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Abstract

Neuropsychologists in the digital age have increasing access to emerging technologies. The National Institutes of Health (NIH)
initiatives for behavioral and social sciences have emphasized these developing scientific and technological potentials (eg, novel
sensors) for augmented characterization of neurocognitive, behavioral, affective, and social processes. Perhaps these innovative
technologies will lead to a paradigm shift from disintegrated and data-poor behavioral science to cohesive and data-rich science
that permits improved translation from bench to bedside. The 4 main advances influencing the scientific priorities of a recent
NIH Office of Behavioral and Social Sciences Research strategic plan include the following: integration of neuroscience into
behavioral and social sciences, transformational advances in measurement science, digital intervention platforms, and large-scale
population cohorts and data integration. This paper reviews these opportunities for novel brain-behavior characterizations.
Emphasis is placed on the increasing concern of neuropsychology with these topics and the need for development in these areas
to maintain relevance as a scientific discipline and advance scientific developments. Furthermore, the effects of such advancements
necessitate discussion and modification of training as well as ethical and legal mandates for neuropsychological research and
praxes.

(J Med Internet Res 2020;22(12):e23777) doi: 10.2196/23777
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Introduction

Clinical neuropsychologists have traditionally developed and
validated parsimonious assessment tools using basic
technologies (ie, pencil and paper protocols, general linear
model). Advances have predominantly occurred in expanded
normative standards throughout the history of this profession
[1]. Although these low-dimensional tools are well-validated
assessments of basic cognitive constructs, they have limited
presentation (static 2D stimuli) and logging capabilities (which
require manual logging of responses). Moreover,
low-dimensional approaches limit their statistical modeling
(typically linear) to combinations of features relative to a set of
weights for predicting the value of criterion variables. Some

neuropsychologists may argue that the parsimony offered by
low-dimensional tools reflects the reality of a much
higher-dimensional deficit. However, low-dimensional tools
may offer diminished interpretations of complex phenomena.

The preference for low-dimensional tools is apparent in surveys
of assessments used by neuropsychologists [2,3]. This
conservativism has resulted in neuropsychological assessments
that have hardly changed since the original scales were
established in the early 1900s [4,5]. Low-dimensional
neuropsychological assessment tools place the neuropsychologist
on par with the 19th century literary work on the nature of
perception and dimensionality. Specifically, the narrator, A
Square, resides in Flatland with residents (Flatlanders) whose
perception is limited to 2 dimensions. After a discussion with
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a Stranger (a sphere), A Square comes to understand how
complex and high dimensional the world is. Unfortunately, A
Square is jailed for holding and communicating heretical beliefs
[6]. For neuropsychologists, low-dimensional technologies have
led us to search for simplified explanations of complex
phenomena, which limits our ability to develop, validate,

interpret, and communicate useful models of human
neuropsychology. Recently, cognitive psychologists have called
this the Flatland fallacy. They contend that the Flatland fallacy
can be surmounted by formalizing psychological theories as
computational models that have the capacity to make precise
predictions about cognition and/or behavior (Figure 1) [7].

Figure 1. A Square cannot perceive his world as anything other than 2-dimensional. Reprinted with permission.

These authors explain that in the limited perspective of the
Flatlanders’ view (bottom of the figure), a 3D object (sphere)
seems to be fluctuating magnitudes (an expanding and reducing
circle). However, the reality is that (top of the figure) this object
is merely progressing through a lower‐dimensional plane. The
low-dimensional perspective leads to a false understanding of
reality. Similarly, neuropsychologists may incorrectly determine
that the low level of dimensionality correctly describes
neuropsychological or psychological phenomena. In fact, they
may be missing the complexity and high dimensionality of
neuropsychological phenomena.

