SVN and the FishEye system. According to this commit, we can manually
check relevant patched code and test cases. For instance, the commit of Bug CM1 can be found at https://fisheye6.atlassian.com/changelog/commons?cs=141003.

‡ For some bugs, bug IDs are not obviously identified in the bug tracking system. These bugs can be found in the version control system. For example,
Apache projects previously used Bugzilla as a bug tracking system before moving to Jira. The Bugzilla system is not available anymore.

is implemented with GZoltar 0.0.10.13 GZoltar [6] is a
fault localization library for ranking faulty statements.
The SMT solver inside NOPOL is Z3 4.3.2.14 We gener-
ate SMT-LIB15 files using jSMTLIB.16 jSMTLIB [10] is
a library for checking, manipulating, and translating
SMT-LIB formatted problems. The test driver is JUnit
4.11. For future replication of the evaluation, the code
of NOPOL is available on GitHub [2].

All experiments are run on a PC with an Intel Core
i7 3.60 GHz CPU and a Debian 7.5 operating system.
The maximum heap size of Java virtual machine was
set to 2.50 GB.

4.4 Main Research Questions

We present the general evaluation of NOPOL on the
dataset via answering six Research Questions (RQs).

RQ1: Can NOPOL fix real bugs in large-scale Java
software?

In test-suite based repair, a bug is fixed if the
patched program passes the whole test suite [27].
Table 2 presents the evaluation of patches on 22 bugs.
Column 3 shows the buggy code (the condition for
each bug with a buggy IF condition and the statement
for each bug with a missing precondition). Column
4 shows the patches that were manually-written by
developers as found in the version control system:

13. GZoltar 0.0.10, http://gzoltar.com/.
14. Z3, http://github.com/Z3Prover/z3/.
15. SMT-LIB, http://smt-lib.org/.
16. jSMTLIB, http://sourceforge.net/projects/jsmtlib/.

the updated condition for each bug with a buggy
IF condition and the added precondition for each
bug with a missing precondition. Column 5 presents
the generated patches by NOPOL. Column 6 is the
result of our manual analysis of the correctness of the
patches (will be explained in RQ2). Finally, Column
7 shows whether we had to modify existing test
cases: “A” stands for additional test cases, “T” for
transformed test cases, and “D” for deleted test cases.
The purpose of test case modification is to yield a
correct repair (will be explained in RQ3).

As shown in Table 2, among 22 bugs, NOPOL can fix
17 bugs: 13 out of 16 bugs with buggy IF conditions
and 4 out of 6 bugs with missing preconditions.
Meanwhile, four out of five unfixed bugs relate to
timeout. In our work, the execution time of NOPOL
is limited to up to five hours. We will empirically
analyze the fixed bugs in Section 4.5 and explore
the limitations of our approach as given by the five
unfixed bugs in Section 4.6.

Table 2 also shows that patches generated by
NOPOL consist of both primitive values and object-
oriented features. For the object-oriented features, two
major types can be found in the generated patches:
nullness checking (patches of Bugs CL4 and PM2) and
the length() method of strings (patches of Bugs CL1,
CL2, CL3, and CL5).

Note that six bugs (Bugs CM2, CM3, CM4, CM5,
CM6, and CM10) with buggy IF conditions are fixed
by adding preconditions rather than updating con-
ditions. One major reason is that a non-IF statement
is ranked above the buggy IF statement during the
fault localization; then NOPOL adds a patch, i.e.,

https://fisheye6.atlassian.com/changelog/commons?cs=141003
http://gzoltar.com/
http://github.com/Z3Prover/z3/
http://smt-lib.org/
http://sourceforge.net/projects/jsmtlib/

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, 2016 12

TABLE 2
Buggy code, manually-written patches, and generated patches for the bugs of the dataset.

Bug

type

Bug

index
Buggy code Patch written by developers Patch generated by NOPOL Correctness

Test case

modification

Bu
gg

y
IF

co
nd

it
io

n

CM1 pos > n pos >= n length <= fpos Correct A ‡

CM2 n <= 0 n < 0 if (n < MathUtils.ZS) { ... † Correct A T

CM3 n <= 0 n < 0 if (MathUtils.ZS != n) { ... Correct A T

CM4 v < knots[0] || v >= knots[n] v < knots[0] || v > knots[n] if(v <= -1 || knots.length != v && n < v +1){... Incorrect A

CM5 u * v == 0 u == 0 || v == 0 if(u> MathUtils.NB && u<= MathUtils.ZB Correct A T

|| v == MathUtils.ZB) { ...

CM6 fa * fb >= 0.0 fa * fb > 0.0 if (-1 == b) { ... Incorrect T D

CM7 mean < 0 mean <= 0 mean <= 0.0 Correct A T D

CM8 p2 > overflow || q2 > overflow FastMath.abs(p2) > overflow || - (Timeout in SMT) - -

FastMath.abs(q2) > overflow

CM9 y >= TWO_POWER_52 || y <= -TWO_POWER_52 y >= TWO_POWER_53 || y <= -TWO_POWER_53 - (Timeout in test execution) - -

CM10 nRows < 2 || nCols < 2 nRows < 2 || nCols < 1 nRows < 2 Correct -

CL1 text == null text == null || repl == null || if (with.length() == 0) { ... Incorrect T D

with == null || repl.length() == 0

CL2 lastIdx == 0 lastIdx <= 0 str.length() <= blanks.length() Correct T

CL3 pos > str.length() len < 0 || pos > str.length() len <= -1 || str.length() < pos Correct T

CL4 startIndex >= size substr == null || startIndex >= size !(substr != null)||startIndex >= size Correct T D

CL5 className == null className == null || className.length() == 0 className.length() == 0 Incorrect T

CL6 cs == null cs == null || cs.length() == 0 - (Timeout due to a null pointer) - T

M
is

si
ng

pr
ec

on
di

ti
on

PM1 throw new IllegalStateException("") if (getN() > 0) { ... - (No angelic value found) - -

PM2 sb.append(": ") if (specific != null) { ... if (specific != null) { ... Correct -

PL1 stopTime ← System.currentTimeMillis() if (this.runningState == STATE_RUNNING) { ... if (stopTime < STATE_RUNNING) { ... Correct -

PL2 out.write(’\\’) if (escapeForwardSlash) { ... if (escapeSingleQuote) { ... Correct -

PL3 lower ← str.length() if (lower > str.length()) { ... - (Timeout in SMT) - T

PL4 return 0 if (start == seqEnd) { ... if (start == seqEnd) { ... Correct -

† An added precondition is in a form of “if() { ...” to distinguish with an updated condition.
‡ For test case modification, “A” stands for additional test cases, “T” for transformed test cases, and “D” for deleted test cases.

a precondition to this non-IF statement. Hence, the
condition inside the buggy IF statement cannot be
updated. This shows that those two kinds of patches
intrinsically relate to each other. To further understand
this phenomenon, we have performed repair only in
the mode of “condition” in NOPOL: the six bugs could
also be fixed via only updating IF conditions.

RQ2: Are the synthesized patches as correct as
the manual patches written by the developer?

In practice, a patch should be more than making the
test suite pass since test cases may not be enough for
specifying program behaviors [36], [45]. In this paper,
a generated patch is correct if and only if the patch is
functionally equivalent to the manually-written patch
by developers.

For each synthesized patch, we have followed Qi et
al. [45] to perform a manual analysis of its correctness.
The manual analysis consists of understanding the
domain (e.g., the mathematical function under test for
a bug in the project Math), understanding the role of
the patch in the computation, and understanding the
meaning of the test case as well as its assertions.

As shown in Table 2, 13 out of 17 synthesized
patches are as correct as the manual patches. Among
these 13 correct patches, five patches (for Bugs CM1,
CM2, CM3, CM5, and CM7) are generated based on
not only the original test suite but also additional
test cases. The reason is that the original test suite

is too weak to drive the synthesis of a correct patch;
then we had to manually write additional test cases
(all additional test cases are publicly-available on the
companion website [1]17). This will be discussed in
next research question.

For four bugs (Bugs CM4, CM6, CL1, and CL5), we
are not able to synthesize a correct patch. This will be
further discussed in Section 5.4.

RQ3: What is the root cause of test case modifi-
cation?

As shown in Table 2, some bugs are correctly re-
paired only after the test case modification (including
test case addition, transformation, and deletion). The
most important modification is test case addition. Six
bugs (Bugs CM1, CM2, CM3, CM4, CM5, and CM7)
with additional test cases correspond to too weak
specifications. We manually added test cases for these
bugs to improve the coverage of buggy statements.
Without the additional test case, the synthesized patch
is degenerated. A case study of Bug CM1 (Section
4.5.4) will further illustrate how additional test cases
help to synthesize patches. Note that all additional
test cases appear in the bugs, which are reported
in the early stage of the project Math. One possible
reason is that the early version of Math is not in test-
driven development and the test suites are not well-

17. Additional test cases, http://sachaproject.gforge.inria.fr/
nopol/dataset/data/projects/math/.

http://sachaproject.gforge.inria.fr/nopol/dataset/data/projects/math/
http://sachaproject.gforge.inria.fr/nopol/dataset/data/projects/math/

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, 2016 13

designed.
In test case transformation (Bugs CM2, CM3, CM5,

CM6, CM7, CL1, CL2, CL3, CL4, CL5, CL6, and PL3),
we simply break existing test cases into smaller ones,
in order to have one assertion per test case. This is
important for facilitating angelic fix localization since
our implementation of NOPOL has a limitation, which
collects only one runtime trace for a test case (Section
3.2). We note that such test case transformation can
even be automated [51].

The reason behind the four bugs with deleted test
cases (Bugs CM6, CM7, CL1, and CL4) is accidental
and not directly related to automatic repair: these
deleted test cases are no longer compatible with the
Java version and external libraries, which are used in
NOPOL.

RQ4: How are the bugs in the dataset specified
by test cases?

To further understand the repair process of bugs
by NOPOL, Tables 3 and 4 show the detailed anal-
ysis for patched statements in 17 fixed bugs and
buggy statements in five non-fixed bugs, respectively.
Table 3 gives the following information: whether a
synthesized patch is at the same location as the one
written by the developer, the number of failing (ef)
and passing (ep) test cases executing the patched
statements, the fault localization metrics (the rank
of the patched statement and the total number of
suspicious statements), the overall execution time of
NOPOL, and the SMT level (see Section 3.4.5). In Table
4, ef and ep denote the number of failing and passing
test cases executing the buggy statements while the
rank of the buggy statement is listed.

Tables 3 and 4 show the numbers of failing (ef)
and passing (ep) test cases that execute the patched
or buggy statements. Such numbers reflect to which
extent the statement under repair is specified by test
cases. As shown in Table 3, the average of ef and ep
are 1.8 and 7.1 for 17 bugs with synthesized patches.
In Table 4, the average of ef and ep are 4.4 and 27.4
for five bugs without patches.

For all 22 bugs under evaluation, only one bug has
a large number of failing test cases (ef ≥ 10): Bug
PL3 with ef = 18. For this bug, although the buggy
statement is ranked at the first place, NOPOL fails in
synthesizing the patch. This failure is caused by an
incorrectly identified output of a precondition. Section
4.6.3 will explain the reason behind this failure.

RQ5: Where are the synthesized patches local-
ized? How long is the repair process?

A patch could be localized in a different location
from the patch which is manually-written by devel-
opers. We present the details for patch locations for
all the 17 patched bugs in Table 3. For 11 out of 17

TABLE 3
Analysis of the 17 fixed bugs (patched statement).

Bug
type

Bug
index

Patch
location

#Test cases Patched
statement rank

#Suspicious
statements ‡

Execution time
(seconds)

SMT
levelef† ep†

Bu
gg

y
IF

co
nd

it
io

n

CM1 Same as dev. 1 4 57 203 12 2
CM2 Different 1 2 179 559 11 2
CM3 Different 1 2 26 35 10 2
CM4 Different 6 2 24 114 13 3
CM5 Different 4 4 3 60 43 3
CM6 Different 2 0 17 254 41 2
CM7 Same as dev. 3 13 143 155 51 2
CM10 Same as dev. 1 3 89 102 21 1
CL1 Different 2 4 2 8 32 2
CL2 Same as dev. 1 9 2 3 6 2
CL3 Same as dev. 2 10 4 5 7 3
CL4 Same as dev. 2 23 1 20 10 3
CL5 Same as dev. 1 36 1 2 37 1

M
is

si
ng

pr
ec

on
di

ti
on PM2 Same as dev. 1 2 1 12 84 1

PL1 Same as dev. 1 4 6 22 32 2
PL2 Same as dev. 1 1 1 21 6 1
PL4 Same as dev. 1 1 1 25 6 2

Median 1 4 4 25 13 2
Average 1.8 7.1 32.8 94.1 24.8 2

† ef and ep denote the number of failing and passing test cases that
execute the patched statement.
‡ #Suspicious statements denotes the number of statements whose
suspiciousness scores by fault localization are over zero.

TABLE 4
Analysis of the 5 non-fixed bugs (buggy statement).

Bug
type

Bug
index

#Test cases Buggy
statement rank

#Suspicious
statements ‡

Execution time
(seconds)ef† ep†

Buggy IF
condition

CM8 1 51 21 77 -
CM9 1 73 1203 1606 -
CL6 1 10 4 4 -

Missing
precondition

PM1 1 0 52 132 37
PL3 18 3 1 16 -

Median 1 10 21 77 -
Average 4.4 27.4 256.2 367 -

† ef and ep denote the number of failing and passing test cases that
execute the buggy statement.
‡ #Suspicious statements denotes the number of statements whose
suspiciousness scores by fault localization are over zero.

fixed bugs, the locations of patched statements (i.e.,
locations of fixes) are exactly the same as those of the
buggy ones. For the other six bugs, i.e., Bugs CM2,
CM3, CM4, CM5, CM6, and CL1, NOPOL generates
patches by adding new preconditions rather than
updating existing conditions, as mentioned in Table
2.

For 17 fixed bugs in Table 3, the average execution
time of repairing one bug is 24.8 seconds while for
five non-fixed bugs in Table 4, four bugs are run out
of time and the other one spends 37 seconds. The
execution time of all the 22 bugs ranges from 6 to 84
seconds. We consider that such execution time, i.e.,
fixing one bug within 90 seconds, is acceptable.

In practice, if applying NOPOL to a buggy program,
we can directly set a timeout, e.g., 90 seconds (over
84 seconds as shown in Table 3) or a longer timeout
like five hours in our experiment. Then for any kind
of buggy program (without knowing whether the bug
is with a buggy condition or a missing precondition),
NOPOL will synthesize a patch, if it finds any. Then

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, 2016 14

a human developer can check whether this patch is
correct from the user perspective.

RQ6: How effective is fault localization for the
bugs in the dataset?

Fault localization is an important step in our repair
approach. As shown in Table 3, for patched statements
in 17 fixed bugs, the average fault localization rank is
32.8. In four out of 17 bugs (Bugs CM1, CM2, CM7,
and CM10), patched statements are ranked over 50.
This fact indicates that there is room for improving the
fault localization techniques. Among the five unfixed
bugs, the buggy statements of Bugs CM9 and PM1 are
ranked over 50. Section 5.2 will further compare the
effectiveness of six fault localization techniques on 22
bugs.

Note that in Tables 3 and 4, Bugs CM6 and PM1
have no passing test cases. Bug PM1 cannot be fixed
by our approach while Bug CM6 can be still fixed
because the two failing test cases give a non-trivial
input-output specification. The reason behind the un-
fixed Bug PM1 is not ep = 0, but the multiple
executions of the buggy code by one test case. This
reason will be discussed in Section 4.6.1.

4.5 Case Studies for Fixed Bugs
We conduct four case studies to show how NOPOL
fixes bugs with buggy IF conditions and missing
preconditions. These bugs are selected because they
highlight different facets of the repair process. The
patch of Bug PL4 (Section 4.5.1) is syntactically the
same as the manually-written one; the patch of Bug
CL4 (Section 4.5.2) is as correct as the manually-
written patch (beyond passing the test suite); the
patch of Bug CM2 (Section 4.5.3) is correct by adding
a precondition rather than updating the buggy condi-
tion, as written by developers; and the patch of Bug
CM1 (Section 4.5.4) is correct, but its patch requires
an additional test case.

4.5.1 Case Study 1, Bug PL4
NOPOL can generate the same patches for three out
of 22 bugs as the manually-written ones. We take Bug
PL4 as an example to show how the same patch is
generated. This bug is fixed by adding a precondition.
Fig. 4 shows a method translate() at Line 1 and the
buggy method translateInner() at Line 9 of Bug
PL4. The method translate() is expected to translate
a term in the regular expression of &#[xX]?\d+;? into
codepoints, e.g., translating the term "0" into
"\u0030".

To convert from input to codepoints, the characters
in input are traversed one by one. Note that for a
string ending with "&#x", no codepoint is returned.
Lines 15 to 20 in Fig. 4 implement this functionality.
However, the implementation at Lines 17 to 19 ignores

1 String translate(CharSequence input, int index) {
2 int consumed = translateInner(input, index);
3 if(consumed == 0)
4 ... // Return the original input value
5 else
6 ... // Translate code points
7 }
8
9 int translateInner(CharSequence input, int index) {

10 int seqEnd = input.length();
11 ...
12 int start = index + 2;
13 boolean isHex = false;
14 char firstChar = input.charAt(start);
15 if(firstChar == ’x’ || firstChar == ’X’) {
16 start++;
17 isHex = true;
18 // FIX: if(start == seqEnd)
19 return 0;
20 }
21 int end = start;
22 //Traverse the input and parse into codepoints
23 while(end < seqEnd && ...)
24 ...
25 }

Fig. 4. Code snippet of Bug PL4. The manually-written
patch is shown in the FIX comment at Line 18. Note
that the original method translate consists of three
overloaded methods; for the sake of simplification,
we use two methods translate and translateInner

instead.