Cognitive psychologists also contend that unitary cognitive
constructs such as attention are limited and prevent
psychologists from deepening the understanding of complex,
or high-dimensional, phenomena. First, theories of unitary
cognitive constructs are based on circular reasoning. Complex
phenomena such as the conception of attention are explained
by presumptive attentional systems. Instead, psychologists
should model the parallel, reciprocal, and iterative interactions
between context and neural or functional processes. This would
enhance the characterization of physically executed actions [8].
Similarly, the analytical approach to psychology is problematic
because (1) an exhaustive definition is proposed (eg, attention),
(2) assumed subfunctions are identified (eg, selective, sustained,
or divided attention) with separable functional and neuronal
processes (or dedicated systems), and (3) research concentrates
on specific tasks that purport to measure the theoretical
subfunctions rather than underlying processes required to
execute an efficient behavior in a particular situation [9].
Commonalities between subfunctions and other constructs (eg,
working memory) are often not empirically distinguishable and
by no means imply that the underlying functional and neural

processes are different or separable. These authors propose that
rather than being rigidly adherent to prior cognitive conceptual
frameworks, psychologists should model mechanisms and
processes (sensory, motor, and cognitive) that are found in
several complex behaviors. These behaviors may run in parallel
or interact across stimulus properties, time, and goals to achieve
an outcome.

How do neuropsychologists move from low-dimensional
neuropsychology to high-dimensional neuropsychology? The
National Institutes of Health (NIH) offers initiatives for
neuropsychologists interested in higher-dimensional tools,
including (1) integrating neuroscience into behavioral and social
sciences, (2) transformative advances in measurement science,
(3) digital intervention platforms, and (4) large-scale population
cohorts and data integration [10]. Similarly, the NIH Brain
Research through Advancing Innovative Neurotechnologies
(BRAIN) initiative seeks high-dimensional approaches to
understand brain disorders (eg, Alzheimer disease, Parkinson
disease, depression, and traumatic brain injury) and accelerating
the technologies for high-dimensional modeling of how the
brain records, processes, uses, stores, and retrieves vast
quantities of information [11]. Neuropsychologists can enhance
work conducted in NIH initiatives by offering interpretations
of neuroscience findings based on clinical expertise.

After a brief consideration of the historic progression of
neuropsychological assessment technologies, there is an
elucidation of current NIH initiatives for the behavioral and
social sciences as well as evaluations of current
neuropsychological assessment technologies.
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A Very Brief History of
Neuropsychological Assessment
Technologies

Neuropsychology has experienced a number of advances as it
developed from a primarily qualitative practice to a more
objective and evidence-based approach [12], with expanded
normative standards [1], performance validity testing [13], and
cross-cultural considerations [14]. Although these improvements
have aided the investigation of neurocognitive functions, there
are increasing discussions on the need to enhance the
dimensionality of neuropsychological assessments and
computational modeling [1,4,5,15-22].

The technological and theoretical development of
neuropsychological assessment can be understood in terms of
dimensional waves of technological adoption [5]. In
Neuropsychology 1.0, neuropsychological assessments
accentuate the development of low-dimensional and
construct-driven (ie, simple stimulus presentations of stimuli
to test abstract concepts like working memory) paper-and-pencil
measures. In Neuropsychology 2.0, there is a technological
move to automated administration, scoring, and in some
instances the interpretation of low-dimensional stimulus
presentations using computerized approaches (eg, NIH Toolbox
and video teleconferencing) [23-26]. Concurrently, technological
developments in neuroimaging have changed the role of
neuropsychological assessments, from lesion localization to
predictions about a patient’s ability to perform activities of daily
living. Finally, Neuropsychology 3.0 reflects contemporary
advances in high-dimensional (dynamic and ecologically valid
simulation, logging, and modeling of everyday activities) tools.

Some neuropsychologists are hesitant to move from
low-dimensional to high-dimensional tools because
computerized assessments may introduce errors and/or decrease
the reliability of the assessment process by means of automation
[27]. Although there have been improvements in computational
power and security, developers of high-dimensional technologies
need to take appropriate actions to ensure proper implementation
[28]. Furthermore, normative efforts are ongoing for
high-dimensional assessments, and continued validation of
advanced platforms and novel data analytic approaches is
needed.

Three decades ago, clinical psychologists were urged to adopt
progressively available advanced technologies [29].
Concurrently, in the 1980s, neuropsychologists started
discussing the potential of computerized neuropsychological
assessments [30]. It was subsequently pointed out that when
compared with progress in our everyday technologies,
psychological assessments had barely progressed throughout
the 20th century (eg, Wechsler scales) [31]. Technologies found
in neuropsychological testing can be compared with now
obsolete black-and-white televisions, vinyl records, rotary-dial
telephones, and the first commercial computer made in the
United States (ie, Universal Automatic Computer I). Assessment
technologies need to progress in ideas, not just new measures
[31].