TABLE 5
Sample of test cases for Bug PL4

Input Output, translate(input) Test
resultinput index Expected Observed

"Test &#x" 5 "Test &#x" "Test &#x" Pass
"Test 0 not test" 5 "Test \u0030 not test""Test 0 not test" Fail

a term in a feasible form of "&#[xX]\d+", e.g., a
string like "0". A precondition should be added
to detect this feasible form, i.e., the comment at Line
18 of start == seqEnd.

The buggy code at Line 19 is executed by one
passing test case and one failing test case. Table 5
shows these two test cases. For the passing test case,
the behavior of the method is expected not to change
the variable input while for the failing test case, the
input is expected to be converted. In the passing test
case, the value of the precondition of the statement
at Line 19 is expected to be true, i.e., both start

and seqEnd equal to 8, while in the failing test case,
the condition is expected to be false, i.e., start and
seqEnd are 8 and 19, respectively. The false value is
the angelic value for a missing precondition.

According to those expected precondition values for
test cases, NOPOL generates a patch via adding a pre-

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, 2016 15

condition, i.e., start == seqEnd, which is exactly the
same as the manually-written patch by developers.
Besides the patch of Bug PL4, patches of Bugs CM7
and PM2 are also syntactically the same as the patch
written by developers, among 22 bugs in our dataset.

4.5.2 Case Study 2, Bug CL4
For several bugs, NOPOL generates patches that
are literally different from the manually-written
patches, but these generated patches are as correct as
manually-written patches. In this section, we present
a case study where NOPOL synthesizes a correct patch
for a bug with a buggy IF condition. Bug CL4 in Lang
fails to find the index of a matched string in a string
builder. Fig. 5 presents the buggy method of Bug CL4:
to return the first index of substr in a parent string
builder from a given basic index startIndex. The
condition at Line 4 contains a mistake of startIndex
>= size, which omits checking whether substr ==

null. A variable size is defined as the length of
the parent string builder. The manually-written fix is
shown at Line 3.

The buggy code at Line 4 in Fig. 5 is executed by
23 passing test cases and two failing test cases. One
of the passing test cases and two failing test cases are
shown in Table 6. For the passing test case, a value -1

is expected because no matched string is found. For
the two failing test cases, each input substr is a null

value, which is also expected to return a non-found
index -1. This requires the checking of null to avoid
NullPointerException, i.e., the condition at Line 3.

For the passing test case in Table 6, the condition at
Line 4 is false. For the two failing test cases, NOPOL
extracts the angelic value true to make both failing
test cases pass. According to these condition val-
ues, a patch of ! (substr != null) || startIndex

>= size can be synthesized. This synthesized patch
is equivalent to substr == null || startIndex >=

size, which is correct. The resulted expression based
on the solution to the SMT does not weaken the
repairability of synthesized patches. A recent method
for finding simplified patches, proposed by Mechtaev
et al. [35], could be used to avoid such a redundant
expression.

4.5.3 Case Study 3, Bug CM2
In this section, we present Bug CM2, a correctly
patched bug via adding a precondition, rather than
updating an existing condition, as written by devel-
opers. The buggy method in Bug CM2 is to calcu-
late the value of Binomial Coefficient by choosing k-
element subsets from an n-element set. Fig. 6 presents
the buggy method. The input number of elements n

should be no less than zero. But the condition at Line 4
reads n <= 0 instead of n < 0. The manually-written
patch by developers is in the FIX comment at Line 4.

The buggy code at Line 4 in Fig. 6 is executed
by two passing test cases and one failing test case.

1 int indexOf(String substr, int startIndex) {
2 startIndex = (startIndex < 0 ? 0 : startIndex);
3 // FIX: if (substr == null || startIndex >= size) {
4 if (startIndex >= size) {
5 return −1;
6 }
7 int strLen = substr.length();
8 if (strLen > 0 && strLen <= size) {
9 if (strLen == 1)

10 return indexOf(substr.charAt(0), startIndex);
11 char[] thisBuf = buffer;
12 outer:
13 for (int i = startIndex; i < thisBuf.length
14 − strLen; i++) {
15 for (int j = 0; j < strLen; j++) {
16 if (substr.charAt(j) != thisBuf[i + j])
17 continue outer;
18 }
19 return i;
20 }
21 } else if (strLen == 0) {
22 return 0;
23 }
24 return −1;
25 }

Fig. 5. Code snippet of Bug CL4. The manually-written
patch is shown in the FIX comment at Line 3, which
updates the buggy IF condition at Line 4.

TABLE 6
Sample of test cases for Bug CL4

Input Output, indexOf(substr, startIndex) Test
resultparent substr startIndex Expected Observed

abab z 2 -1 -1 Pass
abab (String) null 0 -1 NullPointerException Fail

xyzabc (String) null 2 -1 NullPointerException Fail

Table 7 shows one passing test case and one fail-
ing test case. For the passing test case, an expected
exception is observed; for the failing test case, an
IllegalArgumentException is thrown rather than an
expected value.

To fix this bug, NOPOL generates a patch via adding
a missing precondition n < MathUtils.ZS to the
statement at Line 5, where MathUtils.ZS is a constant
equal to 0. Then this statement owns two embedded
preconditions, i.e., n <= 0 and n < 0. Hence, the
generated patch is equivalent to the manually-written
patch, i.e., updating the condition at Line 4 from n

<= 0 to n < 0. The reason of adding a precondition
instead of updating the original condition is that the
statement at Line 5 is ranked prior to the statement
at Line 4. This has been explained in Section 4.4.
Consequently, the generated patch of Bug CM2 is
correct and syntactically equivalent to the manually-
written patch.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, 2016 16

1 long binomialCoefficient(int n, int k) {
2 if (n < k)
3 throw new IllegalArgumentException(...);
4 if (n <= 0) // FIX: if (n < 0)
5 throw new IllegalArgumentException(...);
6 if ((n == k) || (k == 0))
7 return 1;
8 if ((k == 1) || (k == n − 1))
9 return n;

10 long result = Math.round(
11 binomialCoefficientDouble(n, k));
12 if (result == Long.MAX_VALUE)
13 throw new ArithmeticException(...);
14 return result;
15 }

Fig. 6. Code snippet of Bug CM2. The manually-
written patch is shown in the FIX comment at Line 4.

TABLE 7
Sample of test cases for Bug CM2

Input Output, binomialCoefficient(n,k) Test
resultn k Expected Observed

-1 -1 Exception Exception Pass
0 0 1 Exception Fail

4.5.4 Case Study 4, Bug CM1
Insufficient test cases lead to trivial patch generation.
We present Bug CM1 in Math, with a buggy IF
condition. This bug cannot be correctly patched with
the original test suite due to the lack of test cases. In
our work, we add two test cases to support the patch
generation. Fig. 7 presents the buggy source code in
the method evaluate() of Bug CM1. This method
returns an estimate of the percentile p of the values
stored in the array values.

According to the API document, the algorithm of
evaluate() is implemented as follows. Let n be
the length of the (sorted) array. The algorithm com-
putes the estimated percentile position pos = p * (n

+ 1) / 100 and the difference dif between pos and
floor(pos). If pos >= n, then the algorithm returns
the largest element in the array; otherwise the algo-
rithm returns the final calculation of percentile. Thus,
the condition at Line 15 in Fig. 7 contains a bug, which
should be corrected as pos >= n.

As shown in Table 3, this bug is executed by
four passing test cases and one failing test case.
Table 8 shows one of the four passing test cases
and the failing test case. In the failing test case, an
ArrayIndexOutOfBounds exception is thrown at Line
16. For the passing test case, the value of the condi-
tion at Line 15 is equal to the value of the existing
condition pos > n, i.e., true; for the failing test case,
setting the condition to be true makes the failing test
case pass; that is, the angelic value for the failing test

1 double evaluate(double[] values, double p) {
2 ...
3 int length = values.length;
4 double n = length;
5 ...
6 double pos = p * (n + 1) / 100;
7 double fpos = Math.floor(pos);
8 int intPos = (int) fpos;
9 double dif = pos − fpos;

10 double[] sorted = new double[n];
11 System.arraycopy(values, 0, sorted, 0, n);
12 Arrays.sort(sorted);
13 if (pos < 1)
14 return sorted[0];
15 if (pos > n) // FIX: if (pos >= n)
16 return sorted[n − 1];
17 double lower = sorted[intPos − 1];
18 double upper = sorted[intPos];
19 return lower + dif * (upper − lower);
20 }

Fig. 7. Code snippet of Bug CM1. The manually-
written patch is shown in the FIX comment at Line 15.

TABLE 8
Two original test cases and one additional test case

for Bug CM1

Input Output, evaluate(values,p) Test
resultvalues p Expected Observed

Two original test cases
{0,1} 25 0.0 0.0 Pass

{1,2,3} 75 3.0 Exception Fail
Two additional test cases

{1,2,3} 100 3.0 3.0 Pass

case is also true. Thus, according to these two test
cases, the generated patch should make the condition
be true to pass both test cases.