In the late 1990s, it was discussed how neuropsychology lagged
behind (in absolute terms and in comparison with) other clinical
neurosciences. Clinical neuropsychologists continued to use
many of the same tools that have been developed decades earlier.
Moreover, new tests that were coming out were not conceptually
or substantively better than the ones from decades earlier (eg,
Wechsler scales). Dodrill [32] pointed to the fact that in the
1970s, there was little difference in the technological progress
of neurology and neuropsychology. This changed with the
advent of computerized tomographic scanning, and
neuropsychologists were no longer consulted for lesion
localization. Neuroimaging advances allowed neurologists to
better understand and treat neurologic pathophysiology [33].
Dodrill [32] suggests that if technological developments in
neurology had been as slow as that found in neuropsychology,
then neurologists would be limited to pneumoencephalograms
and radioisotope scans. These procedures are deemed primeval
by current neuroradiological standards.

To get an idea of where neuropsychology is today, basic
searches were performed on July 29, 2020, to tally the number
of technology publications per discipline. The first search
included a PubMed search with the search terms “computer”
AND (“neuropsychology” OR “neurology” OR “neuroscience”)
from 1990 to 2019 (Figure 2). A second and third search using
the terms “technology” and “neuroimaging” instead of
“computer” revealed similar findings (Figures 3 and 4,
respectively). Figures 2-4 show the number of publications by
year that resulted from each of these 3 broad literature searches.

Figure 2. Proliferation of publications identified in the PubMed database over time. Search terms: “computer” by discipline (eg, “neuropsychology,”
“neurology,” “neuroscience”).
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Figure 3. Proliferation of publications identified in the PubMed database over time. Search terms: “technology” by discipline (eg, “neuropsychology,”
“neurology,” “neuroscience”).

Figure 4. Proliferation of publications identified in the PubMed database over time. Search terms: “neuroimaging” by discipline (eg, “neuropsychology,”
“neurology,” “neuroscience”).

Findings from these basic searches suggest that
high-dimensional technologies have vastly greater
representations in neurology and the neurosciences. The
inclusion of technologies is very recently increasing in
neuropsychology but is explicitly not keeping pace with other
neurosciences. Similarly, a survey of rates of neuropsychologists
using computerized instruments revealed that only 6% of the
693 neuropsychology assessments were computerized [3]. The
average respondent reported that they rarely used computerized
tests. An increased likelihood of computerized assessment use
was apparent for early career neuropsychologists.

NIH’s Transformative Opportunities for
the Behavioral and Social Sciences

Integrating Neuroscience Advances Into Clinical
Neuropsychology
High-dimensional technologies such as functional neuroimaging
provide real-time observations of brain function that challenge
the validity of some low-dimensional paper-and-pencil
technologies. Impairments following brain injury are rarely a
single type of processing, and there is no one-to-one relationship
between neuropsychological functions and brain structures and
systems. Similar symptoms can arise from various injury types,
and the same underlying injury can result in a variety of different
symptoms. Although the integration of neuroimaging and
neuropsychological methods has improved our understanding
of brain functions, specific neuropsychological functions are
typically associated with activation in multiple brain regions

(distributed processing). Advances in methods and
high-dimensional technologies offer promise for redefining
previous understandings of cognitive functions (eg, elucidation
of multiple types of processing speed) and introduction of novel
(and complex and dynamic) cognitive functions [34].

Neuropsychologists are increasingly arguing for
neuropsychological models established in terms of patients’
reciprocal relations with the environments in which they carry
out activities of daily living [35-37]. Understanding the complex
and dynamic interactions of persons involves the study of the
brain’s processes in environmental and social systems. The
increasing emphasis of clinical neuropsychology on ecological
validity [38,39] and integration with social neuroscience [40,41]
is limited by current low-dimensional paper-and-pencil
assessments [42]. There is growing attention to the development
of high-dimensional tools for assessing and modeling brain
functions that include dynamic presentations of environmentally
relevant stimuli [36,43,44]. Moving beyond the static or
low-dimensional stimuli found in most traditional
neuropsychological tests require neuropsychologists to find
ways to update their technologies to reflect high-dimensional
assessment approaches (eg, deep learning, mobile platforms,
wearables, extended reality [XR], and the Internet of Things
[IoT]).

Neuropsychologists have looked to factor analytic studies of
neuropsychological test results to enhance understanding of the
functional capacities of patients [45]. However, looking at the
relations among responses to low-dimensional tasks that use
static or 2D stimuli can constrain task performance and neural
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activity to abstract constructs (eg, working memory).
Low-dimensional assessments bind mean neural population
dynamics to a low-dimensional subspace and may limit the
neuropsychologist’s assessment of the patient’s ability to
perform everyday activities [46]. Furthermore, observation of
low-dimensional neural signals may be an artifact of simple
cognitive tasks. Standard paper-and-pencil (low-dimensional)
tasks often involve basic responses to static or low-dimensional
stimuli [47].

Computational neuroscience offers high-dimensional models
of cognition via neural network–motivated connectionist models.
This approach integrates neuroscience findings into
high-dimensional models of the ways in which our brains
execute cognitive functions. Leabra is a programing framework
that has been used to integrate connectionist models of cognitive
function. The result is a holistic architecture adept at producing
precise predictions of a broad array of cognitive processes
[48,49]. Computational models based on neuroscience findings
allow for assessing a model’s sensitivity for capturing a
neuropsychological construct and specificity of a given construct
to other neuropsychological states and processes. Finally,
computational models are shareable and extensible by other
neuroscientists who want to extend previous work via iterative
construct validation.

Adoption of Advances in Measurement Science to
Neuropsychological Assessment
The NIH Office of Behavioral and Social Sciences Research
(OBSSR) also emphasizes advances in measurement science
and the move from low-dimensional data analytical approaches
(typically linear combinations of features relative to a set of
weights for criterion value prediction) to higher-dimensional
data analytic approaches for evaluating change over time (eg,
deep learning neural networks, machine learning). Clinical
scientists are starting to adopt developments in deep learning
and other computational modeling approaches [50]. Machine
learning and deep learning have been applied successfully in
various areas of artificial intelligence research: natural language
processing, speech recognition, self-driving cars, and computer
vision. For example, natural language processing–oriented
computerized neuropsychological assessments have been
developed to extract key features of linguistic complexity
changes associated with progression in the Alzheimer disease
spectrum [51]. High-dimensional data analytics can be applied
to computerized adaptive testing (CAT) and computational
models derived from large collaborative databases.

High-dimensional measurement protocols offer a clinical
scientist with increased precision and granularity of data [10].
Technologically enhanced neuropsychological assessments
(including high-dimensional virtual environments [VEs] with
graphical models) surpass simple automations (computerized
neuropsychological assessments) of low-dimensional
paper-and-pencil tasks. Moreover, they allow neuropsychologists
to present scenarios that require patients to actively choose
among multiple subtasks. From higher-dimensional tasks,
context-dependent computational models can be established
that include latent context variables that can be extricated using
nonlinear modeling.

A framework has been proposed that aims to elucidate
probabilistic computations using graphical and statistical models
of naturalistic behaviors. The probability distribution for
high-dimensional (ecologically valid simulations of everyday
activities) tasks is complex. As a result, the brain likely
simplifies the high-dimensional stimuli by centering on
significant interactions [47]. Neuropsychologists can develop
probabilistic graphical models for proficient descriptions of
complex statistical distributions that relate several interactions
and/or conditional dependencies among neuropsychological
variables.

Deep Learning for Higher-Dimensional
Algorithms

Neuropsychologists can use deep learning algorithms that
simulate the hierarchical structure of a person’s brain (healthy
and damaged). Deep learning is a form of machine learning (ie,
algorithms that learn from data to automatically perform tasks
such as classification and prediction that can be nonlinear in
nature) that processes data from lower dimensionality to
increasingly higher dimensions. It is increasingly used to
develop novel technologies, big data, and artificial intelligence
[52]. Neuropsychologists can use deep learning to analyze
studies with both traditional (low-dimensional paper and pencil)
and high-dimensional simulation technologies (eg, virtual
reality–based neuropsychological assessments, mixed reality,
augmented reality). With deep learning, neuropsychologists
could process the lower-dimensional data (paper-and-pencil
tests). Next, they could move to increasingly higher-dimensional
data (eg, from simulation technologies) and develop increasingly
complex data-driven semantic concepts that are likely more
representative of brain functioning than historical, theoretically
based cognitive constructs (eg, working memory).