With the original test suite, NOPOL generates a
patch as sorted.length <= intPos, which passes all
test cases. This patch is incorrect. To obtain a correct
patch (the one shown in Table 2), we add one test
case of values ← {1,2,3}, p ← 100, as shown in
Table 8. Then the expected value of evaluate() is
3.0. After running NOPOL, a patch of length <=

fpos, which is different from the manually-written
one, i.e., pos >= n. However, from the source code at
Line 7, fpos is the floor() value of pos, i.e., fpos is
the largest integer that no more than pos. That is, fpos
<= pos. Meanwhile, n == length holds according to
Line 4. As a result, the generated patch length <=

fpos implies the manually-written one, i.e., pos >=

n. We can conclude that NOPOL can generate a correct
patch for this bug by adding one test case.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, 2016 17

TABLE 9
Summary of five limitations.

Bug index Root cause Result of repair Reason for the unfixed bug
PM1 Angelic fix localization No angelic value found. Termination before

runtime trace collection and patch synthesis
One failing test case executes the missing precondition for more
than once.

CM9 Angelic fix localization Timeout during test suite execution An infinite loop is introduced during the trial of angelic values.
PL3 Runtime trace collection Timeout during SMT solving The expected value of a precondition is incorrectly identified.
CM8 Patch synthesis Timeout during SMT solving A method call with parameters is not handled by SMT.
CL6 Patch synthesis Timeout during SMT solving A method of a null object yields an undefined value for SMT.

4.6 Limitations

As shown in Section 4.4, we have collected five bugs
that reveal five different limitations of NOPOL. Table 9
lists these five bugs in details. We analyze the related
limitations in this section.

4.6.1 No Angelic Value Found

In our work, for a buggy IF condition, we use angelic
fix localization to flip the boolean value of conditions
for failing test cases. For Bug PM1, no angelic value
is found as shown in Table 2. The reason is that
both then and else branches of the IF condition are
executed by one failing test case. Hence, no single
angelic value (true or false) can enable the test case
to pass. As discussed in Section 3.2.3, the search space
of a sequence of angelic values is exponential and
hence discarded in our implementation of NOPOL.

To mitigate this limitation, a straightforward solu-
tion is to discard the failing test case, which leads
to no angelic values (keeping the remaining failing
ones). However, this may decrease the quality of the
generated patch due to the missing test data and ora-
cles. Another potential solution is to refactor test cases
into small snippets, each of which covers only then

or else branches [51]. A recent proposed technique
SPR [29] could help NOPOL to enhance its processing
of sequential angelic values.

4.6.2 Performance Bugs Caused by Angelic Values

NOPOL identifies angelic values as the input of patch
synthesis. In the process of angelic fix localization, all
failing test cases are executed to detect conditional
values that make failing test cases pass (see Section
3.2). However, sometimes the trial of angelic fix lo-
calization (forcing to true or false) may result in a
performance bug. In our work, Bug CM9 cannot be
fixed due to this reason, i.e., an infinite loop caused
by angelic fix localization.

A potential solution to this issue is to set a max-
imum execution time to avoid the influence of per-
formance bugs. But a maximum execution time of
test cases may be hard to be determined according to
different test cases. For instance, the average execution
time of test cases in Math 3.0 is much longer than
that in Math 2.0. We leave the setting of maximum
execution time as one piece of future work.

4.6.3 Incorrectly Identified Output of a Precondition

As mentioned in Section 3.3.1, the expected output of
a missing precondition is set to be true for a passing
test case and is set to be false for a failing one. The
underlying assumption for a passing test case is that
the true value keeps the existing program behavior.
However, it is possible that given a statement, both
true and false values can make a test case pass. In
these cases, synthesis may not work for bugs with
missing preconditions.

This is what happens to Bug PL3. Fig. 8 shows a
code snippet of Bug PL3. The manually-written patch
is a precondition at Line 3; Table 10 shows one passing
test case and one failing test case. Based on the
angelic fix localization in Algorithm 2, the expected
precondition values of all passing test cases are set to
be true. However, in the manually-written patch, the
precondition value by the passing test case in Table 10
is false, i.e., lower > str.length() where lower

is 0 and str.length() is 10. Thus, it is impossible
to generate a patch like the manually-written one,
due to a conflict in the input-output specification.
Consequently, in the phase of patch synthesis, the
SMT solver executes with timeout.

The example in Bug PL3 implies that for some
bugs, the assumption (i.e., a missing precondition is
expected to be true for passing test cases) can be vio-
lated. For Bug PL3, we have temporarily removed this
assumption and only used the failing test cases to syn-
thesize a patch. The resulting patch is if(lower >=

str.length()) lower = str.length(), which has
the same program behavior as the manually-written
patch, i.e., lower > str.length(). In NOPOL, we
are conservative and assume that the expected value
of a precondition by passing test cases is true (in
Section 3.2.2).

4.6.4 Complex Patches using Method Calls with Pa-
rameters

In our work, we support the synthesis of condi-
tions that call unary methods (without parameters).
However, our approach cannot generate a patch if a
method with parameters has to appear in a condition.
For example, for Bug CM8, the patch that is written by
developers contains a method abs(x) for computing
the absolute value. Our approach cannot provide such
kinds of patches because methods with parameters

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, 2016 18

1 String abbreviate(String str, int lower, int upper){
2 ...
3 // FIX: if (lower > str.length())
4 lower = str.length();
5
6 if (upper == −1 || upper > str.length())
7 upper = str.length();
8 if (upper < lower)
9 upper = lower;

10 StringBuffer result = new StringBuffer();
11 int index = StringUtils.indexOf(str, " ", lower);
12 if (index == −1)
13 result.append(str.substring(0, upper));
14 else ...
15 return result.toString();
16 }

Fig. 8. Code snippet of Bug PL3. The manually-written
patch is shown in the FIX comment at Line 3.

TABLE 10
Sample of test cases for Bug PL3

Input Output, abbreviate(str,lower,upper) Test
resultstr lower upper Expected Observed

"0123456789" 0 -1 "0123456789" "0123456789" pass
"012 3456789" 0 5 "012" "012 3456789" fail

cannot be directly encoded in SMT. Then the lack of
information of method calls leads to the timeout of an
SMT solver.

A workaround would generate a runtime variable
to collect existing side-effect free method calls with
all possible parameters. For example, one could in-
troduce a new variable double tempVar = abs(x)

and generate a patch with the introduced variable
tempVar. However, this workaround suffers from the
problem of combinatorial explosion.

4.6.5 Unavailable Method Values for a Null Object
Our repair approach can generate a patch with
objected-oriented features. For example, a patch can
contain state query methods on Java core library
classes, such as String.length(), File.exists()

and Collection.size(). We map these methods to
their return values during the SMT encoding. How-
ever, such methods require that the object is not null;
otherwise, a null pointer exception in Java is thrown.

Let us consider Bug CL6, whose manually-written
patch is cs == null || cs.length() == 0. For this
bug, one passing test case detects whether the object
cs is null. For this test case, the value of cs.length()
is undefined and not given to SMT. Thus, it is impos-
sible to generate a patch, which contains cs.length()
if cs is null by at least one test case. Consequently,
the SMT solver times-out because it tries to find a
complex patch that satisfies the constraints.

A possible solution is to encode the undefined

values in the SMT. Constraints should be added to
ensure that the unavailable values are not involved in
the patch. This needs important changes in the design
of the encoding, which is left to future work.

5 DISCUSSIONS

We now discuss NOPOL features with respect to four
important aspects.

5.1 Differences with SemFix

As mentioned in Section 3.4, NOPOL uses the same
technique in the phase of patch synthesis as SemFix
[38], i.e., component-based program synthesis [19].
However, there exist a number of important differ-
ences between NOPOL and SemFix.

First, SemFix does not address missing pre-
conditions. As shown in Table 2, adding preconditions
enables us to repair more bugs than only updating
conditions. We think that it is possible to extend the
SemFix implementation to support repairing missing
preconditions via adding the encoding strategy as in
NOPOL.

Second, NOPOL does not use symbolic execution
to find an angelic value. It is known that symbolic
execution may have difficulties with the size and
complexity of analyzed programs [28]. According to
our work, we have the following observations. The
angelic value in angelic fix localization is possible only
when the domain is finite. For booleans, the domain
of variables is not only finite but also very small.
This results in a search space that can be explored
dynamically and exhaustively as in NOPOL. Symbolic
execution as done in SemFix is capable of also rea-
soning on integer variables, because the underlying
constraint solver is capable of exploring the integer
search space. To sum up, our analytical answer is
that for boolean domains, angelic fix localization is
possible and probably much faster (this is claimed,
but not empirically verified). For integer domains,
only symbolic execution is appropriate. Meanwhile,
NOPOL can also handle the right-hand side of assign-
ments as in SemFix. If we encode the synthesis as
in SemFix, the right-hand side of assignments can be
directly processed by NOPOL.

Third, NOPOL supports object-oriented code. We
have adapted the code synthesis technique so that the
generated patch can contain null checks and method
calls.

Finally, the evaluation of NOPOL is significantly
larger than that of SemFix. We have run NOPOL on
larger programs and real bugs. In SemFix, 4/5 of
subject programs have less than 600 LoC and the
bugs are artificially seeded. In the evaluation in our
paper, the average number of lines of code per subject
program is 25K LoC and the bugs are extracted from
real programs that happened in practice.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, 2016 19

5.2 Effectiveness of Fault Localization Tech-
niques

Fault localization plays an important role during the
repair process. In our approach, a fault localization
technique ranks all the suspicious statements and
NOPOL attempts to generate patches by starting with
analyzing the most suspicious statement first. We use
Ochiai [4] as the fault localization technique. For our
dataset, we wonder whether there is a difference
between Ochiai and other techniques. In this section,
we study the accuracy of different fault localization
techniques on the bugs of our dataset.

We employ the absolute wasted effort to measure
fault localization techniques. The wasted effort is de-
fined as the ranking of the actual buggy statement.
Given a set S of statements, the wasted effort is
expressed as follows,

effort = |{susp(x) > susp(x∗)}|+ 1

where x ∈ S is any statement, x∗ is the actual buggy
statement, and | · | calculates the size of a set. A low
value indicates that the fault localization technique is
effective.

In our experiment, we compare six well-studied
fault localization techniques: Ochiai [4], Tarantula
[21], Jaccard [4], Naish2 [37], Ochiai2 [37], and Kul-
czynski2 [50]. Table 11 presents the comparison on
the two types of bugs considered in this paper.

As shown in Table 11, for bugs with buggy IF
conditions, Jaccard obtains the best average wasted
effort while Jaccard and Naish2 get the same median
value. For bugs with missing preconditions, Tarantula
obtains the best average wasted effort while Ochiai,
Jaccard, and Naish2 get the same median value. Those
results assess that, according to our dataset of real
bugs, the sensitivity of NOPOL with respect to fault
localization is not a crucial point and Ochiai is an
acceptable choice.

5.3 Potential Parallelization of NOPOL

Our method NOPOL is originally implemented to not
perform parallelization. Based on the design of this
method, it is possible to enhance the implementation
by parallelizing NOPOL to reduce the execution time.
Indeed, the core algorithms of NOPOL are highly
parallelizable.

First, during angelic fix localization, two feasible
ways of parallelization can be performed: over test
cases and over potential locations. Let us assume that
there are 3 failing test cases with respectively 50,
100 and 200 buggy IF conditions executed. Since the
search space of buggy IF conditions is 2×nc (nc is the
number of executed IF statements by one test case, see
Section 3.2.3), we could automatically run in parallel
(50 + 100 + 200) × 2 = 700 sessions of angelic fix
localization on many different machines.

TABLE 11
Wasted effort comparison among six fault localization

techniques.

Fault localization
technique

Buggy IF condition Missing precondition
Average Median Average Median

Ochiai 131.88 32.00 10.33 1.00
Tarantula 127.63 45.50 7.00 1.50

Jaccard 121.44 25.50 10.33 1.00
Naish2 135.06 25.50 10.33 1.00
Ochiai2 133.06 44.50 8.83 1.50

Kulczynshi2 127.44 45.50 11.50 7.50

Second, our synthesis technique is based on dif-
ferent SMT levels (see Section 3.4.5). Synthesis at
each SMT level corresponds to one independent SMT
instance. Hence, the synthesis can also be run in par-
allel. However, we should mention that parallelizing
the synthesis may lead to multiple resulted patches.
Synthesis at a low SMT level can generate a simple
patch; for the same bug, synthesis at a higher SMT
level may not generate a better patch and may waste
the running cost.

5.4 Insight on Test-Suite Based Repair
NOPOL is a test-suite based repair approach, as other
existing work ([27], [38], [24], [44], etc.) in the field of
automatic software repair. However, the foundations
of test-suite based repair are little understood. Our
experience with NOPOL enables us to contribute to
better understanding the strengths and the weak-
nesses of test-suite based repair.

There are two grand research questions behind test-
suite based repair. The first one is about the quality
of test suites [36]: do developers write good-enough
test suites for automatic repair? Qi et al. [45] have
shown that the test suites considered in the GenProg
benchmark are not good enough, in the sense that
they accept trivial repairs such as directly removing
the faulty code. The experiments we have presented
in this paper shed a different light. For nine bugs
considered in this experiment, the test suite leads to
a correct patch. For four additional bugs, a slight
addition in the test suite allows for generating a
correct patch. We consider this as encouraging for the
future of the field. However, there is a need for future
work on recommendation systems that tell when to
add additional test cases for the sake of repair, and
what those test cases should specify.

The second grand research question goes beyond
standard test suites such as JUnit ones and asks
whether repair operators do not overfit the inputs of
input-output specifications [46]. For instance, for Bug
CM6, one of the test inputs always equals to −1 when
the buggy code is executed. As a result, the patch
simply uses this value (corresponding to the number
of rows) to drive the control flow, which is wrong. On
the other hand, there are other cases when the repair

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, 2016 20

operator yields a generic and correct solution upfront.
This fact indicates that the same repair operator may
overfit or not according to different bugs. It is neces-
sary to conduct future research on the qualification of
repair operators according to overfitting.

6 THREATS TO VALIDITY

We discuss the threats to the validity of our results
along four dimensions.

6.1 External Validity
In this work, we evaluate our approach on 22 real-
world bugs with buggy IF conditions and missing
preconditions. One threat to our work is that the
number of bugs is not large enough to represent
the actual effectiveness of our technique. While the
number of bugs in our work is fewer than that in
previous work [27], [38], [24], the main strength of
our evaluation is twofold. On one hand, our work
focuses on two specific types of bugs, i.e., buggy IF
conditions and missing preconditions (as opposed to
general types of bugs in [24]); on the other hand, our
work is evaluated on real-world bugs in large Java
programs (as opposed to bugs in small-scale programs
in [38] and bugs without object-oriented features in
[27]). We note that it is possible to collect more real-
world bugs, with the price of more human labor. As
mentioned in Section 4.2, reproducing a specific bug
is complex and time-consuming.

6.2 Single Point of Repair
As all previous works in test-suite based repair, the
program under repair must be repaired at one single
point. In the current implementation of NOPOL, we
do not target programs with multiple faults, or bugs
which require patches at multiple locations.

6.3 Test Case Modification
In our work, we aim to repair bugs with buggy IF
conditions and missing preconditions. Test cases are
employed to validate the generated patch. In our
experiment, several test cases are modified to facilitate
repair. As mentioned in Section 4.4, such test case
modification consists of test case addition, transfor-
mation, and deletion. The answer to RQ3 analyzes
the root causes of test case modification. All test case
modifications are listed in our project website [1].

6.4 Dataset Construction
We describe how to construct our dataset in Sec-
tion 4.2. The manually-written patches of conditional
statements are extracted from commits in the version
control system. However, it is common that a com-
mit contains more code than the patch in buggy IF
conditions and missing preconditions. In our work,

we manually separate these patch fragments. In par-
ticular, the fixing commit of Bug PM2 contains two
nested preconditions within a complex code snippet.
We manually separate the patch of this bug according
to the code context and keep only one precondition.
Hence, there exists a potential bias in the dataset
construction.

7 RELATED WORK

We list related work in four categories: approaches to
test-suite based repair, repair besides test-suite based
repair, empirical foundations of test-suite based repair,
and related techniques in NOPOL.

7.1 Test-Suite Based Repair
GenProg. Test-suite based repair generates and vali-
dates a patch with a given test suite. Le Goues et al.
[27] propose GenProg, an approach to test-suite based
repair using genetic programming for C programs. In
GenProg, a program is viewed as an Abstract Syntax
Tree (AST) while a patch is a newly-generated AST
by weighting statements in the program. Based on ge-
netic programming, candidate patches are generated
via multiple trials. The role of genetic programming is
to obtain new ASTs by copying and replacing nodes
in the original AST. A systematic study by Le Goues
et al. [25] shows that GenProg can fix 55 out of 105
bugs in C programs. The difference between NOPOL
and GenProg are as follows. NOPOL targets a specific
defect class while GenProg is generic; NOPOL uses
component-based program synthesis while GenProg
only copies existing code from the same code base;
NOPOL uses a four-phase repair approach (fault lo-
calization, angelic fix localization, runtime trace col-
lection, and patch synthesis) while GenProg uses a
different two-phase approach (fault localization and
trial); NOPOL is designed for object-oriented Java
programs while GenProg is for C.

AE. Weimer et al. [49] report an adaptive repair
method based on program equivalence, called AE.
This method can fix 54 out of the same 105 bugs as in
the work [25] while evaluating fewer test cases than
GenProg.

PAR. Kim et al. [24] propose PAR, a repair approach
using fix patterns representing common ways of fixing
bugs in Java. These fix patterns can avoid nonsensical
patches, which are caused by the randomness of some
operators in genetic programming. Based on the fix
patterns, 119 bugs are examined for patch generation.
In this work, the evaluation of patches is contributed
by 253 human subjects, including 89 students and 164
developers.

RSRepair. Qi et al. [44] design RSRepair, a ran-
dom search based technique for navigating the search
space. This work indicates that random search per-
forms more efficiently than genetic programming in
GenProg [27]. RSRepair can fix 24 bugs, which are

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, 2016 21

derived from a subset of 55 fixed bugs by GenProg
[25]. Another work by Qi et al. [43] reduces the time
cost of patch generation via test case prioritization.