Probabilistic models and generative neural networks can be
used to develop a unified framework for modeling
neuropsychological functioning (nonclinical and clinical).
Connectionist models such as these are understood to be a
portion of the more general framework of probabilistic graphical
models. Neuropsychological performances have been modeled
as Bayesian computations (brain function expresses perceptions
and actions as inferential processes). In this approach,
neuropsychological deficits are false inferences arising from
aberrant previous beliefs. Bayesian approaches can be used for
computational phenotyping that uses graphical models
implemented as stochastic processes that involve a randomly
determined sequence of observations (each of which is
considered as a sample of one element from a probability
distribution) via generative neural networks [53]. Visual object
recognition (eg, facial processing) can be used as an example.
Selective lesions can be applied to computational models of
visual object recognition to assess the impact of damage to
various cortical regions (eg, early visual processing, extrastriate
areas, anterior associative areas). New high-dimensional
measures could be developed to assess visual agnosia and
examine the appearance of category-specific deficits.

Deep learning architectures can also be used for modeling
specific connection pathways in selective impairment. Stochastic
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decay (stochastic reduction of weight values that decreases
responsivity to afferent signals) can be applied to synaptic
strengths for examination of cognitive decline. Both global
degradation of all network synapses and local degradation of
inhibitory synapses from a given processing layer have been
investigated. The findings revealed that although older
participants accurately performed arithmetical tasks, they had
impaired numerosity discrimination on trials requiring the
inhibition of incongruent information. They also found that
these results were related to poor inhibitory processes measured
by standard neuropsychological assessments. The specific
degradation of inhibitory processes resulted in a pattern closely
resembling older participants’ performance [54]. The addition
of computational modeling for the development, validation, and
application of neuropsychological assessments represents a
high-dimensional approach for neuropsychologists.

CAT and Item Response Theory

The NIH Toolbox is a battery of computerized
neuropsychological assessments that uses item response theory
(IRT) and CAT. With IRT, the NIH Toolbox has an alternative
to classical test theory as it moves beyond group-specific norms
[55]. In IRT, the probability of an item response is modeled
according to the respondent’s position on the underlying
construct of interest. This approach can be useful for providing
item-level properties of each NIH Toolbox measure across the
full range of each construct. Although neuropsychological
measures tend to meet the reliability and validity requirements
of classical test theory, the equivalence of item properties (eg,
item difficulty and item discriminatory power) is often assumed
across items. Consideration of item difficulty tends to be
subsumed under independent variable manipulation (eg,
cognitive load) to modify the marginal likelihood of correct
responses in item subgroups. A limitation of this approach is
that it does not match well with current item-level analyses
found in neuroimaging assessments of brain activations
following stimulus probes. For neuropsychological assessments
to comport well with brain activation probes, item difficulty
needs to be considered to avoid ceiling and floor effects in
patient performances across clinical cohorts. IRT models offer
the neuropsychologist both individual patient parameters and
individual item characteristics that can be scaled along a shared
latent dimension. Neuropsychological assessments would benefit
from greater adoption of developments in IRT that emphasize
the accuracy of individual items. Various IRT approaches have
been applied as signal detection theory models that connect
corresponding but discrete methods [56]. Combining IRT and
signal detection delivers the measurement accuracy needed for
robust modeling of item difficulty and examinee ability.

The NIH Toolbox CAT approach shortens testing time (by about
half as long as low-dimensional paper-and-pencil measures).
Through avoidance of floor or ceiling effects and concise item
pools, CAT delivers equal (or greater) ability–level assessments
[57,58]. Moreover, CAT offers enhanced efficiency, flexibility,
and precision assessment of multiple domains of interest without
adversely affecting participant burden. The application of IRT
to CAT provides neuropsychologists with real-time assessment
of item-level performance.

Function-Led Assessments Using
High-Dimensional Simulations

Neuropsychologists are increasingly interested in developing
assessments that assess the patients’ real-world functions in a
manner that generalizes to functional performance in everyday
activities [38]. A function-led approach to neuropsychological
assessments involves starting with directly observable everyday
behaviors and proceeding backward to observe how a sequence
of actions leads to a given behavior. Furthermore, a function-led
approach examines how that behavior is disrupted. For example,
a patient may have difficulty multitasking while using a global
positioning system to navigate a simulated neighborhood in a
driving simulator. High-dimensional technologies can be used
to present dynamic and interactive stimuli in a 3D environment
that includes automatic logging and computational modeling
(eg, head movements, eye tracking, response latencies, patterns,
etc) of a patient’s performance in everyday activities.
High-dimensional neuropsychology tools are being developed
and validated to simulate everyday functions (rather than
abstract cognitive constructs) [5,41].

Given the drawbacks to experiments conducted in real-life
settings (time consuming, require transportation, involve consent
from local businesses, costly to use or build physical mock-ups,
and difficult to replicate or standardize across settings) and
difficulty in maintaining systematic control of real-world
stimulus challenges, high-dimensional and function-led XR
environments are being used by neuropsychologists.

Low-dimensional (paper-and-pencil and computer automated)
neuropsychological tools only indirectly assess the patient’s
ability to perform everyday activities [39,59]. VEs offer
potential aids in enhancing the dimensionality and ecological
validity of neuropsychological assessments through enhanced
computational capacities for administration efficiency, stimulus
presentation, automated logging of responses, and data analytic
processing. Given the precise stimulus presentation and control
of dynamic or high-dimensional perceptual stimuli, VEs offer
neuropsychological assessments with enhanced ecological
validity [5,60-62]. High-dimensional immersive VEs move
beyond low-dimensional paper-and-pencil tests with static
stimulus presentations in sterile testing rooms to simulated
environments that replicate the distractions, stressors, and/or
demands found in the real world.

Data Monitoring With High-Dimensional
Technologies

Using passive data monitoring from everyday technologies (eg,
smartphones, IoT), clinical scientists can collect real-time
cognitive performance throughout the course of a day [10]. Each
patient has a digital footprint that transpires from consistent use
of everyday technologies. Coupling technologies with
developments in measurement science allows for novel
approaches to capture cognitions, affects, and behaviors [63].
Rapid progress in sensor technologies has led to objective and
effective measures of behavioral performance,
psychophysiology, and environmental contexts [64]. For
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example, machine learning has been employed to extract features
from passive monitoring of mobile phone use. When comparing
these features with performance on the psychomotor vigilance
task, it was found that alertness deviations as small as 11%
could be detected [65].

Another example of enhanced data monitoring can be found in
the increased granularity in performance assessments and digital
logging tools used in the Framingham Heart Study [66]. New
developments in digital logging of verbal responses to cognitive
stimuli allow for automated algorithms that can extract new
language features (eg, speaker turn taking, speaking rate,
hesitations, pitch, number of words, vocabulary). These features
offer promise for predicting incident cognitive impairment [67].
Furthermore, low-dimensional pencils and pens can be upgraded
with high-dimensional digital pens with associated software
designed to measure pen positioning 75 times per second. Digital
pens have a spatial resolution of ±0.002 inches. For example,
digital pens are being used by neuropsychologists for assessing
clock drawing performance [68,69]. Minute drawing elements
such as pen strokes (eg, clock face, hand, digit) can be logged
with greater than 84% accuracy [70]. The sensitivity of these
high-dimensional technologies to minute drawing elements,
decision-making latencies, and graphomotor characteristics may
offer promise to greatly enhance lower-dimensional hand scoring
of the Boston Process Approach. A review of the Boston Process
Approach and neuropsychology-based technologies has been
available recently [71].

Digital Intervention Platforms

Another transformative opportunity from the NIH OBSSR is
the application of high-dimensional technologies to interventions
[10]. Progress in neurocognitive rehabilitation has been
enhanced by neuroimaging of plasticity of the brain. Similarly,
a notable increase can be found in the use of noninvasive brain
stimulation approaches that leverage neural plasticity for
rehabilitation [72]. Neuropsychologists interested in
rehabilitation emphasize the promotion of brain plasticity by
increasing a patient’s capacity for performing everyday
activities. The resource and labor intensiveness of interventions
and the resulting limitations (reach, scalability, and duration)
found in real-world assessment environments require
interventions to be personalized at the start, adapted throughout
treatment, and operationalized into coded databases for fidelity
[10].

Smart Environment Technologies
Smart environments integrate and incorporate several
high-dimensional capabilities (eg, function-led evaluation,
passive data monitoring, deep learning, etc) to provide both
assessment and intervention. Using smart environments,
neuropsychologists can discreetly monitor a patient’s everyday
activities for changes in clinical status (eg, mobility patterns
can predict neurocognitive status). Moreover, automatic
interventions can be provided in real-world settings [73-77].
Smart environments use machine learning algorithms (eg, naïve
Bayes, Markov, conditional random fields, and dynamic Bayes
networks) to model, recognize, and monitor large amounts of
labeled training data [78,79]. Activity aware prompting is used

to assist in the elevation of independent living. Results from
studies using prompting technologies reveal growth in
independent activity engagement by patients with neurocognitive
impairment [80,81].