SemFix. Nguyen et al. [38] propose SemFix, a con-
straint based repair approach. This approach gener-
ates patches for assignments and conditions by se-
mantic analysis via SMT encoding. Program compo-
nents are synthesized into one patch via translating
the solution of the SMT instance. Our proposed ap-
proach, NOPOL, is motivated by the design of SemFix.
The major differences between NOPOL and SemFix
were discussed in Section 5.1.

Mutation-based repair. Debroy & Wong [13] de-
velop a mutation-based repair method, which is in-
spired by the concept of mutation testing. Their
method integrates program mutants with fault local-
ization to explore the search space of patches.

DirectFix. Mechtaev et al. [35] propose DirectFix,
a repair method for simplifying patch generation.
Potential program components in patches are encoded
into a Maximum Satisfiability (MaxSAT) problem, i.e.
an optimization problem; the solution to the MaxSAT
instance is converted into the final concise patch.

SearchRepair. Ke et al. [23] develop SearchRepair,
a repair method with semantic code search, which
encodes human-written code fragments as SMT con-
straints on input-output behavior. This method re-
veals 20% newly repaired defects, comparing with
GenProg, AE, or RSRepair.

SPR. After the original publication presenting
NOPOL [14], Long & Rinard [29] have proposed a
repair technique called SPR using condition synthesis.
SPR addresses repairing conditional bugs, as well as
other types of bugs, like missing non-IF statements.
The differences are as follows. First, a major difference
between NOPOL and SPR is that NOPOL synthesizes
a condition via component-based program synthesis
while SPR is based on multiple trials of pre-defined
program transformation schemas. For instance, in
SPR, a transformation schema for conditional bugs
is called condition refinement, which updates an ex-
isting condition in an IF via tightening or loosening
the condition. To repair a bug, SPR tries a poten-
tial patch with the transformation schemas one by
one and validates the patch with the test suite; the
technique of NOPOL is entirely different, based on
runtime data collection during test execution. Second,
another difference is that SPR is for repairing C pro-
grams. Patches by SPR only contain primitive values
while patches by NOPOL contain both primitive val-
ues and object-oriented expressions (e.g., fields and
unary method calls). Third, in SPR, the technique of
collecting angelic values is based on NOPOL’s, yet
extends it. It finds sequences of values rather than
one simplified trace during collecting angelic values
in NOPOL (Section 3.2). As mentioned in Section 3.2.3,
the simplified trace in NOPOL reduces the search
space of patch synthesis, but may result in failed

repair attempts for specific bugs, where a condition
is executed more than once by a test case. Examples
of these bugs can be found in the SPR evaluation [29].
The simplification in NOPOL can be viewed as a trade-
off between repairability and time cost.

Prophet. Also by Long & Rinard, Prophet is an
extension of SPR that uses a probability model for
prioritizing candidate patches. Based on historical
patches, Prophet learns model parameters via max-
imum likelihood estimation. Experiments show that
this method can generate correct patches for 15 out
of 69 real-world defects of the GenProg benchmark.
We have also noticed that in NOPOL, it is possible
to synthesize more than one patch with our SMT-
based synthesis implementation. Hence, the probabil-
ity model in Prophet can be leveraged to direct the
synthesis of more correct patches by NOPOL.

7.2 Other Kinds of Repair
Besides test-suite based repair, other approaches are
designed for fixing software bugs and improving
software quality. Dallmeier et al. [11] propose Pachika,
a fix generation approach via object behavior anomaly
detection. This approach identifies the difference be-
tween program behaviors by the execution of passing
and failing test cases; then fixes are generated by
inserting or deleting method calls. Carzaniga et al. [8]
develop an automatic technique to avoid failures by
a faulty web application. This technique is referred
as an automatic workaround, which aims to find and
execute a correct program variant. AutoFix by Pei et
al. [41], employs a contract-based strategy to generate
fixes. This approach requires simple specifications
in contracts, e.g., pre-conditions and post-conditions
of a function, to enhance the debugging and fixing
process. Experiments on Eiffel programs show that
this approach can fix 42% of over 200 faults.

7.3 Empirical Foundations of Repair
Applying automatic repair to real-world programs is
limited by complex program structures and semantics.
We list existing work on the investigation of empirical
foundations of test-suite based repair.

Martinez & Monperrus [32] mine historical repair
actions to reason about future actions with a proba-
bilistic model. Based on a fine granularity of ASTs, this
work analyzes over 62 thousands versioning transac-
tions in 14 repositories of open-source Java projects
to collect probabilistic distributions of repair actions.
Such distributions can be used as prior knowledge to
guide program repairing.

Fry et al. [16] design a human study of patch main-
tainability with 150 participants and 32 real-world
defects. This work indicates that machine-generated
patches are slightly less maintainable than human-
written ones; hence, patches by automatic repair could
be used as the patches written by humans. Another

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, 2016 22

case study is conducted by Tao et al. [48]. They
investigate the possibility of leveraging patches by
automatic repair to assist the process of debugging
by humans.

Barr et al. [5] address the “plastic surgery hypoth-
esis” of genetic-programming based repair, such as
GenProg. Their work presents evidences of patches
based on reusable code, which make patch reconsti-
tution from existing code possible. Martinez et al. [33]
conduct empirical investigation to the redundancy
assumption of automatic repair; this work indicates
that code extracted from buggy programs could form
a patch that passes the test suite.

Monperrus [36] details the problem statement and
the evaluation of automatic software repair. This work
systematically describes the pitfalls in software repair
research and the importance of explicit defect classes;
meanwhile, this paper identifies the evaluation cri-
teria in the field: understandability, correctness, and
completeness. Zhong & Su [56] examine over 9,000
real-world patches and summarize 15 findings in two
key ingredients of automatic repair: fault localization
and faulty code fix. This work provides empirical
foundations for localization and patch generation of
buggy statements.

Qi et al. [45] propose Kali, an efficient repair ap-
proach based on simple actions, such as statement
removal. Their work presents the repair results via
simple methods; meanwhile, their work checks pre-
vious empirical results by GenProg [27], AE [49],
and RSRepair [43]. Empirical studies show that only
two bugs by GenProg, three bugs by AE, and two
bugs by RSRepair are correctly patched. All the re-
ported patches for the other bugs are incorrect due
to improper experimental configurations or seman-
tic issues; an incorrect patch either fails to produce
expected outputs for the inputs in the test suite, or
fails to implement functionality that is expected by
developers. As the latest result in test-suite based
repair, the work by Qi et al. [45] shows that repairing
real-world bugs is complex and difficult. Hence, it is
worth investigating the empirical results on fixing real
bugs.

Recent work by Smith et al. [46] investigates the
overfitting patches on test cases in automatic repair.
They report a controlled experiment on a set of pro-
grams written by novice developers with bugs and
patches; two typical repair methods, GenProg [27] and
RSRepair [44], are evaluated to explore the factors that
affect the output quality of automatic repair.

Recent work by Le Goues et al. [26] presents two
datasets of bugs in C programs to support compar-
ative evaluation of automatic repair algorithms. The
detailed description of these datasets is introduced
and a quantified empirical study is conducted on the
datasets. Defects4J by Just et al. [22] is a bug database
that consists of 357 real-world bugs from five widely-
used open-source Java projects. It has recently been

shown [31] that NOPOL is capable of fixing 35 bugs
of this benchmark.

7.4 Related Techniques: Program Synthesis and
Fault Localization

Our approach, NOPOL, relies on two important tech-
niques, program synthesis and fault localization.

Program synthesis aims to form a new program
by synthesizing existing program components. Jha
et al. [19] mine program oracles based on examples
and employ SMT solvers to synthesize constraints.
In this work, manual or formal specifications are
replaced by input-output oracles. They evaluate this
work on 25 benchmark examples in program deobfus-
cation. Their follow-up work [17] addresses the same
problem by encoding the synthesis constraint with
a first-order logic formula. In general, any advance
in program synthesis can benefit program repair by
enabling either more complex or bigger expressions
to be synthesized.

In our work, fault localization is used as a step of
ranking suspicious statements to find out locations
of bugs. A general framework of fault localization is
to collect program spectra (a matrix of testing results
based on a given test suite) and to sort statements in
the spectra with specific metrics (e.g., Tarantula [21]
and Ochiai [4]). Among existing metrics in fault lo-
calization, Ochiai [4] has been evaluated as one of the
most effective ones. In Ochiai, statements are ranked
according to their suspiciousness scores, which are
values of the Ochiai index between the number of
failed test cases and the number of covered test cases.
Fault localization techniques are further improved
recently, for example, the diagnosis model by Naish et
al. [37], the localization prioritization by Yoo et al. [54],
and the test purification by Xuan & Monperrus [53].

8 CONCLUSION

In this paper, we have proposed NOPOL, a test-suite
based repair approach using SMT. NOPOL targets two
kinds of bugs: buggy IF conditions and missing pre-
conditions. Given a buggy program and its test suite,
NOPOL employs angelic fix localization to identify
potential locations of patches and expected values
of IF conditions. For each identified location, NOPOL
collects test execution traces of the program. Those
traces are then encoded as an SMT problem and the
solution to this SMT is converted into a patch for the
buggy program. We conduct an empirical evaluation
on 22 real-world programs with buggy IF conditions
and missing preconditions. We have presented four
case studies to show the benefits of generating patches
with NOPOL as well as the limitations.