VE Technologies
Smart virtual reality environments simulate real-world scenarios
and offer refined stimulus delivery for interventions [60,82,83].
Using VEs, neuropsychologists can present and control stimuli
across various sensory modalities (eg, visual, auditory, olfactory,
haptic, and kinesthetic). There is an increasing number of
validated VEs that can be used for assessment and intervention:
virtual apartments [84], grocery stores [85], libraries [86],
classrooms [87-90], driving [91], cities [92,93], and military
environments [94,95]. In addition to the use of novel
measurement science for more efficient assessments using
behavioral performances, real-time psychophysiological data
(eg, eye gaze) can also be used to adapt assessment and
intervention environments for a more individualized approach
using factors such as emotional reactivity and ongoing skill
development [5,64].

Smartphones and Other Digital Technologies
Current NIH initiatives for the behavioral and social sciences
contend that intervention technologies need to move from
short-term assessment and rehabilitation interventions
(low-dimensional assessments and treatments that may limit
maintenance of behavioral response and change) to
high-dimensional approaches that use novel technologies (eg,
smartphones) to extend treatment duration to improve behavioral
maintenance [10]. Mobile technologies offer neuropsychologists
higher-dimensional interventions that extend into patients’
everyday activities by logging, monitoring, prompting, and skill
building between treatment sessions. One version of this
involves ecological momentary assessments and interventions,
as patients perform activities of daily living [96-98]. Ecological
momentary assessments and interventions using digital devices
offer large streams of continuous data [99,100]. Advances in
computational modeling offer distinctive prospects for real-time
behavioral interventions in ecological contexts [101-104]. As
with any new tool, neuropsychologists need to develop and
validate measures and interventions.

Large-Scale Population Cohorts, Data
Integration, and Cognitive Ontologies

The NIH OBSSR strategic plan is also interested in big data,
data analytics, and data integration techniques for developing
collaborative knowledge bases [10]. Integrating
neuropsychological data into large collaborative knowledge
bases will allow neuropsychologists to either formalize cognitive
ontologies or abandon cognitive ontologies for phylogenetically
refined functional and neuronal processes that underlie all
complex behaviors or more simplistically traditional
neuropsychological tasks [8,32,38,105]. Formal designations
of distinct sensory, motor, and cognitive entities can be
established in terms of parallel, reciprocal, hierarchical, and/or
spatiotemporal relations [7,18].
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Consistent with critiques from cognitive psychology [8], a
limitation of neuropsychological data integration is that
low-dimensional neuropsychological assessments are made up
of hypothetical interdimensional constructs inferred from
research findings [19,38]. Evidence for poor test specificity is
apparent in median correlations for common neuropsychological
tests. It has been found that although the median correlation
within domain groupings on a neuropsychological test was 0.52,
the median correlation between groupings was 0.44 [32].
Therefore, the tests are not unambiguously domain specific.
The median correlations should be notably higher within
groupings and lower between groupings. A recent meta-analysis
of relationships between the Wisconsin Card Sorting Test
(WCST) and the Weschler Adult Intelligence Scale (WAIS)
found a robust relationship between WCST performance and
WAIS indices [106]. This is interesting because the WAIS was
recently found to be the test most often administered by
neuropsychologists and the WCST was the fifth most often
administered [2]. Interestingly, the meta-analysis found that
WCST scores were associated in comparable strength with both
verbal and nonverbal domains from Wechsler Adult Intelligence
Scale tests. Another issue is that there is considerable variation
in some neuropsychological tests of the same domain (eg,
various measures of go or no-go performance) [107]. The shared
variance of tests of supposedly differing domains and the lack
of consistency in tests of the same domain may decrease the
capacity for accurate data integration.

Compounding this issue is the fact that current diagnostic
frameworks found in the American Psychiatric Association’s
Diagnostic and Statistical Manual of Mental Disorders (DSM)
and the World Health Organization’s International Classification
of Diseases (ICD) are dependent on presenting signs and
symptoms. Moreover, they do not align with findings from
genetics and clinical neuroscience [108,109].