NOPOL is publicly-available to support further
replication and research on automatic software repair:
http://github.com/SpoonLabs/nopol/.

http://github.com/SpoonLabs/nopol/

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, 2016 23

In future work, we plan to evaluate our approach
on more real-world bugs. Our future work also in-
cludes addressing the current limitations, e.g., de-
signing better strategy for angelic fix localization,
collecting more method calls, and improving the SMT
encoding.

ACKNOWLEDGMENT

The authors would like to thank David Cok for giving
us full access to jSMTLIB. This work is partly sup-
ported by the INRIA Internship program, the INRIA
postdoctoral research fellowship, the CNRS delega-
tion program, the National Natural Science Founda-
tion of China (under grant 61502345), and the Young
Talent Development Program of the China Computer
Federation.

REFERENCES
[1] Nopol dataset website. http://sachaproject.gforge.inria.fr/

nopol/. Accessed: 2015-06-01.
[2] Nopol source code (gpl license). http://github.com/

SpoonLabs/nopol/. Accessed: 2015-06-01.
[3] On contributing patches of apache commons. http://

commons.apache.org/patches.html#Test_Cases. Accessed:
2015-06-01.

[4] R. Abreu, P. Zoeteweij, and A. J. Van Gemund. On the
accuracy of spectrum-based fault localization. In Testing: Aca-
demic and Industrial Conference Practice and Research Techniques-
MUTATION, 2007, pages 89–98. IEEE, 2007.

[5] E. T. Barr, Y. Brun, P. T. Devanbu, M. Harman, and F. Sarro.
The plastic surgery hypothesis. In Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations of Software
Engineering, pages 306–317, 2014.

[6] J. Campos, A. Riboira, A. Perez, and R. Abreu. Gzoltar: an
Eclipse plug-in for testing and debugging. In Proceedings of
Automated Software Engineering, 2012.

[7] A. Carzaniga, A. Gorla, A. Mattavelli, N. Perino, and M. Pezze.
Automatic recovery from runtime failures. In Proceedings of
the 2013 International Conference on Software Engineering, pages
782–791. IEEE Press, 2013.

[8] A. Carzaniga, A. Gorla, N. Perino, and M. Pezzè. Automatic
workarounds for web applications. In Proceedings of the ACM
SIGSOFT International Symposium on Foundations of Software
Engineering, pages 237–246. ACM, 2010.

[9] S. Chandra, E. Torlak, S. Barman, and R. Bodik. Angelic
debugging. In Proceeding of the International Conference on
Software Engineering, pages 121–130. IEEE, 2011.

[10] D. R. Cok. jSMTLIB: Tutorial, validation and adapter tools for
SMT-LIBv2. In NASA Formal Methods, pages 480–486. Springer,
2011.

[11] V. Dallmeier, A. Zeller, and B. Meyer. Generating fixes
from object behavior anomalies. In Proceedings of the 2009
IEEE/ACM International Conference on Automated Software En-
gineering, pages 550–554. IEEE Computer Society, 2009.

[12] L. de Moura and N. Bjørner. Z3: An efficient SMT solver.
In Tools and Algorithms for the Construction and Analysis of
Systems, 14th International Conference, TACAS 2008, Held as
Part of the Joint European Conferences on Theory and Practice
of Software, ETAPS 2008, Budapest, Hungary, March 29-April 6,
2008. Proceedings, volume 4963 of Lecture Notes in Computer
Science, pages 337–340. Springer, 2008.

[13] V. Debroy and W. E. Wong. Using mutation to automatically
suggest fixes for faulty programs. In Proceedings of the 2010
Third International Conference on Software Testing, Verification and
Validation, ICST ’10, pages 65–74, 2010.

[14] F. DeMarco, J. Xuan, D. Le Berre, and M. Monperrus. Auto-
maticr epair of buggy if conditions and missing preconditions
with smt. In Proceedings of the 6th International Workshop on
Constraints in Software Testing, Verification, and Analysis, pages
30–39. ACM, 2014.

[15] J.-R. Falleri, F. Morandat, X. Blanc, M. Martinez, and M. Mon-
perrus. Fine-grained and accurate source code differencing.
In Proceedings of the 29th ACM/IEEE International Conference on
Automated Software Engineering, ASE ’14, pages 313–324, 2014.

[16] Z. P. Fry, B. Landau, and W. Weimer. A human study of patch
maintainability. In Proceedings of the International Symposium on
Software Testing and Analysis, pages 177–187, 2012.

[17] S. Gulwani, S. Jha, A. Tiwari, and R. Venkatesan. Synthesis of
loop-free programs. In Proceedings of the 32nd ACM SIGPLAN
Conference on Programming Language Design and Implementation,
PLDI 2011, San Jose, CA, USA, June 4-8, 2011, pages 62–73, 2011.

[18] D. Jeffrey, N. Gupta, and R. Gupta. Fault localization using
value replacement. In Proceedings of the International Symposium
on Software Testing and Analysis, pages 167–178. ACM, 2008.

[19] S. Jha, S. Gulwani, S. A. Seshia, and A. Tiwari. Oracle-
guided component-based program synthesis. In Proceedings of
the International Conference on Software Engineering, volume 1,
pages 215–224. IEEE, 2010.

[20] B. Jobstmann, A. Griesmayer, and R. Bloem. Program repair
as a game. In Computer Aided Verification, pages 226–238, 2005.

[21] J. A. Jones, M. J. Harrold, and J. Stasko. Visualization of test
information to assist fault localization. In Proceedings of the 24th
international conference on Software engineering, pages 467–477.
ACM, 2002.

[22] R. Just, D. Jalali, and M. D. Ernst. Defects4J: A database of
existing faults to enable controlled testing studies for Java
programs. In Proceedings of the International Symposium on
Software Testing and Analysis (ISSTA), pages 437–440, July 23–25
2014.

[23] Y. Ke, K. T. Stolee, C. Le Goues, and Y. Brun. Repairing
programs with semantic code search. In Proceedings of the
30th IEEE/ACM International Conference on Automated Software
Engineering (ASE), Lincoln, NE, USA, November 2015.

[24] D. Kim, J. Nam, J. Song, and S. Kim. Automatic patch
generation learned from human-written patches. In Proceedings
of the 2013 International Conference on Software Engineering,
pages 802–811, 2013.

[25] C. Le Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer. A
systematic study of automated program repair: Fixing 55 out
of 105 bugs for $8 each. In Software Engineering (ICSE), 2012
34th International Conference on, pages 3–13. IEEE, 2012.

[26] C. Le Goues, N. Holtschulte, E. K. Smith, Y. Brun, P. Devanbu,
S. Forrest, and W. Weimer. The manybugs and introclass
benchmarks for automated repair of c programs. IEEE Trans-
actions on Software Engineering (TSE), in press, 2015.

[27] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer. Genprog:
A generic method for automatic software repair. Software
Engineering, IEEE Transactions on, 38(1):54–72, 2012.

[28] Y. Li, S. Cheung, X. Zhang, and Y. Liu. Scaling up symbolic
analysis by removing z-equivalent states. ACM Trans. Softw.
Eng. Methodol., 23(4):34:1–34:32, 2014.

[29] F. Long and M. Rinard. Staged program repair with condition
synthesis. In Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering, ESEC/FSE 2015, Bergamo,
Italy, August 30 - September 4, 2015, pages 166–178, 2015.

[30] S. L. Marcote and M. Monperrus. Automatic repair of infinite
loops. Technical Report 1504.05078, Arxiv, 2015.

[31] M. Martinez, T. Durieux, J. Xuan, and M. Monperrus. Auto-
matic repair of real bugs in java: A large-scale experiment on
the defects4j dataset. Technical Report 1505.07002, Arxiv, 2015.

[32] M. Martinez and M. Monperrus. Mining software repair mod-
els for reasoning on the search space of automated program
fixing. Empirical Software Engineering, 20(1):176–205, 2015.

[33] M. Martinez, W. Weimer, and M. Monperrus. Do the fix ingre-
dients already exist? an empirical inquiry into the redundancy
assumptions of program repair approaches. In Proceedings of
the 36th International Conference on Software Engineering, pages
492–495, 2014.

[34] T. J. McCabe. A complexity measure. Software Engineering,
IEEE Transactions on, (4):308–320, 1976.

[35] S. Mechtaev, J. Yi, and A. Roychoudhury. Directfix: Looking for
simple program repairs. In Proceedings of the 37th International
Conference on Software Engineering. IEEE, 2015.

[36] M. Monperrus. A critical review of automatic patch generation
learned from human-written patches: essay on the problem
statement and the evaluation of automatic software repair.
In Proceedings of the 36th International Conference on Software
Engineering, pages 234–242. ACM, 2014.

http://sachaproject.gforge.inria.fr/nopol/
http://sachaproject.gforge.inria.fr/nopol/
http://github.com/SpoonLabs/nopol/
http://github.com/SpoonLabs/nopol/
http://commons.apache.org/patches.html#Test_Cases
http://commons.apache.org/patches.html#Test_Cases

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, 2016 24

[37] L. Naish, H. J. Lee, and K. Ramamohanarao. A model
for spectra-based software diagnosis. ACM Transactions on
Software Engineering and Methodology (TOSEM), 20(3):11, 2011.

[38] H. D. T. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra.
Semfix: Program repair via semantic analysis. In Proceedings of
the 2013 International Conference on Software Engineering, pages
772–781. IEEE Press, 2013.

[39] K. Pan, S. Kim, and E. J. Whitehead Jr. Toward an under-
standing of bug fix patterns. Empirical Software Engineering,
14(3):286–315, 2009.

[40] R. Pawlak, M. Monperrus, N. Petitprez, C. Noguera, and
L. Seinturier. Spoon: A Library for Implementing Analyses
and Transformations of Java Source Code. Software: Practice
and Experience, page na, 2015.

[41] Y. Pei, C. A. Furia, M. Nordio, Y. Wei, B. Meyer, and A. Zeller.
Automated fixing of programs with contracts. IEEE Transac-
tions on Software Engineering, 40(5):427–449, 2014.

[42] J. H. Perkins, G. Sullivan, W.-F. Wong, Y. Zibin, M. D. Ernst,
M. Rinard, S. Kim, S. Larsen, S. Amarasinghe, J. Bachrach,
M. Carbin, C. Pacheco, F. Sherwood, and S. Sidiroglou. Auto-
matically Patching Errors in Deployed Software. In Proceedings
of the 22nd Symposium on Operating Systems Principles (SOSP),
2009.

[43] Y. Qi, X. Mao, and Y. Lei. Efficient automated program repair
through fault-recorded testing prioritization. In 2013 IEEE
International Conference on Software Maintenance, pages 180–189,
2013.

[44] Y. Qi, X. Mao, Y. Lei, Z. Dai, and C. Wang. The strength of
random search on automated program repair. In Proceedings of
the 36th International Conference on Software Engineering, pages
254–265. ACM, 2014.

[45] Z. Qi, F. Long, S. Achour, and M. Rinard. An analysis of patch
plausibility and correctness for generate-and-validate patch
generation systems. In Proceedings of ISSTA. ACM, 2015.

[46] E. K. Smith, E. Barr, C. Le Goues, and Y. Brun. Is the cure worse
than the disease? overfitting in automated program repair. In
Proceedings of the 10th Joint Meeting of the European Software
Engineering Conference and ACM SIGSOFT Symposium on the
Foundations of Software Engineering (ESEC/FSE), Bergamo, Italy,
September 2015.

[47] F. Steimann, M. Frenkel, and R. Abreu. Threats to the
validity and value of empirical assessments of the accuracy
of coverage-based fault locators. In Proceedings of the 2013
International Symposium on Software Testing and Analysis, pages
314–324. ACM, 2013.

[48] Y. Tao, J. Kim, S. Kim, and C. Xu. Automatically generated
patches as debugging aids: a human study. In Proceedings of
the 22nd ACM SIGSOFT International Symposium on Foundations
of Software Engineering, pages 64–74, 2014.

[49] W. Weimer, Z. P. Fry, and S. Forrest. Leveraging program
equivalence for adaptive program repair: Models and first
results. In 2013 28th IEEE/ACM International Conference on
Automated Software Engineering, ASE 2013, Silicon Valley, CA,
USA, November 11-15, 2013, pages 356–366, 2013.

[50] J. Xu, Z. Zhang, W. Chan, T. Tse, and S. Li. A general noise-
reduction framework for fault localization of java programs.
Information and Software Technology, 55(5):880–896, 2013.

[51] J. Xuan, B. Cornu, M. Martinez, B. Baudry, L. Seinturier, and
M. Monperrus. Dynamic Analysis can be Improved with
Automatic Test Suite Refactoring. Technical Report 1506.01883,
Arxiv, 2015.

[52] J. Xuan and M. Monperrus. Learning to combine multiple
ranking metrics for fault localization. In 30th IEEE International
Conference on Software Maintenance and Evolution, Victoria, BC,
Canada, 2014, pages 191–200, 2014.

[53] J. Xuan and M. Monperrus. Test case purification for improv-
ing fault localization. In Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering
(FSE), pages 52–63. ACM, 2014.

[54] S. Yoo, M. Harman, and D. Clark. Fault localization prioriti-
zation: Comparing information-theoretic and coverage-based
approaches. ACM Transactions on Software Engineering and
Methodology (TOSEM), 22(3):19, 2013.

[55] X. Zhang, N. Gupta, and R. Gupta. Locating faults through
automated predicate switching. In Proceedings of the 28th
international conference on Software engineering, pages 272–281.
ACM, 2006.

[56] H. Zhong and Z. Su. An empirical study on fixing real bugs.
In Proceedings of the 37th International Conference on Software
Engineering (ICSE), pages 913–923. IEEE, 2015.

Jifeng Xuan received the BSc degree in
software engineering in 2007 and the PhD
degree in 2013, both from Dalian Univer-
sity of Technology, China. He is a research
professor at the State Key Lab of Software
Engineering, Wuhan University, China. He
was previously a postdoctoral researcher at
the INRIA Lille – Nord Europe, France. His
research interests include software testing
and debugging, software data analysis, and
search based software engineering. He is a

member of the IEEE.

Matias Martinez received the Master degree
in computer engineering from UNICEN, Ar-
gentina, and the PhD degree for University of
Lille, France, in 2014. He is currently a post-
doctoral researcher at University of Lugano
(USI), Switzerland. His current research fo-
cuses on automatic software repair, software
testing, and mining software repositories.

Favio DeMarco received the MSc degree
in Computer Science from Universidad de
Buenos Aires, Argentina. His research inter-
ests focus on software repair.

Maxime Clément is the MSc degree student
in computer engineering from Lille 1 Univer-
sity, France. He is currently working in an IT
services company as part of an internship
program.

Sebastian Lamelas Marcote received the
MSc degree in Computer Science from Uni-
versidad de Buenos Aires (FCEN), Argentina
in 2015. He is currently working in the indus-
try, but still has a research spirit focused on
the integration of computer power with other
scientific disciplines.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, 2016 25

Thomas Durieux received the master de-
gree in computer engineering from University
of Lille, France in 2015. He is working toward
the PhD degree in software engineering at
the University of Lille. His current research
focuses on automatic repair at runtime.

Daniel Le Berre is a professor of computer
science at Artois University, Lens, France,
and a member of the CRIL research lab, a
research center specialized in artificial intelli-
gence. His main research interests lie around
Boolean constraint programming and its ap-
plications to software engineering.

Martin Monperrus has been an associate
professor at the University of Lille, France,
since 2011. He is an adjunct researcher
at Inria. He was previously with the Darm-
stadt University of Technology, Germany, as
a research associate. He received a Ph.D.
from the University of Rennes in 2008. His
research lies in the field of software engi-
neering with a current focus on automatic
software repair. He is a member of the IEEE.

	Introduction
	Background
	Test-Suite Based Repair
	Buggy if Condition Bugs
	Missing Precondition Bugs

	Our Approach
	Overview
	Angelic Fix Localization
	For Buggy if Conditions
	For Missing Preconditions
	Characterization of the Search Space

	Runtime Trace Collection for Repair
	Expected Outcome Data Collection
	Primitive Type Data Collection
	Object-Oriented Data Collection
	On the Size of Collected Data

	Patch Synthesis: Encoding Repair in SMT
	Building Blocks
	Wiring Building Blocks
	Mapping Inputs and Outputs with Location Variables
	Domain Constraints
	Complexity Levels of Synthesized Expressions
	Patch Pretty-Printing

	Fault Localization

	Automatic Repair of Real-World If Bugs
	Evaluation Methodology
	Dataset of Real-World Bugs
	Implementation Details
	Main Research Questions
	Case Studies for Fixed Bugs
	Case Study 1, Bug PL4
	Case Study 2, Bug CL4
	Case Study 3, Bug CM2
	Case Study 4, Bug CM1

	Limitations
	No Angelic Value Found
	Performance Bugs Caused by Angelic Values
	Incorrectly Identified Output of a Precondition
	Complex Patches using Method Calls with Parameters
	Unavailable Method Values for a Null Object

	Discussions
	Differences with SemFix
	Effectiveness of Fault Localization Techniques
	Potential Parallelization of Nopol
	Insight on Test-Suite Based Repair

	Threats to Validity
	External Validity
	Single Point of Repair
	Test Case Modification
	Dataset Construction

	Related Work
	Test-Suite Based Repair
	Other Kinds of Repair
	Empirical Foundations of Repair
	Related Techniques: Program Synthesis and Fault Localization

	Conclusion
	References
	Biographies
	Jifeng Xuan
	Matias Martinez
	Favio DeMarco
	Maxime Clément
	Sebastian Lamelas Marcote
	Thomas Durieux
	Daniel Le Berre
	Martin Monperrus