Ontologies are formal specifications of entities found in a
domain and their relations. An ontology contains designations
of separate entities along with a specification of ontological
relations among entities with representations via spatiotemporal
(eg, preceded-by or contained-within) or hierarchical relations
(eg, is-a or part-of). This provision of an objective, concise,
common, and controlled vocabulary facilitates communication
among domains. Neuropsychological assessment lags behind
other clinical sciences in the development of formal ontologies
[18,19].

As such, neuropsychologists have moved beyond the diagnostic
taxonomies found in the DSM and ICD. These diagnostic
taxonomies are not sufficient for biomarker research because
they do not reflect relevant neurocognitive and behavioral
systems. Instead, neuropsychologists interested in developing
a common vocabulary for ontologies and collaborative
knowledge bases should adopt the US National Institute of
Mental Health’s Research Domain Criteria (RDoC) project.
The RDoC aims to establish a classification system for mental
disorders based on neuroscience and behavioral research
[108,110,111].

Conclusions

Neuropsychologists interested in high-dimensional technologies
have embraced the following NIH initiatives to advance
scientific developments: (1) integration of neuroscience into
behavioral and social sciences, (2) transformative advances in
measurement science, (3) digital intervention platforms, and
(4) large-scale population cohorts and data integration. Evidence
that progress is occurring in neuropsychology exists; however,
more work needs to be done. Much of this work involves
adoption, development, and validation of novel technologies.
Similarly, there is a need for a classification system (based on
neuroscience and psychology research) that moves beyond
low-dimensional emphases on unitary cognitive constructs
specific to a purported functional or neuronal system. A
high-dimensional classification instead embraces testable
hypotheses of how an observed phenomenon is produced from
fundamental underlying mechanisms or processes, the dynamics
of those processes (eg, reciprocal, hierarchal, iterative), and the
multiple functional or neuronal systems involved in several
complex behaviors [8,34]. In more basic terms,
neuropsychologists should theorize with verbs instead of nouns
to serve scientific progress. Only then can neuropsychologists
integrate data to develop meaningful ontologies and
collaborative knowledge bases of high-dimensional
neuropsychological phenomena. Computational modeling has
great promise for achieving this endeavor.

High-dimensional neuropsychology requires substantial reform
in the way the profession conducts training. High-dimensional
training should be added to current trainings that emphasize
primarily (in some programs it may be solely) low-dimensional
neuropsychological tests (eg, paper-and-pencil tests) and
methods (limited introduction to general linear modeling).
Increased emphasis should be placed on technical skill
development with high-dimensional technologies and
data-driven inferential reasoning. Curricula in neuropsychology
programs should be expanded to adapt to the recent
technological advances that have led to exponential growth in
the other sciences. This would require reimagining training in
clinical psychology programs. If neuropsychologists of the
future are to work with large collaborative knowledge bases
and perform complicated computational modeling of big data,
then they need at least basic training in areas traditionally
associated with computer science (eg, computer programing)
and informatics (algorithms and databases). As such, their basic
statistical training would need to be enhanced to include data
manipulation, predictive model generation, machine learning,
natural language processing, graph theory, and visualization.
Increased emphasis on training basic technical and
computational skills will improve the ability of future
neuropsychologists to participate in science.

A final note is the need for training in neuroethics. Neuroethics
has been distinguished into 2 branches: (1) ethics of
neuroscience—neuroethics as applied ethical reflection on the
practices and technologies found in the neurosciences—and (2)
neuroscience of ethics—what neuroscience can reveal about
the nature of morality and morally relevant topics [112].
Neuroethics are important for the NIH BRAIN initiative. The
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NIH BRAIN project aims to examine the ways in which
dynamic patterns of neural activity are transformed into
cognition, emotion, perception, and action in health and disease
[113]. The BRAIN initiative promotes the use of powerful new
tools and technologies: (1) technologies for monitoring neural
circuit activity and (2) technologies that enable the modulation
of neural circuits [114]. As expected, the ethical concerns related

to the medical and nonmedical use of neurotechnologies by
neuropsychologists are profound. Neuroethics for
neurotechnologies include a combination of principlist,
deontological, and consequential ethical approaches to answer
ethical quandaries [115,116]. Training in neuroethics and the
ethical use of high-dimensional technologies will allow
neuropsychologists to provide enhanced care for their patients.
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